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A class of approximate solutions of the Schrodinger equation for an atom in a time-dependent electric
field that scales with the applied field F as J F(t)dt is derived and their bounds of validity are carefully

examined. The class covers a wide region of applicable electric fields and its time constants. An exten-
sive comparison of these solutions with the results of numerical calculations on a truncated basis of up to
465 hydrogenic states shows surprising agreement. One of these solutions is found to be very effective in
field dressing of high Rydberg states. The resulting field dressing is proposed for the description of the
plasma field effects on atomic reaction rates, but its range of applicability can be extended to the other
atomic problems that involve time-dependent electric fields.

PACS number(s): 32.60.+ i, 31.70.Hq

I. INTRODUCTION

The need for accurate evaluation of atomic reaction
rates which are used in plasma modeling and diagnostics
of high-temperature fusion plasmas and in astrophysical
applications has attracted much effort in recent years
[1—3]. However, external and intrinsic electric (and/or
magnetic) fields [4,5] can sometimes drastically affect the
rates. The collisional transitions of the atomic system
caused by the plasma particles can also be sizable [6—12]
at the densities of interest to fusion plasmas. This prob-
lem is especially critical for the high Rydberg states
(HRS), where the high density of the levels with high de-
generacy makes the plasma field effect (PFE) difficult to
treat in general.

The PFE's consist of a stochastic perturbation of the
atomic system by plasma electrons and ions that includes
both the field distortion of the atomic states and collision-
al transitions caused by the plasma particles. The main
task in the formulation of the PFE theory is to reduce the
explicit dependence of the system on the plasma per-
turbers in a consistent manner by appropriate statistical
averaging of the perturbations. This can be done by
deriving a set of effective plasma potentials (EPP). This
problem was treated elsewhere [8], where it was shown
that within the range of the plasma concentrations of in-
terest, the efFective plasma potential in its crudest version
may be expressed as an efFective dipole electric field

r.R

where the time-dependent R depends on the
concentration-dependent impact parameter b and the
temperature-dependent plasma particle velocity U. V
varies on the time scale b/U, with the electric field ampli-
tude 1/b . (Atomic units will be used throughout the
text. ) Once the effective Hamiltonians that contain the
EPP are derived, the collisional transitions can be studied
by deriving the various rates using the field-distorted
wave functions.

The inhuence of the plasma environment on individual
atomic states has been treated in the past by two seeming-
ly distinct approaches: (a) The pressure-broadening
theory (PBT) of spectral lines [6,7,9,10] that treated the
electronic and ionic perturbations, usually in the lowest
nonvanishing order, and (b) the rate equation (REQ) ap-
proach [11,12] that emphasized the collisional transition
effect but neglected the field distortion problem. Recent
studies (Refs. [13,14], and references therein) of the time-
dependent Stark effect have contributed to further devel-
opment of the PBT of the low-lying states, including non-
perturbative methods and numerical simulations. How-
ever, for the situations that are of interest to the present
problem involving HRS, the PFE's are highly nonpertur-
bative, and the distortion of the wave functions has to be
carefully evaluated. On the other hand, the complex,
multistep transitions caused by the plasma particles are
often treated by solving an approximate set of rate equa-
tions that contains a number of excited Rydberg states,
which may be severely affected by the plasma fields. But
the field mixing of the atomic states has not been includ-
ed either in the rate calculations or in the rate equations.

Even if the EPP's are available [g], the inclusion of
PFE's in the above treatments poses a formidable numer-
ical task. Therefore simple field-dressed atomic wave
functions that describe the system including the HRS as
accurately as possible, with the known bounds of validity,
are of importance for improvement of the description of
PFE's. Theoretical description of such dressing by a
time-dependent electric field is the main purpose of this
work.

The problem of a hydrogen atom in a static electric
field is well understood [15,16]. The Schrodinger equa-
tion in parabolic coordinates is separable, and the prob-
lem is reduced to solving two second-order ordinary
difFerential equations, linked by the separation constants.
Even then, there are serious technical di%culties in quan-
turn treatment of the problem, due to substantial mixing
of the continuum in the case of strong electric field, or to
the large-order perturbation theory needed to describe
the processes involving highly excited atomic states. One
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possible approach to the problem, the WKB theory, was
extensively exploited for atoms in static fields [17,18].

When the time dependence of the field is encountered,
as it is in the case of our interest, the Schrodinger equa-
tion is no longer separable, and some nonperturbative
methods or time-dependent perturbation theory to high
orders must be employed. Furthermore, the finite time
the atom is embedded in the field can introduce
simplifications in the treatment. If that time is short
enough, or if the field is weak enough, the presence of the
continuum components in the bound states may be great-
ly reduced. The time constant of the field therefore
represents an additional parameter to control the magni-
tude of the field-induced mixing of the states, and in
many physical situations of interest its value can intro-
duce significant limitations on the evolution of the system
in the electric field. Our approach is to approximately
sum the full time-dependent perturbation series of the
problem and study their bounds of validity.

The time dependence of the field is assumed in its basic
form

F=Foexp( —y~t~)e . (1.2)

The exact solutions of the problem can be found in the
limits y —+ ~ and y~0, with corresponding limitation on
the classical velocity amplitude of the electron in the
electric field, go =Fo/y; in both limits, go must be kept
finite. It is the classical velocity of the perturber electron
(or ion),

g= J F(r)dt, (1.3)

that is present as the only field-dependent parameters in
the solutions. Therefore we define a class of solutions of
the Schrodinger equation for the electron in a time-
dependent electric field that scales with g. The general
condition y —+~ is read as y))1/T, where T is the
characteristic time of the corresponding electron orbit,
while y —+0 corresponds to y &&1/T. Obviously, the
former is easily satisfied for the HRS, while the latter is
limited to the low-lying states. The condition of applica-
bility is also tied to the electric field amplitude, limiting
its values from above. These are derived and discussed
in Sec. II. The major part of this work is the extensive
numerical check on the validity of the formulas derived
in Sec. II. This is carried out in Sec. III by solving vari-
ous sets of time-dependent coupled differential equations
constructed with truncated bases of hydrogenic states up
to n =30 (with fixed magnetic quantum number m), and
varying the Geld parameters. Although both in Sec. II
and in Sec. III calculations are defined as an initial-value
problem and tested for initially populated states up to
n =20, the basis set for the numerical calculations is pur-
posely oversized in order to simulate the continuum by
the Rydberg states that are well above a chosen initial
state. The derived formulas are valid for arbitrary direc-
tion of the electric field, with the time constants 1/y not
necessarily equal in different directions (the situation
present in plasma dipole field). When the quantum num-
ber m is not conserved, numerical checks are performed
also with the basis set of hydrogenic states below n =10.
These numerical calculations, to which we will refer in

this text as "exact," show a surprisingly good agreement
with the approximate formulas within the defined bounds
of validity, thus supporting the applicability of the ap-
proximate formulas to the EPP. Our discussion and con-
clusions are presented in Sec. IV.

We note that the assumed exponential time dependence
of the field is not critical for the validity of the approxi-
mation. In particular, also successfully tested are the di-
pole perturber time dependence along the straight-line
trajectory, a Gaussian time dependence, and oscillating
nonresonant electric field with exponential switching con-
ditions [19,20]. With slight adjustments of the field am-
plitude Fo and time constant 1/y in Eq. (1.2), the bounds
of validity discussed in Secs. II and III can also be ap-
plied to these cases.

The main results of this paper on the validity of the ap-
proximations developed in Sec. II are summarized in Sec.
IV.

t' —H 4=0,
Bt

H=H~+ V

V = —r F(t),

(2.1a)

(2.1b)

(2.1c)

where H~ is the atomic Hamiltonian (iri= m =e = 1)

H„=— + V(r),
whose eigenfunctions are defined by the equation

(2.2a)

i——H N =0.
Bt

(2.2b)

In the case of the hydrogenic atom

V= ——Z (2.2c)

The problem could be defined as an initial-value problem,
with initial condition ~lI( —~ ) =@0,where index 0 means
a set of spherical quantum numbers (no, lo, mo ). Without
loss of generality and for the purpose of the present sec-
tion, the electric field is defined by exponential time
dependence, Eq. (1.2), and is directed along the z axis. As
will be discussed later in this section this can be general-
ized such that the field can take an arbitrary instantane-
ous direction to the fixed coordinate system, with two or
more components of the form (1.2) where the y's and Fo's
for the dift'erent directions need not be the same.

In the following, all expansion parameters I' and p are
such that the convergence of perturbation series is en-
sured by I' (or p) ( l.

A. "Short-pulse" approximation

One can define 4I in terms of an exact perturbation
series in V, with F defined by Eq. (1.2), which for t ~0
takes the form

II. THEORY AND ITS BOUNDS OF VALIDITY

Our starting point for derivation of simple approxima-
tions to distortion of electronic wave function under the
infiuence of central potential V(r) and time-dependent
electric field F(t) is the time-dependent Schrodinger
equation
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4=@+ g g +O' D, ,
j= 1 v1 v ~

~ -.D. .Fj,t&01

(6 o ij—y). . . (b,„o—iy)
(2.3a)

where the summations are performed over all sets
vk = ( n~ lk ml, ) of the spherical quantum numbers, in-
cluding also the integration over the continuum energies,
and

D (t)=(C& ~r e 4 ), (2.3b)

O'= C&oexp(ig r)

~ ij. D g' —S (y)v ~ vO 't j

(2.4a)

where

and where indices vo and 0 are equivalent. Restriction to
negative time simplifies significantly the expression, due
to specific nature of the time dependence of F in transi-
tion from t & 0 to t )0, and it can be shown that exten-
sion of (2.3a) to t )0 would not infiuence our forthcom-
ing conclusions.

By rearranging the terms in Eq. (2.3a) we obtain

g(t)= f F(t')dt', (2.4c)

with g=g(t)e. Since g -Fo/y =go, the only field-
dependent parameter that appears in Eq. (2.4a) is go.

Keeping go finite but in the limit of infinitely short
electric field pulse, we have S~(y —+ ~ )—+0, and therefore
the first term in Eq. (2.4a) is the exact solution of the
problem (2.1a) in this limit,

'P(t, y~ )=0" '(t)=exp(ig r)@0(r,t) . (2.5)

To determine the range of validity of approximation (2.5)
for large but finite y one should investigate the terms
with j 1 in the expansion (2.4). An additional time-
dependent exponential factor could be extracted from the
perturbation series, which significantly improves its con-
vergence for large n. This is easily shown by making an
ansatz on the exact wave function '0, in the form

r

+=exp ig r f (—g /2)dt' (2.6)

which yields the Schrodinger equation for 4, with the
new Hamiltonian

&,(y)= 1 —1(1+ib, Olj y ) . (1+ib, , Oly )
(24.b) H1=H& —ig. V' . (2.7)

and
The exact perturbation series for +1 can then be written
in the form

+ =C.+ X X XC'-,D'-, -,j=1 v
1

Vj

1
~ ~ o D g jjj

(b, 0
—ij y) . (b. 0

—iy)j
(2.8a)

where

D', (t)=(C, ~e V~@ ) . (2.8b) P1= y +go 2 1

n n

—1/2

(2.11)

With the use of

D' v. ~v. v Dv. v.
t j j i l j

(2.8c)

we can relax the condition s « 1 and conclude that

e(t n ) (2.12)

one can show that the successive terms in (2.8a) are of
higher powers of parameter P1, defined as

s(r) (2.9)
(1+ 2)li2

H'=H~ —F r+ig-P .

In conclusion, the function

(2.13)

always. We note that 4' '(t) is the exact solution of the
Schrodinger equation with the Hamiltonian

where s =6/y. If s « 1, which could always be achieved
for given y when the principal quantum number n is high
enough, we have

%P'=exp ig r i f (g l2)dt'— (2.14)

1
p'1 =ho— (2.10)

where h Og / 0aynd we used (r ) —n and b, —1/n
Therefore in the limit 1/yn ((1,the series in (2.8a) con-
verges with p', =ho/n «1. Furthermore, rewriting P1
as

tends to the exact solution of the Schrodinger equation
(2.1) if one of the following conditions is fulfilled, and if
go is kept finite.

(a) Time duration of the electric field pulse is infinitely

short, i.e., y ~~. Then Pi~0 and pi~0.
(b) Principal quantum number n of 4&o tends to infinity.

The fact that No is coupled also to the states with smaller
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n does not change this conclusion. We note that our esti-
mate of the matrix element of r as proportional to its ex-
pectation value np of the initial state could be relaxed
somewhat for the off-diagonal element between the atom-
ic states with n 4 n '. lt decreases then with n as
(nn') . One of the consequences is that if I'i & 1, the
field-induced n mixing would decrease with increase of

l
n —nol, which is confirmed by exact numerical calcula-

tions in Sec. III.
(c) Hamiltonian H„has only degenerate eigenstates,

then 6~0 and s —+0, resulting in I', ~0.
In the previous derivation no reference has been given

to the direction of the electric field, and it can be general-
ized to arbitrary instantaneous direction. Expanding
exp(ig r), and assuming 40 a spherical state, Eq. (2.14)

can be written in the form
m=l

eI"(r, t)=4~y g i'j, (gr)Yi (&,g )Yi* (&„q,)
I m= —1

the unperturbed continuum. The energy-normalized
continuum-continuum radial matrix element of r in re-
gion AE =Et„E—k «Ek is derived [21] which gives the
largest contribution because of its singular nature,

Rt(Ek Ek)=
2ir (l'k'+ I)'~'(hE)'

(l k +1)' (i —1)+
2khE

(2.17)

b ER, (E,E')=—1 k
~ (k'+I)'"aE '

which yields

(2.18)

where k =+2Ek. Replacing this in the first order of the
expansion (2.8), the order of energy singularity in (2.17) is
decreased by one (to I/b, E), and assuming l =1, one ob-
tains

where

X@oexp —i f (g /2)dt' dE4
17 (k'+ I)'"AE (~E —ty)

Using the formula

(2.19)

(2.20)

g = Ig'(t)+g~(t)+g, '(t)]' ',
0 (t)=tan '(g /g, ),
y (t)=tan '(g /g ), g =(g~+g2)'~~ (2.15b)

a i (t)=exp i(E, Eo)t i f (g—/2)dt' (4~—)'~2

(210+ 1)(2l + 1)

(2A, +1)

where

XR(vA, , Inolo )C(lol A, , mom p)

X C(lolA, , OOO) Y,
* (Bs,yg ), (2.16a)

%(vl, , lnlo)= f dr r R i„jt(gr)R„& (2.16b)

is the radial matrix element of j&, m =p —mp, and

The last formula is somewhat simplified if the electric
field is in the direction of the z axis. In that case p =mp,
8s =0, and Yi' (8s, q&s) —+[(2l + I )/4']'

The condition (b) has so far been studied only for
bound states. The parameter of validity for the continu-
um states similar to the one in (2.11)—(2.13) may be ob-
tained when @0=@@ where Ek is the kinetic energy of

k

This wave function contains all the hydrogenic com-
ponents with various n, l, m, including continuum. Ex-
panding it in unperturbed functions N„& as

anlm @ntm
n, l, m

one obtains the amplitude for field-induced transitions in
the form

4, =exp( —h V)'Il~, (2.23)

where h= Jg(t)dt Then %z sati. sfies the Schrodinger
equation with the new Hamiltonian

Hz = ——+ V(r+h), (2.24)

where P is the principal va, lue of the integral, and extend-
ing integration in b.E to (

—~, ~ ) in calculation of the
principal value, we get for y ))Ek

~1k hp
2k (2.21)' (k'+1)'"

In (2.21) the contribution from the pole bE =i y is
neglected, since the wave function Nz will exponentially
fall off at large imaginary E. If y (&Ek, the expression
similar to (2.21) is obtained. Therefore bounds of validity
of (2.14) for dressing the continuum wave function C&k(t)

by a time-dependent electric field are defined by smallness
of the parameter

P lk hpk (2.22)

This is essentially the same condirion as (2.10) for the
bound states, with k replaced by 1/n

Ongoing calculation on dressing of hydrogenic contin-
uum with time-dependent electric field by the use of Eq.
(2.14) shows that only states within the continuum band
k Qp & k (k +Qp are strongly mixed in both k ' and l.
If k &go, bound states with E„)—(k —go) /2 are also
strongly mixed with the continuum. The calculation not
only is formidable and time consuming but also contains
problems intrinsic to the continuum mixing and will be
published later in all its details.

A better insight into the two approximations is ob-
tained by introducing a transformation on the wave func-
tion O„as
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which describes the electron in a field of a nucleus, which
moves classically with acceleration F(t); the action of the
electric field on the electron is replaced by the accelerated
center of force, where r is the electron position with
respect to the nucleus which is moving. The approxima-
tion (2.14) results from approximating 42(r, t) by
C&o(r+h(t)). The motion of the center of force is such
that the electron adiabatically adapts to that motion. If
6/y (1, this is fulfilled when the characteristic dimen-
sion of the electron orbit around the nucleus, U~/y, is
much smaller than the wavelength A. = 1/go of the charge
which is moving with velocity go. Therefore
(v~/y)/A, &(1, i.e., ho/n &(1, as was obtained earlier.
It is to be noted that the larger rate of time change of the
electric field yields the slower "motion" of the center of
force, and "adiabaticity" of the nuclear motion is ap-
propriate, as compared with the fast changing electric
field. Furthermore, the formula (2.14) may be interpreted
as a Cxalilean transformation from a coordinate system
moving with velocity g to the laboratory system. It is
well known [22] that sudden application of a magnetic
field on an atomic system is equivalent to a rotation of
the angular momentum of the system. We have here sud-
den application of an electric field to the system, which is
equivalent to the translation of the center of force of the
system.

To see if the transformation (2.23), together with ap-
proximation of the wave function %'z(t) by @o(t), can
bring improvement to (2.14) we note that such an approx-
imation leads to the neglect of h in Hamiltonian (2.24),
and anticipates that the important region of r is r ))h.
Using the exact perturbation series for %'„and rearrang-
ing the terms in (2.8) one can get

%, =exp[ h(t) V]4—0

investigate the rate of convergence of (2.27) to the exact
wave function with increasing principal quantum number
n, we define the correction parameters from the expan-
sion (2.25), assuming that 5/y «1. The first term gives
p'"=(ho/y)1/n", the second term p' '=(p'") yn and
(p"'), and the third term p' '-p"' (yn ), etc. Thus
the fast convergence with n, shown with p"', is lost in the
higher-order terms of (2.25). Instead the series converges
as I/( yn')[h o/n+(h 0/n) + ], if yn')1. There-
fore, although the correction terms are smaller in (2.25)
by a factor 5/y than that in (2.16), the dependence on n
is exactly the same in the two cases. In both cases we
need the condition ho/n &1 to be satisfied. In view of
this conclusion, and having in mind numerical difficulties
in evaluating (2.27) [in comparison to (2.14)], we do not
further consider approximation (2.27).

A slightly different form of dressing from Eq. (2.5) is
possible, where

4(t, y~ oo )=4' '(r)=exp( iH„—t)exp(ig r+iEot)

(2.28)

As will be discussed in the next section this form gives
the same field-induced transition probabilities as Eq. (2.5)
but provides better phase factors at the t ~ ~ limit, thus
emphasizing the on-shell mixing of No.

B. "Long-pulse" approximation

In the case when 5/y))1, i.e., yn «1, which is at-
tainable when the time rate of the applied electric field is
small in comparison to the characteristic period T of the
atomic state, the approximations derived above could be
applied if the principal quantum number of the states is
not too high. In that case the approximation (2.14) is ac-
ceptable if

+ X X X@-,D.'...n=1 V
1

V ~

D'
j 0 on «1 (2.29)

g'( —1')
X . S,(y), t&0,

7 j'
(2.25)

where S (y ) was defined in Eq. (2.4b). Since
SJ(y~ ~ ) =0 if one keeps ho=go/y finite in that limit,
the zeroth-order term in (2.25a) is the exact wave func-
tion 4„i.e.,

(2.26)

This yields a new approximation for the total wave func-
tion 4',

+I"=exp ig r i I (g /2.)d—t' @0(r—h, r), (2.27)

which, unlike (2.14), approaches the exact wave function
for y ~ ~ but keeping ho finite, rather than go in deriva-
tion of (2.14). Therefore (2.27) represents a quite different
solution to the problem. It follows from the expansion
(2.25a) that (2.14) is restored and a shift in %0 is absent if
all the eigenstates of Hamiltonian H„are degenerate. To

S.(y —+0)=5 O5 0. 5 0
—1, (2.30)

where 6," stands for the Kronecker delta. Then (2.3a) be-
comes

%=&&+ $ $. $4&,D, „
J=1 V0

~i~
v (k —i)v (k)g0 0 j'I

where the summations are taken over all the states which
are degenerate with ~0). For the hydrogenic case, it is
convenient to choose the basis functions N in parabolic

0

coordinates, in which case D, are diagonal [23,24],
vOvO

which can be obtained from Eq. (2.11).
To consider the limit y~O, keeping go =Fo/y finite,

we will use the exact perturbation series (2.3a). If the
states of H~ are nondegenerate, then we have
Si(y ~0)= —1 from (2.3b), and (2.3a) restores the unper-
turbed state 4o(t). Taking into account the degeneracy
we set
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D, =
—,'n(ni n—z)5, =do(n i, n),

Vp Vp Vp Vp
(2.32) then (2.33) can be used to construct the l-mixed state that

evolves from @« ~ . This yields [19]
0 0

where n&, n2 are the parabolic quantum numbers, with
n i + n z +m + 1 =n. Then (2.31) gives g( nloma ln, nzmo ) ( n, nzmo lnlmo )

n), n2 I

%(t) =4~~(t)exp[igdo(n „n)], (2.33)
X exp [igdo(n „nz ) ]@„i (2.34a)

where N~p is the parabolic unperturbed wave function. If
the unperturbed, initial wave function is a spherical state,

I

where

(ninzm lnlm ) =C((n —1)/2, (n —1)/2, l;(m +nz —ni)/2, (m +n, nz)/—2, m )( —I) (2.34b)

P, =F,(.) I(y+~) .

If y n ((1, we thus have
II 5

p2 =Fpn

(2.35a)

(2.35b)

which is close to the Inglis-Teller [25] limit. (Strictly
speaking, the Inglis-Teller limit is defined originally with
Fpn =

—,
' rather than with Fpn =1, as is used in this

text. ) But, for any given small y, one can choose n large

and

(n, nzmlnlm ) =(nlm ln, nzm ), v=nz+(lm —m)/2 .

(2.34c)

C(ji, jz, jz;m„mz, m3) is the Clebsch-Gordan
coefficient, in the notation of Rose [26]. The result is
valid in the limit of y~O while keeping gp finite. For
small but finite y, mixing between nondegenerate states
takes place and we estimate its contribution from the
first-order term in (2.3a). This yields a small parameter
of applicability for (2.34) in the form

enough so that yn »1. In that case, from Fq. (2.35a)

2
p2 =gpn ~ (2.35c)

%'= +Bi' '4&„i
I, m

(2.36a)

where the terms proportional to y are neglected, and
where

It is interesting to note that the two approximations,
(2.14) and (2.34) are of the same validity when yn -=1.
Then both Pi in (2.11) and Pz in (2.35a) are roughly equal
togpn .2

If the electric field is of arbitrary direction and the time
dependences of the various components of the field differ
from each other, the total field vector rotates. It is then
not convenient to orient the fixed coordinate system in
the direction of the field. The derivation leading to the
formula (2.34) is still valid, however. One has to project
the initial electric field vector onto the coordinate system
that rotates with the parabolic coordinates, and project-
ing that solution to the spherical coordinates and then
back to the fixed coordinate system we finally get

L lp0(t)= g g (nlom'lninzm')(n in zm' nil m') d, (B(t))d (8(t))
m'= —L n, n

Xexp[i(mo —m')a(t) —i(m —m')5(t)+igdo(n„nz)], L =min(l, lo) . (2.36b)

lpR(a, /3, y)g„i = gD ' (a, 0,5)@„i
m'

where

D', (a, 8,5)=exp(im'a —im 5)d ~ (8),

(2.38a)

(2.38b)

The general form of the rotation operator R can be ex-
pressed in terms of the instantaneous Euler angles 0., 8,6
of the field vector in the fixed coordinate system [26]

R =R (a, 8, 5) =exp( —iaL, —iBL —i5L, ), (2.37)

where L is the angular momentum operator. If the ini-
tially populated state is a spherical state, then in the ro-
tated coordinate frame it contains a mixture of all m's,
with the amplitudes determined by the matrix elements
of

(&)=&lm'le p( aL, )llm) . — (2.38c)

The rotation matrix d'
~ can be expressed in terms of

Jacobi polynomials.
The approximate formula (2.14) has the form similar to

the well known momentum-translation approximation
(MTA) [27] in the theory of laser-atom interactions,
where the role of g(t) is played by the laser field vector
potential af A(t), where af is the fine-structure constant.
Although the formal difference between (2.14) and MTA
is only in the sign of g (i.e. , of af A in the latter) in the
exponent there is a more subtle difference. The MTA is
derived as a low-frequency approximation for the laser-
electron interaction defined in the p A gauge [28], i.e.,
for the Hamiltonian similar to the one given in Eq. (2.7).
The assumption
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%=exp —ig r —J (g /2)dt' (2.39)

III. NUMERICAL VERIFICATION

The approximations developed in Sec. II were tested by
comparison with the exact numerical calculation involv-
ing a large, truncated set of bound states. The calcula-
tion was carried out by expanding the exact wave func-
tion of the problem, Eq. (2.1) in hydrogenic states N (t),
where v represent a set of spherical quantum numbers, as

for the exact wave function %' in the MTA case then
yields %", which satisfies the Schrodinger equation with
the Hamiltonian (2.1) (r E gauge). Similarly as in deriva-
tion of parameter Pi in (2.9), but with a different Hamil-
tonian, one obtains [22] the parameter P'=P2, where P2
was defined in Eq. (2.35a). The condition P'((1 defines
the range of validity of the MTA approximation, ob-
tained by replacing %" with 40. This range completely
overlaps with the one obtained for the "long-pulse" ap-
proximation (2.34a). The MTA and "short-pulse" ap-
proximation (2.14) represent solutions to difFerent prob-
lems defined by the different Hamiltonians, and this ex-
plains almost disjoint bounds of their applicability, in
spite of the formal similarity in expressions. This con-
clusion is not changed by the gauge invariance of the
Hamiltonians (2.1) and (2.7) in the oscillating field case,
since this invariance applies only to the exact wave func-
tions. The forms (2.39) and (2.14) in the two gauges obvi-
ously give two different approximations.

R„"'&'+—' are radial matrix elements of r, expressible analyti-
cally in terms of terminating hypergeometric functions.

Throughout the calculations of this section exponential
time dependence of the field was assumed, and the field
vector was chosen to lie in the plane y =0, i.e.,

F(t)=Fo,exp( —y, ~t~)z+Fo exp( —y ~t~)x, (3.5a)

with two time constants, y, and y . We assume that the
different components of I'o and y's are of the same order
of magnitude. In that case time-dependent angles 8 and

that appear in Eq. (2.16) are

y8 =tan exp( —b,y ~
t

~ )
y

1, t~0
X, 2 exp(b, yt) —1 t)0,

2 exp( b, y t—) 1'—

~y =y.—y, V, =0 . (3.5b)

When the time constants of both components are the
same, i.e., Ay=0, B~ becomes constant. The field, as
given by Eq. (3.5a), mixes all states in m, I, and n. If one
aligns the z axis in the direction of constant 8g, only (n, l)
mixing is present.

On the other hand, when the conditions for applicabili-
ty of approximation (2.36) are met, only the Euler angle
8—8g is needed for rotation of the coordinate system
(a=5=0) and therefore

(3.1) D' (0,8,0)=d' (6 ) . (3.6)

Then, Eq. (2.1) yields a set of coupled differential equa-
tions for the amplitudes a,

We calculate the rotation matrix from the expression [29]

ia (t)= —g ( ~vr. F(t)~ v)a, (t)e px(ih .t) . (3.2) (I +m)!(i —m)!

Similarly, a set of coupled differential equations was
solved for the amplitudes b of the wave function %'„
defined in Eqs. (2.6) and (2.7),

X [sin(8/2) ]"P/" (cos8),

v=m'+m, p=m' —m m' o m (3.7a)

b„(t)= g(v~r g(t)~v')b, b (t)exp(ib, t), (3.3) with the addition of the symmetry property

(3.7b)
where

( nlm z~ n 'l'm ' ) =5& &+,5m ', m

I) —m2 2

X
(2l ) +1)(2l) —1)

R n, l+1
n, l

1(nim ~x~n'i'm') =5,, ,+,5m, I+,

(3.4a)

(3.4b)

(1) +g+s.gm)(l) +~pm)
X

(2l ) +1)(21)—1)

XR "'+—'
n, l

~=sgn( m ' —m ), g'= sgn( 1' —l ) .

P' "'(x) is the Jacobi polynomial.
Equations (3.2) and (3.3) were solved in the truncated

bases of the bound states. In the case of a one-component
field directed along the z axis, the states up to n =30 were
included in the basis. The actual number N of equations
coupled depends on the chosen magnetic quantum num-
ber. For m =0, %=465 which implied solving of 930
coupled equations for the amplitudes. In the case of a
two-component field, all states up to n = 10 were included
(385); that is, 770 coupled equations were solved, for
different values of y's and Fo.

In order to test the proposed approximations (2.5),
(2.14), (2.27) and (2.33), (2.34), (2.36), sets of coupled
equations (3.2) are solved for 70 cases by varying the ini-
tial state, the field amplitude, and y (49 cases for the
one-component field and 21 for the two-component field).
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abilities. Figure 6 shows the I-mixing probabilities where
the n mixing is present, corresponding to the cases stud-
ied in Figs. 4(a) —4(c). The long-pulse approximation
overestimates the transition probabilities (black circles),
although they qualitatively follow the shape of the exact
curves. On the other hand, the short-pulse approxima-
tion also gives correct substructure of the I-mixing proba-
bilities (in the parameter region where it correctly de-
scribes the n mixing). Figure 6(c) is an exception. Fig.
4(c) shows that at n =10, the sharp peak of the n-mixing
distribution is not reproduced by Eq. (2.16), introducing
an error of about 20%%uo for that particular value of n = 10.
This discrepancy is also visible in the I distribution in
Fig. 3(c). But the l distribution of probability in the other
nano channels is quite correct, as can be seen in Fig.
6(d), for the transitions (10,1,0)~(12, l, 0).

3. The time deuelopment of the system

exact probabilities in the elastic channel ( n 0, la, m 0 ),
where the initial states are (15,4,2) and (17,0,0). The posi-
tion of the test cases in the (F,n ) diagram of Fig. 3 corre-
sponds to the time t =0, and obviously stays below (al-
though approaching closely) the short-pulse limit when
t ~~. In both cases, (2.14) reproduces the exact curves.
The same is valid for the evolution of the total n mixing
from the initial state (15,4,2), as well as for the l mixing,
presented in Fig. 7(b).

Our numerical investigation indicates that at yt ))1,
the dressed wave function in Eq. (2.28) provides better os-
cillating phase factors for each mixed component in 4
than the one in Eq. (2.5). This suggests that for the t -0,
where ~yt ~

( I, both forms are acceptable. On the other
hand, Eq. (2.5) is much easier to use in the evaluation of
the collisional and radiative transition amplitudes that in-
volve dressed states %. This is especially true for the
dressing of continuum states.

Although we compared the distributions generated in
the approximation (2.14) and (2.34) with the exact results
at typical times t=0 and ~, the approximations follow
in all details the exact evolution in time as long as we stay
within the range of validity as described in Figs. 1 and 3.
As was noted earlier, this range is determined essentially
by the scaling of the response of the system by

g = IF(t)dt. If the scaling is maintained for the

g=2FO/y=g(+ ~), the approximations remain valid
for all times, each within its range. Figure 7(a) represents
the comparison of the short-pulse approximation and the

B. Two-component electric Aeld

In order to test formulas (2.16) and (2.36) for Os%0, we
assume that the electric field can be represented by two
components, along the z and x axes, which develop in
time with two arbitrary time constants. The resultant
field rotates in the plane y =0, and the m mixing of the
states becomes important. This significantly increases the
number of simultaneously coupled states, and restricts
the largest n manifold that can be treated numerically.
We restrict the set in (3.1) and (3.2) to the manifolds of
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FIG. 7. The time evolution of the probabilities of "short-
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the first case, hollow squares: The validity conditions are the
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bility of leaving the initial no = 15 manifold of states. (b) The I-

mixing probabilities within initial manifold of states for
diFerent times, with no = 15 lo = 1 mo =0 p = 10
F0=3 X 10

states up to n = 10, choosing the two components of the
field amplitudes equal, Fp =Fp, but with the time con-
stants y different by a factor of 2, as y„=2y„ i.e.,

F, =Fof (t)exp( —2y It I ), F, =Foexp( y ltl ),

FIG. 8. The (a) n- and (b) I-mixing probabilities of the states
in the presence of m mixing, starting from the state with no =5,
lo=3, mo=1. The hollow circles represent the "short-pulse"
approximation, hollow triangles are the exact values. The filled
circles are the corresponding total m-mixing probabilities.
Fo~ =Foz =3 X 10 p =2y =02.

where f (t) is a slowly varying function of t
Table I summarizes the detailed transition amplitudes

from the initial state (5,3,1), with f (t)= 1, y t = 10,
y = 10, and Fp = 10 . Only amplitudes whose dom-
inant part is larger than 0.01 are presented. These pa-
rameters, as seen in Fig. 3, lie well below the Inglis-Teller
limit, and also below but close to the short-pulse limit.
The long-pulse formula (2.36) in all details reproduces the
exact results to three significant digits. The short-pulse
formula (2.16) also works well for these parameters, al-

TABLE I. The amplitudes obtained by the exact calculation, by the "long-pulse" and by the "short-
pulse" approximation, with no=5, lo=3, mo=1, y =2@,=2X10,Fo =Fo, =10 . Only the dom-
inant transitions are shown. No n mixing was present. a [b]=a X 10

5,3,1

(5, 1,0)
(5,'1,'1)

(5,2,0)
(5,2, 1)
(5,2,2)
(5,3,1)
(5,3,2)
(5,4,0)
(5,4, 1)
(5,4,2)

Rea
—2.97[2]—3.74[2]—2.52[5]—6.52[5]

7.01[7]
9.27[1]

—1.54[2]
1.32[5]

—6.50[5]—3.01[5]

Exact

Ima

4.03 [6]
1.38 [6]
8.22[2]
2.74[1]—3.80[2]
2.32[4]
2.63[5]

—4.83[2]
2.14[1]
7.47[2]

Rex

—2.96[2]—3.74[2]
0.00
0.00
0.00
9.27[1]—1.54[2]
0.00
0.00
0.00

LP

Ima

0.00
0.00
8.21 [2]
2.74[1]—3.80[2]
0.00
0.00

—4.82[2]
2.14[1]
7.47[2]

Re+

—3.16[2]—4.02[2]
0.00
0.00
0.00
8.85[1]
2.20[2]
0.00
0.00
0.00

SP

Ima

0.00
0.00
7.78 [2]
2.64[1]—3.85[2]
0.00
0.00

—4.62[2]
2.04[1]
6.97[2]
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TABLE II. The m-mixing amplitudes in the presence of n mixing, under the conditions of Fig. 8.
a [b]=a X 10

(5,3,1)

(4, 1,0)
(4, 1,1)
(4,2,0)
(4 2 1)

(4,3,1)

(5,1,0)
(5,'l, 1)
(5,2,0)
(5,2, 1)
(5,2,2)
(5,3,1)

(5,3,2)
(5,4,0)
(5,4, 1)
{5,4,2}
(6,3,1)
{6,4,0)
(6,4, 1)

(6,4,2)

(6,5,0)
{6,5, 1)

(6,5,2)

Reo.

3.47[2]—4.51[2]
5.56[3]—1.97[2]—8.83[2]
5.88[2]—7.81[2]
2.00[4]

—9.46[4]—3.93[4]
7.74[1]
4.00[2]—3.16[4]—1.10[3]
3.24[4]

—1.76[1]
2.82[3]
1.14[2]—3.45 [3]—4.99[2]—9.58[2]
6.90[2]

Exact

Ima

4.22[3]
—5.45[3]
—4.55 [2]

1.59[1]
—8.68[3]

4.71 [4]—6.64[4]
—9.85 [2]

3.49[1]
6.13[2]

—1.13[4]
4.42[4]
6.17[2]
2.68 [1]—8.65 [2]
1.06[2]
5.13[2]
2.15[1]

—6.18[2]
2.65 [3]
5.06[3]—3.64[3]

Rem

6.26[2]
—8.09[2]

0.00
0.00
0.00
8.40[1]
3.31[2]
0.00
0.00
0.00

LP

Imn

0.00
0.00

—1.13[1]
3.89[1]
6.06[2]
0.00
0.00
7.08[2]
3.12[1]

—1.07[1]

Rea

3.55[2]
—4.58[2]

0.00
0.00

—5.23 [2]
6.30[2]—8.35[2]
0.00
0.00
0.00
7.55[1]
4.51[2]
0.00
0.00
0.00

—1.24[1]
0.00
0.00
0.00

—5.39[2]—1.02[1]
7.53[2]

SP

Ima

0.00
0.00

—5.11[2]
1.77[1]
0.00
0.00
0.00

—9.98[2]
3.55[1]
6.22[2]
0.00
0.00
6.43 [2]
2.77[1]—9.08[2]
0.00
5.94[2]
2.51 [1]—7.80[2]
0.00
0.00
0.00

though it gives the spurious n mixing of about 4%%uo that is
reflected in the results.

An interesting test of the present approximations is the
case when one of the electric field components (F ) is an
odd function of time. Then g = j' F (t')dt' vanishes

at t —+ + ~, and the m mixing is expected to vanish in the
same limit. This is indeed the case. Assuming f(t) =2yt,
y=0. 1, Fo=3X10, the exact calculation with (5,3,1)
initial state shows that the m-mixed amplitudes are
less than one order of magnitude of the cor-
responding I-mixed amplitudes. This is not true at small-
er t. The transition amplitudes to the diff'erent (n, l, m)
states, whose magnitudes are larger than 0.001 at t =0,
are presented in Table II. For this set of parameters, the
n mixing is found to be about 17%, but this is not given
by the long-pulse approximation. The short-pulse formu-
la (2.17) describes quite accurately both the n and l mix-
ing (in the presence of the m mixing), as shown in Fig. 8,
and much better than the long-pulse approximation. Fi-
nally, in Fig. 8, the tota1 m mixing for the various n and h

is presented and compared with the exact results, show-
ing exce11ent agreement.

IV. CONCLUSIONS

The field-dressed atomic functions (2.14) and (2.34) ac-
curately describe, each within their bounds of validity, all
details of the field eA'ect on the atomic system, incor-
porating the m, l, and in the case of (2.14), n mixing of
the states. There are three validity regions in the param-
eter space of (Fo,y, n) which are bounded by the Inglis-
Teller (IT), "long-pulse" (LP), and "short-pulse" (SP) lim-
its. They are defined in terms of the field amplitude I'"o,

its time constant 1/y, and the principal quantum number
n of the initial atomic states. For the field parameters
that are simultaneously below the IT and SP limits in the
(Fo, n) diagram of Fig. 1, both (2.14) and (2.34) are valid,
describing the situation with negligible n mixing. If the
SP limit is below the IT limit in this region, (2.34) de-
scribes better the (l, m) mixing, since (2.14) can show a
sma11 spurious n mixing. Between the IT and Lp limits,
the n mixing is less than 10%, and again both (2.14) and
(2.34) can be used, although (2.14) describes more
correctly the small n mixing and therefore the corre-
sponding 1 and m mixing of the states. But above the LP
limit the n mixing becomes strong, and can reach 95% as
one approaches the Sp limit from below. In that region
only (2.14) can be used successfully; the result is better
with higher n. This is a consequence of the n dependence
of the SP limit, described by Pi in (2.11) which is inverse-

ly proportional to n. For given field parameters, the far-
ther the SP limit lies higher in the (Fo,n) plane of Fig. 1,
the more accurate is the dressing described by (2.14).
This is especially important for HRS; it was shown in
Sec. II that (2.14) tends to the exact solution (for given y
and Fo) when n ~ ~. In addition, (2.14) is an exact solu-
tion for any n if the field duration tends to 0 (y~ oo ),
while keeping Fo/y finite. We also note that (2.14) coin-
cides with (2.34) if the Hamiltonian is infinitely degen-
erate, and this fact is responsible for the overlap of the
bounds of validity for (2.14) and (2.34) in some range of
the field and atomic system parameters. C)n the other
hand, (2.34) tends to the exact solution of the problem if
the field duration is infinitely long (y~0), while keeping
Fo/y finite, that is, for very small I o.

In the case of PFE's with a dipole perturber field (1.1),
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one can adopt these conclusions for slightly modified
plasma parameters. First of all, as discussed in the Intro-
duction, the exponential time dependence studied here is
not an essential limitation. We showed [20] by compar-
ison with the exact test calculations that conclusions
similar to those presented here may be obtained for
difT'erent time dependences, if Fo and y are defined prop-
erly. In the case of the dipole perturber, proper choice is

y
= v /b and Fo = 1/b T.hen p &

in (2.10) becomes
p', =1/(v n), and obviously, for the electron plasma per-
turbers with v ~ 1 a.u. , (2.14) is an acceptable approxima-
tion for all n. . For the HRS, the electron temperature
( —v ) could be substantially reduced and still meet the
validity criteria. On the other hand, for the ion plasma
perturbers, their temperature must be above M (ionic
mass in a.u. ), or n is extremely high for (2.14) to be valid.
In that case the IT limit defined by p2' =n /b, and the
LP limit, pz =n /Ub, may be appropriate, especially for

the most important region, n 50, keeping in mind that
the dipole perturber approximation assumes b ))n .
(This imposes limitations on the applied plasma density. )

These problems will be investigated in detail in forthcom-
ing publications [8,20].

We finally note that, although the numerical check of
the field-dressed wave functions has been done on atomic
hydrogen, the result presented here can be applied to a
more complex atom, with one or more active electrons.
This investigation is in progress.
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