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Relationship between effective-Hamiltonian and effective-Lionvillian dynamics
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We report the results of a theoretical investigation of the formal relationship between effective-
Hamiltonian and effective-Liouvillian dynamics. It is shown that there are some difficulties associated
with the application of effective Hamiltonian dynamics to the modeling of spectral and temporal proper-
ties of quantum systems. More specifically, we provide a rigorous proof that effective-Liouvillian dynam-
ics is not reducible to effective-Hamiltonian dynamics without discarding dynamical information about
the interruption of certain phase coherences between the relevant and irrelevant parts of a system and
the transfer of those phase coherences into phase coherences and excitations in the irrelevant part. It is
shown that the discarded dynamical information makes a significant contribution to the frequency-
dependent nonradiative decay rate for a simple model system.

PACS number(s): 33.50.—j 31.50.+w

I. INTRODUCTION

Recently we found that effective-Hamiltonian and
effective-Liouvillian treatments of the following two
problems yield dramatically different results: (i) spontane-
ous emission of photons in a cold cavity [1] and (ii) non-
radiative decay of an excited state coupled to a damped
manifold [2]. The difference in the results obtained in
these treatments suggested to us that there is some funda-
mental formal difference between effective-Hamiltonian
and effective-Liouvillian dynamics.

Although effective-Hamiltonian dynamics has been the
subject of many formal discussions [3] and is a commonly
employed mesoscopic model [3(d),4], we have been unable
to find anything in the literature for understanding the
differences in the results obtained for the two aforemen-
tioned problems. With the aim of resolving these
differences, we were prompted to undertake a theoretical
investigation exploring the formal relationship between
effective-Hamiltonian and effective-Liouvillian dynamics.

The results of our investigation are reported in this pa-
per. We show that there are some difhculties associated
with the application of effective-Hamiltonian dynamics to
the modeling of spectral and temporal properties of quan-
tum systems. More specifically, we provide a rigorous
proof that effective-Liouvillian dynamics is not reducible
to effective-Hamiltonian dynamics without discarding
dynamical information about the interruption of certain
phase coherences between the relevant and irrelevant
parts of a system and the transfer of those coherences
into phase coherences and excitations in the irrelevant
part. It is shown that this discarded information makes a
significant contribution to the frequency-dependent non-
radiative decay rate for a simple model system.

II. EFFECTIVE-HAMILTONIAN DYNAMICS

dynamics of the relevant part of the system [3,4]. In gen-
eral, &,pico+ c. ) may be written in the form

&,tt(i co+ E ) =&—iAR~( ico+ 8 ), (2.1)

where gf'=Ht, t, and [5]

%'(ico+E)=(1/A )Ht, t2 [(ico+E)Q~

+(i jfi)H(2 g ] 'Hg t,

&,s( i co ) =H + b ~(i co ) (i l2 )f'—~(i co ) (2.3)

obtained by taking the double limit
lim, 0+limv &,gico+E), where lim~ denotes the
infinite-volume limit. In the above, 1~(ico) and E~(ico)
are the frequency-dependent damping and level shift
operators [3(a),3(b),6]:

(2.2)
A A A

with Ht, t, =P&HP~, H~ & =P&HQ~,
=Q~HP~, and Hg g =Q~HQ~.

The projection operators P~=g. ~p )(p ~
and

Q~=gk pk )(pk ~
project onto the relevant and ir-

U U U

relevant parts of the dynamics embedded in the Hamil-
tonian II. These operators satisfy the usual relations
P~+ Q~ =Ig, P~ =P~, Q~ =Q~, and P~Q~ =Q~P~
=0~, where I~ is the identity operator and 0~ is the null
operator.

For the case of reversible systems (systems character-
ized by a Hermitian Hamiltonian), the projection opera-
tor P~ projects onto bound states I ~pj ) I and Q~ pro-

jects onto unbound states I ~pk ) ]. Given this interpreta-
U

tion of the projection operators, the effective Hamiltonian
&,tt(i co+ c, ) is usually represented by the form [3(a),3(b)]

In treating spectral and temporal properties of quan-
tum systems, investigators often introduce a frequency-
dependent Hamiltonian &,tt(i co+ E ) to characterize the

f'~(i co) =2~Hp g 5(A'coQ~+Hg g )Hg p

and

(2.4)
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b~(i co) = —8'p g P(A'coQ~+Hg g ) 'Hg p, (2.5)

where P denotes the principal part.
It follows from Eqs. (2.1) and (2.3) that the damping

and level shift operators may be written as

f'~(i co) =2ARg(i co) (2.6)

b,~(i co) = —itic~(i co), (2.7)

where %'~z(ico) and %'&(ico) denote the Hermitian and
anti-Hermitian parts, respectively, of the operator
A~(ico) = lim, 0+lim v „4'~(ico+ c. ). Since we have
not imposed any symn1etry restrictions on the Hamiltoni-
an H, Eqs. (2.6) and (2.7) apply to both reversible and ir-
reversible systems. (The latter type of systems are
characterized by non-Hermitian Hamiltonians. ) Hence,
we shall simply interpret [~PJ ) I and [~Pk )] as the

basis vectors for the relevant and irrelevant parts of the
Hamiltonian H, respectively.

III. EFFECTIVE-LIOUVILLIAN DYNAMICS

A~

X,„(ico)=X+ —b, ~(i co)—

A~

where X=(1/A')& is the Liouville operator for the
relevant part, i.e., the Liouville operator associated with
&=Hp

In the above, the superoperators &, f' ~(i co ),

and b, ~(ico) are defined in such a way that & A

=PI', A ], f'~(ico)A =[f'~(ico), A ]+, and b, ~(ico)A
=[8~(ico), A] for any operator A, where the + ( —)

has been used to denote a commutator (anticommutator).
Of course, A% = if A, A f' ~(i co) —= f'~(i co) A,

AA A A
and A b. ~(i co) = —b, ~(i co) A

A straightforward application of projection-operator
techniques [8,9] to the Liouville equation leads to the
effective-Liouville operator

X,s(i co+ 8 ) =X i%'~(i co+ s ), — (3.2)

where X=X p is the Liouville operator for the

relevant part and

&~(ico+s)=fp g [(ico+E)Q~+iLg g ] 'fg p

2A'
I ~(ico), (3.1)

With the effective Hamiltonian &,z(ico) at hand, inves-
tigators often introduce an effective Liouville operator

X,„(ico) of the form [7]

Q~= g [l&&,k, )(NJ, k, l+~Nk„, )(Na, j, ~]

g~, kU

+ y IN, , )(N,'k, i

iU, kU

(3.&)

project onto the relevant and irrelevant parts of the Liou-
~ ~ ~

ville operator L corresponding to the Hamiltonian H.
These operators satisfy the relations P&+Q& =I+,
P~ =P~, Q~ =Q~, and PJ Q~ =Q~P& =0&, where 0&
is the null operator and I& is the identity operator for the
vector space spanned by the biorthornormal basis set
[(N k i, iN. k );a,b=Bor U].

The right-hand vectors [~NJ k ); a, b=B or U] are
Ja

vectors corresponding to the dyadic operators
) &Pk ~; a, b =B or U], where [ ~P ), ~Pk ) ]

are the same set of orthonormal vectors used to construct
the effective Hamiltonian given by Eq. (2.1). By con-
struction, the vectors [(N i, ~, ~N, k ); a, b =B

Ja b ~at'
or U] satisfy the orthonormality and closure
relations (NJ k ~ Ni ) = 5J. i 5k m and

k ~N k )(N k ~, where a, b, c,d=B or U. The

components (N k A )[( A N~ k ) ] of the vector
~a b ~a b

~
A )[( A

~ ] corresponding to the dynamical variable
A [A ] and the matrix elements L(j „kb, i„md)
of the Liou ville operator L are given by
(N,'„~A)=&y, ~A~y„&=A(j. , k, ) [(A'~N, „)
=&y,, l

A ly, )=A*(j., k, )] and L(&., k„i„m„)
=(X~ I, ~L ~N& ). Note that the inner product (A~B) is

~a c d

defined by ( A ~B)=Tr AB. Also, note that ( A
~

=
~

A ) .
In order to make a comparison between the effective-

Liouvillian operators given by Eqs. (3.1) and (3.2), it is
convenient to recast Eq. (3.2) in the superoperator form

X,s&i co)=X+b ~(i co) —(i/2) f'~(i co), (3.6)

where b ~ (i co ) and I ~(i co ) are Hermitian operators
defined by

f'&(i c)o=ZR~(ico) (3.7)

and

L,s&ico)= lim lim X,fr(ico+E)
p~o+ V~ oo

h~(i co) = i%'~(i co—),
A~

with A g(i co) and %~(i co) denoting the Hermitian
and anti-Hermitian parts, respectively, of the operator
A~(i co) In the abo. ve,

with Lp p =P~LP~, Lp g =P~LQ~,
=QgLP~, and Lg g =Q~LQ~.

The projection operators

L

(3.3)

(3.4)

4'~(i co) = lim lim %'~(i co+ 8 ) .
g~o+ P~ oo

IV. RELATIONSHIP BETWEEN
EFFECTIVE-HAMILTONIAN AND

EFFECTIVE-LIOUVILLIAN DYNAMICS

Of particular interest is the relationship between the
effective-Liouville operators given by Eqs. (3.1) and (3.6).
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Clearly, their equivalence requires the following relations
to hold:

h~(iso) =( I/A')6 ~(ko) . (4.2)

and

f'~(ice) =(I /A')f'~(ice) (4.1)

So let us turn our attention to establishing the conditions
for the applicability of Eqs. (4.1) and (4.2).

The matrix element A~(j z, kz,jz, kz,'i co+ E )

=(NJ & ~%'z(ico+E)~N. , z, ) of the operator %'&(ico+E)JB B JB B
is simply the Fourier-Laplace transform of the time-
correlation function

Kz(jz, kii;jii, kii;t)=(N, „~LI, g exp( iLg—g t)Lg ~ ~N. , „, ) . (4.3)

Introducing the explicit forms for Lz g =P&LQ& and Lg z =Q&LP~ into Eq. (4.3) and then evaluating the per-
tinent matrix elements of the Liouville operator L, we find that

K~(jz, kzjz, kz,'t) =(I/ii" ) g [&(mU, kz)(N ~exp( —iLg g t)~N', , )A(kii, mU)
mU, mU

&(m~, ki—i)(N" ~exp( iLg g
—t)~N, , )&(mU,jii)

&(jz, mz—)(N I, ~exp( —iLg g t) ~N, , )&(kz, mU)

+~(jii mU)(N~ g lexp( —iLg g &)IN
i, )~(mUjii )]

It is evident from Eq. (4.4) that the following four time-correlation functions contribute to K&(jz, kz ', jz, kz, t):

(Nj ~exp( iLg g
t—)~N, , )=TrN exp( iLg g

t—)NBmU BmU JB U BmU

(NJ ~exp( —iLg g t) ~N, „, ) =TrN exp( —iLg g t)NJB U mUkB JB U Q~ ~~ mUkB

(N~ z ~exp( iLg g t)~N— , , )=TrNm & exp( iLg g t)N, —

and

(N i, ~exp( iLg g t)~N, —„,)=Trk i, exp( iLg g t)N—

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

Since effective-Hamiltonian dynamics does not include information about phase-coherence transfer that is mediated
by interactions within the manifold of relevant states and interactions between the relevant and irrelevant manifolds
(see Fig. 1), it seems reasonable to assume that effective-Liouvillian dynamics is reducible to effective-Hamiltonian dy-
namics when we neglect this information in the projected Liouville operator I.& & by allowing

Lg g ~g & g., „,~N i, )L (jU, kU,'jz, kU)(N. , „, ~
[see Eq. (3.5)]. The elimination of this dynamical information

U JU'kU U U JUkU
is equivalent to making the replacement

exp( iLg g t)N~ I,
——+exp[ (i/fi)Hg g t]NJ —

& e xp[ +(i A/') Hgg t], (4.9)

where H& & is the adjoint of the projected Hamiltonian H& & appearing in effective-Hamiltonian dynamics.
Introducing the replacement given by Eq. (4.9) into Eqs. (4.5) —(4.8) and subsequently making use of the relations

(P ~exp[+(i/A')Hg g t]= (P ~
and e p[+x(i /A')Hg g t] P ) =

~P ), we find that

(N~ ~exp( —iLg g t)~N, , )~5 . , (P, ~ex [p(+i/A)Hg g t] Q ), (4.10)

(N ~exp( Lg g t)~N, „, ) —0,
(N & ~exp( —iLg g t)~N, , )~0,

(4.1 1)

(4.12)

and

(N Uu lexp( iLg g t)IN ~
&

)—+6„, z (p ~exp[ —(i/A')Hg g t]lp (4.13)
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Now introducing the replacements given by Eqs. (4.10)—(4.13) into Eq. (4.4), we obtain

K~(j&,ks,'j~, k~', t)=K~(ks, kti t)fi +Km(JB JBJg Jg B' B
(4.14)

where

K~(j ii,jii, t) =(1/iit )(p lHI, & exp[ —(&'/&)II@ g t]Hg p

K~(ks, ks , t), i.s similarly defined.
The Fourier-Laplace transform of Eq. (4.14) yields

and

%~ (Jg, kg, js, ks,' l co ) —A~( kii, kg ', l co )5 . . i +%~(Jii, Jg,' l co )5
Jg~Jg B' B

JY~(jg, kJi,Jg, kg, i co ) — %~( kg, kg, 1 co )5 . . i +A~(Js, Jg ', l co )5
Ja Ja B~ B

(4.15)

(4.16)

With the aid of t e formal definitions of the operators
I &(iso), b&(ice), f'~(ice), and b~(ice), we find that Eqs.
(4.15) and (4.16) lead to Eqs. (4.1) and (4.2), which enables
us to pass from Eq. (3.6) to Eq. (3.1). Since there is no a
priori reason to expect the replacements given by Eqs.
(4.10)—(4.13) to be mathematical equalities, we conclude
that effective-Hamiltonian dynamics is an approximation
to effective-Liouvillian dynamics.

Clearly, the use of effective-Hamiltonian dynamics to
compute frequency-dependent decay rates and to con-
struct effective Liouville operators of the form given by

PHASE COHERENCE TRANSFER NEGLECTED IN
EFFECTIVE-HAMILTONIAN DYNAMICS

Eq. (3.1) is tantamount to discarding dynamical informa-
tion about phase-coherence transfer that is mediated by
interactions within the manifold of relevant states and in-
teractions between the relevant and irrelevant manifolds
(see Fig. 1). Of course, effective-Hamiltonian dynamics
does include information about phase-coherence transfer
that is mediated by interactions within the manifold of ir-
relevant states (see Fig. 1).

The phase-coherence transfers neglected in effective-
Hamiltonian dynamics vanish from effective-Liouville dy-
namics when the interactions within the relevant part
and between the relevant and irrelevant parts vanish.
This suggests that the effective Liouville operator given
by Eq. (3.1) may be a good approximation to Eq. (3.6) for
sufficiently weak interactions. Nonetheless, the neglected
phase-coherence transfers may give rise to some interest-
ing and important physical effects even when the interac-
tions are weak [1,2].

V. ILLUSTRATIVE EXAMPLE

PHASE COHERENCE TRANSFER INCLUDED IN
EFFECTIVE-HA MILTON IA N DYNAMICS

Now that we have discussed the relationship between
effective-Hamiltonian and effective-Liouville dynamics,
let us turn our attention to the comparison of these dy-
namics for an exactly solvable model. More specifically,
we wish to determine the frequency-dependent nonradia-
tive decay rate I &(s,s;s, s;ice) for some radiatively
damped excited state

l P, & that is coupled through the in-
teraction U to some radiatively damped excited state
I Pi &. The states

l P, & and
l Pt & are characterized by sim-

ple exponential radiative decay in the absence of the in-
teraction U. A schematic representation of the model is
given in Fig. 2.

It follows from Eqs. (3.7) and (3.8) that

I &(s,s;s, s;iso) =2 Re%~(s, s;s, s;iso) (5.1)

b~(s, s;s,s;ice) =1m'&(s, s;s,s;iu), (5.2)

FICx. 1. Diagrams illustrating the phase-coherence transfers
neglected and included in effective-Hamiltonian dynamics. The
lines represent the interaction between the superstates enclosed
in the circles. All of the displayed phase-coherence transfers
are included in e6'ective-Liouvillian dynamics.

where
A&(s, s;s, s;ice) =lim, 0+limi, JV&(s, s;s, s;ice+ ).E

Exploiting the mathematical apparatus of dual Lanc-
zos transformation theory [9,10], one can readily show
that the exact result for A&(s, s;s, s;ico+e) may be writ-
ten in the form of the continued fraction
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FIG. 2. Schematic representation of two coupled, radiatively
damped excited states.
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FIG. 3. Comparison of the exact results ( Cl ) for
I z(s, s;s,s;i co) with the approximate results ( o ) obtained by as-
suming the equivalence of the effective-Liouvillian and
effective-Hamiltonian treatments. The displayed results are for
the two-state system depicted in Fig. 2, with c(s, i)/A= —1.0,
~U(s, l)~/A'=1. 0, I' (s,s)/A'=0. 5, and 1 (i, l)/A'=2. 0. For the
effective-Hamiltonian treatment, E(s, l) = —

gI = 1.0.
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or the rational function

W/(s, s;s, s;i co+8)= [2I U(s, 1)
I

/iri]I [A(i co+ e)+d+ (s, 1)] d—(s, l)[A'(ico+ 8)+d+ (s, l)]]

X [ [fi(i co+ E)+d+ (s, 1) ]
—d (s, 1)[fi(ico+ e)+0+ (s, 1)]

+6(s, l)[A(ico+ e) +d+(s, l)] —d (s, l)E(s, l) ] (5.4)

where d+(s, l)= —,'[I (s,s)+I (l, l)], e(s, l)=g, —
g&, and

b(s, l)=2I U(s, l)I +E(s, l), with U(s, l)=(P, IUIQi).
It follows from Eqs. (2.6) and (2.7) that

treatments requires the following equalities to hold:

I &(s,s;s, s;i co) =(2/fi)I ~(s, s;i co) (5.8)

1~(s,s;ico) =2tri Re&~( s, s;i co)

b,~(s,s;ico) =Aim%~(s, s;i co),

(5.5)

b~(s, s;s, s;i co) =0 .

These relations imply that

(5.9)

where A/c(s, s;i co) =lim, p+ hmi A~(s, s;i co+ E).
One can readily show that

Re%~(s,s;s, s;ico) =2 ReR~(s, s;i co) (5.10)

(5.7)
ImR&(s, s;s, s;ico) =0 . (5.11)

From Eqs. (4.1) and (4.2), we see that the equivalence
of the effective-Hamiltonian and effective-Liouvillian

It is clear from Eqs. (5.3) and (5.7) that, in general, Eqs.
(5.10) and (5.11) or, equivalently, Eqs. (5.8) and (5.9) do
not hold. In fact, we see that these relations approxi-
mately hold only when

h(s, 1)

2d (s, 1) U(s, l)I e(s, 1) /b, (s, l)
fi(ico+8)+d+(s, l) —2d (s, l)IU(s, l)I /b(s, 1)—

A'(ico+e)+8+(s, l) —d (s, l)E(s, l) /b(s, l)

=- c(s, 1) (5.12)

r'(s, s) =0g, =0 or E(s, 1)= —
g, , and or

d+ (s, 1)= —d (s, 1)=—,
' I "(1,1).

The approximation given by Eq. (5.12) is equivalent to
assuming that

I
U(s, l)I ((E(s, l) . Nonetheless, the ap-

proximation g, =0 or E(s, l) = —
g& is meaningless unless

one assumes that the energy g, is with respect to g, .
Since there is no a priori reason to expect the above

conditions to hold, we conclude that the effective-
Hamiltonian treatment is not equivalent to the effective-
Liouvillian treatment. For the two-state problem, we find
that the effective-Hamiltonian treatment is only approxi-
mate due to the discarding of dynamical information
about the phase-coherence transfer mediated by the in-
teraction between the two states. This is illustrated in a
concrete way in Figs. 3 and 4.

Upon inspection of Figs. 3 and 4, we see that the re-
sults based on the assumed equivalence of the effective-
Hamiltonian and effective-Liouvillian treatments
represent a rather poor approximation to the exact re-
sults for the effective-Liouvillian treatment. The approxi-
mate result for I &(s,s;s, s;ico) exhibits a much stronger
dependence on co than the exact result (see Fig. 3). More-
over, the approximate result for b&(s, s;s, s;i co) vanishes
for all co, while the exact result assumes nonzero values
for finite values of co (see Fig. 4).

Agreement between the approximate and exact results
is obtained only for a single frequency co&, differing for

0.4

—0.4

—0.6—2.0

FICx. 4. Comparison of the exact results ( ) for
h~(s, s;s, s;ice) with the approximate results (o ) obtained by as-

suming the equivalence of the effective-Liouvillian and
effective-Hamiltonian treatments. The displayed results are for
the two-state system depicted in Fig. 2, with c(s, l)/A= —1.0,
I U(s, l)I/Ii=1. 0, I (s, )s/A'=0. 5and I (I, l)/Pi=2 0. For the.
eff'ective-Hamiltonian treatment, E(s, l) = —g, = 1.0.
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I &(s,s;s, s;ico) and b&(s, s;s, s;ico). For co(co~, the ap-
proximate results overestimate I ~(s,s;s, s;ico) . For
co )~~, the approximate results underestimate
I &(s,s;s, s;ico) J.ust the opposite behavior of the ap-
proximate results is realized for b,~( s, s; s, s;i co).

Apart from the aforementioned difficulties with the ap-
proximate results based on the assumed equivalence of
the effective-Hamiltonian and effective-Liouvillian treat-
ments, we find that the approximate results do not reAect
the correct symmetry of I &(s,s;s, s;ico) with respect to
co. As can be seen from Fig. 3, the exact results for
I &(s, s; ,ssi co) are symmetric in co. Since the approxi-
mate results for h~( ,ss; ,ssi co) vanish for all co, they ob-
viously conform to the antisymmetric character of this
quantity (see Fig. 4).

VI. CONCLUDING REMARKS

spectral and temporal properties of quantum systems
were revealed. These difficulties were shown to arise
from the neglect of phase-coherence transfer that is medi-
ated by interactions within the manifold of relevant states
and interactions between the relevant and irrelevant man-
ifolds. In this paper, we have shown that the latter type
of phase-coherence transfer is important for a simple
two-state model. Elsewhere, we show that both types of
phase-coherence transfer play an important role in the
spontaneous emission of photons in a cold cavity [1] and
the nonradiative decay of an excited state coupled to a
damped manifold [2].
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