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Photoionization of the scandium atom. I. General features
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In this paper we present the results of eigenchannel R-matrix calculations of the photoionization
cross section of Sc from the 3d4s D3f 2 qi2 ground electronic state. The calculations were performed
in LS coupling using configuration interaction for the target states as well as for the full atomic wave
function. The spin-orbit interaction was incorporated through a recoupling frame transformation.
We focus on the gross dynamics of the atom that need to be described accurately to obtain good
agreement with experiment.

PACS number(s): 32.80.Fb, 31.20.Di, 32.80.Dz

I. INTRODUCTION

The dynamics of transition-metal atoms has been stud-
ied both experimentally and theoretically in regimes
where none of the electrons escapes to very large dis-
tances [1]. Relatively few experimental [2] or theoreti-
cal studies [3], however, have considered the transition
metals in the autoionization region near the lowest few
thresholds. The high melting points and low vapor pres-
sures of these elements have hindered experimental stud-
ies, while the enormous number of channels has limited
theoretical studies to close coupling calculations in LS
coupling (or the use of hundreds of hours of CPU time on
a Cray supercomputer). These types of calculations usu-
ally cannot achieve accuracy above the lo%%uz level in the
scattering parameters. The purpose of the calculations
presented in this paper was to achieve accuracy of 1—
2'Po in the scattering parameters and, more importantly,
to show the level of accuracy achieved by different levels
of approximation. The lessons learned from Sc may ap-
ply to other transition metals since the valence shells for
all of these atoms include both s and d orbitals and the
outer Rydberg electron will have p- or f wave charac-ter.

We have completed an extensive study of Sc which will
be presented in three parts. The main purpose of this
paper is to explore the gross dynamics of Sc; we are es-
pecially interested in gaining a qualitative understanding
of what determines the positions and shapes of various
autoionizing resonances. In this paper, we present the
spectra (convolved with an 4 cm FWHM weighting
function) for photoionization from the ground electronic
states 3d4s D3)2 5(2.

In the second paper [4] we will present classifications
for most of the autoionizing states of Garton et al. [5] and
a comparison of their lines with our unconvolved spectra.
This comparison serves as a check of the accuracy of the
theoretical spectra as well as a check on the experimental
classifications. From this comparison we estimate the
errors in quantum defects of unperturbed Rydberg series
to be less than 0.03. The large number of lines that we

were able to classify is the direct result of the accuracy
of our calculations.

In the third paper (hereafter referred to as Pa-
per III) [6], unconvolved spectra from the ground
state 3d4s D3yq and from the 3d &D3y2 excited state
(36 276.6 cm i above the ground state) will be pre-
sented with experimental photoionization spectra from
the 3d 3D3y2 excited state; photoionization from the
ground and excited states emphasizes different autoioniz-
ing states. It may be possible by comparing experimental
and theoretical spectra from different initial states to un-
ambiguously classify the bound and autoionizing states.
The positions and classifications of 100 new lines are
reported and the classifications of several of the lines of
the second paper are confirmed.

The calculations reported in these papers test for the
first time whether the eigenchannel B-matrix calculations
can reproduce the extremely complicated, intertwined
spectra characteristic of the transition metals. It is not
obvious that this, or any existing, theoretical approach
can give spectroscopically useful information about the
Sc spectrum. There are an order of magnitude more
channels in the present calculation than in our previ-
ous calculations. It is possible, simply by going to higher
energy, to arbitrarily increase the number of channels
relevant to an experiment or calculation. For example,
going to higher energy in Ba would require inclusion of
the channels attached to the 6s, 6p, 5d, 7s, 7p, 6d, 4f, ...
thresholds in order to correctly describe the dynamics.
However, the dipole operator does not couple the ground
state strongly to states with two highly excited electrons.
The spectra of the transition metals can be complicated
near the very lowest thresholds. Since only one electron
is being excited, the absorption can be quite strong. The
following papers demonstrate the good agreement with
the available experiments that we have achieved. In this
paper we describe, in a general way, the origins of several
of the striking features of the Sc spectrum; this presenta-
tion illustrates the possibility for a simple understanding
of complex spectra.
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II. SCANDIUM VITAL STATISTICS

A. Ionic (target) states

TABLE I. Experimental and theoretical Sc+ energy levels.

Config.
3d4s Dx
3d4s D2
3d4s Dg
3d4S D2
3d I'2
3d I'g

3d I'4
3d D
4s So

R
3d P
3d P3
3d G
3d' 'So

Expt.
0.00
67.72
177.76

2540.95
4802.87
4883.57
4987.79
10944.56
11736.36
12074.10
12101.50
12154.42
14261.32
25955.2

Energy (cm )
LS-averaged theor.

13319
10824

12578

15188
27347

We are interested in photoionization from the Sc
ground state which has the symmetry 3d48 D3/2. The
threshold. for ionization is 52 922 cm 6.6 eV. Paper III
gives another perspective on the Sc dynamics by examin-
ing the photoionization cross section from the 3d 3D3/2
state 36276.63 cm above the ground state; the pho-
toionization dynamics can be probed from this state with
a tunable laser although it takes two-photon absorption
through an odd-parity excited state (e.g. , the 4s 4p P~&2

state at 18711.02 cm above the ground state) to put
a substantial fraction of atoms in the 3d state. The
first 14 states of Sc+ have even parity with the config-
urations 3d48, 3d, and. 48; the energies of these states
[1] are given in Table I. Table I also shows the target
(ionic) state energies calculated in LS coupling; these
are discussed in Sec. IV. Notice that the first 13 levels
have a spread of only 14000 cm 1.7 eV; the small
spread is partly due to the near degeneracy of the 48 and
3d orbitals. The open p-shell atoms do not have their
ionic levels spaced nearly this closely. The close spac-
ing of ionic levels puts a large burden on the theory to
produce accurate scattering parameters. Perturbers go-
ing to higher thresholds need to be at the correct energy
or the levels that they perturb can have wildly difFerent
shapes and positions. The error in the energy of the per-
turber is Ap/v (in atomic units) where Ap is the error
in the perturber's quantum defect and v is the efFective
quantum number of the perturber attached to the higher
threshold, v = 1//2(I —E). The error in the position
of the perturber can be large (even if p, is accurate) when
v is small. Conversely, as v gets larger the error in the
energy decreases rapidly; for example, if the error in the
quantum defect is 0.02 the error in the energy is 10
cm for v 7.6 and 1 cm for v 16.4.

The size of the errors in Table I raises questions about
the ultimate accuracy of the full atomic calculation.
These errors do not play a large role in the calculation

for two reasons. First, the errors in the energies of the
core states can be related to errors in a quantum de-
fect through Ap = v Ae'/Z where v 2.2 and Z = 2;
we find the errors in the quantum defects for these core
states are less than 0.03. Second, we use the experimen-
tal values for the thresholds with the calculated short-
range scattering parameters in the multichannel quan-
tum defect theory (MQDT) calculation of the positions
and widths of the atomic resonances; to determine the
short-range scattering parameters we use the calculated.
core energies (the short-range scattering parameters do
not depend strongly on energy and therefore the small
shifts in energy from the calculated. to the experimental
thresholds do not have a large eff'ect).

The odd-parity ionic states of the 3d4p type (from
26 000 cm to 36 000 cm above the 3d48 D ionic lev-
els) play a role in the autoionization dynamics near the
even parity threshold. s; the 484p levels near 39000 cm
and 56000 cm also play a role. The odd-parity tar-
get states are needed for a proper description of the po-
larizabilities of low-lying even-parity levels of Sc . The
3d4p58 and 4s4p4d states have energies slightly greater
than those considered in this study; it is important for
the convergence of the quantum defects that the theoreti-
cal energies and eigenvectors of these states be accurately
reproduced. If we take the 8-wave quantum defect to be

2.5 (which is a reasonable estimate from even parity
s-wave Rydberg states), the (3d4p) D 5s state would be

10 000 cm above threshold and very near the autoion-
izing region we examine in these papers.

B. Channels
A large number of open or weakly closed" LS- and

jj-coupled channels enter the calculation. The channels
are constructed by attaching p and f waves onto the ionic
levels in Table I. In LS coupling there are 2 S chan-
nels, 11 P channels, 11 D channelsy 13 I" channels,
8 G channels, 2 S channels, 4 P channels, 6 D
channels, 5 E channels, 4 G channels, and 2 H
channels. In jj coupling there are 23 Jf = 1 /2 chan-
nels, 37 jf = 3 /2 channels, 43 jf = 5 /2 channels, and
25 Jf = 7 /2 channels. The notation j/ = 7 /2, for
instance, is shorthand for Jf ——2, odd parity. As an
example of the LS-coupled channels, the 11 P chan-
nels are (4s3d) Dep, (433d) Dsp, (3d ) Dsp, (4s ) Sap,
(3d2) 3Psp, (3d ) S~p, (4s3d) 3Dsf, (4s3d) 'D f, s
(3d ) Fef, (3d ) Def', and (3d )~G'sf As an exam. ple
of j j-coupled channels, the 9 (3d ) FJ channels with
Jf = 3 /2 are F2Epz/2, F2sp3/2 F3Ep /2 3F2Ef5/2,
'F2sf7/2, 'Fssf5/2) Fssf7/2 F4sf5/2 and F4sf7/2.

Besides these channels, a large number of strongly
closed channels have been included in the LS-coupled
R-matrix calculation. These are channels whose basis
functions all equal zero on the B-matrix surface. For
example, for the P symmetry there were basis func-
tions of the type (3d4p) F ng where all of the ng orbitals
go to zero on the boundary. Even though these chan-
nels are strongly closed, they are necessary for the level
of convergence we have achieved. The strongly. closed
channels contributed roughly 2/5 of the basis functions.
They were composed of all possible angular couplings
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of (4s4p) ns, nd, ng and (3d4p) ns, nd, ng. For example,
for the P symmetry there were 14 strongly closed
channels: (4s4p) P ns, (4s4p) ' P nd, (3d4p) ' P ns,
(3d4p)~ sP nd, (3d4p)~ sD nd, (3d4p)~ sE nd, and
(3d4p) "Z ng.

III. THEORETICAL TECHNIQUES

l

0
1
2

3-4

L

0!y

3.17635
3.25751
3.40180
2.69890

l

1.66883
1.80227
2.53291
1.04330

l0!g
1.67089
1.67268
1.40310
3.00830

0.9
0.9
0.9
0.9

TABLE II. Parameters (in a.u. ) for the semiempirical po-
tential for the valence electrons.

A. Methodology

We employed the same theoretical methods described
in our previous papers [7,8], numerically solving for the
atomic dynamics using the streamlined formulation of
the eigenchannel B-matrix procedure [9]. We used an B
matrix hypercubic volume having max(rq) r2, rs) ( 21
a.u. in order to 6t the four lowest D levels within the B-
matrix box. We calculated dipole matrix elements from
three of these initial states to the continuum in order
to gain different perspectives of the autoionizing states.
We utilize a model Hamiltonian that treats the effects of
the closed shell inner electrons on the valence electrons
through a screening potential and a polarizability [10].
The three-electron Hamiltonian in atomic units is

H =) av(p, , r )+)

—2 ) Pj (cos 0,~) V~ i(r;) V~, i(r~),

where cos 0;~ = r, r~/r, r~. The computer code developed
in Ref. [7] evaluates the angular part of the rnultielectron
I/r, ~ matrix elem. ents by summing products of 6-j coeK-
cients and coefEcients of fractional parentage. As in the
previous calculations the atomic wave functions are fully
antisymmetrized and have the orthonormality properties
that are desirable for calculating many-electron matrix
elements.

The one-electron Hamiltonian contains the interaction
of each of the valence electrons with the nucleus and the
inner core electrons and has the form

IIv(p, r) = p'/2+ V
= p /2 —(3+ 18exp( —n', r)

+n2r exp( —n,'r))/r + Vp )(r). (2)

Here V„~= —ng[1 —exp( —(r/r ) )] /2r represents the
interaction of an outer electron with the inner core arising
from the core's dipole polarizability. We used the value of
Ref. [11],ng = 2.129, for the dipole polarizability of the
inner core of Sc +. The remaining parameters, o., and
r, were 6tted to optimize agreement between the calcu-
lated energy levels of Hv and the experimental levels [1]
of the 2+ ion [10]. We put a large weight on correctly
Gtting the spin-orbit splitting of the Sc + 3d level. By
also fitting to the spin-orbit splitting, we obtain a better
value for the matrix element (nd~r BV(r)/)9r~nd); this
ensures a better shape for the Sc++ nd orbitals which
should translate into a more physical potential. We list
our values for o, and rc in Table II.

Once we obtain the R matrix and the values of the
wave functions at the surface, we can find the wave func-
tion everywhere outside of the volume by matching to
Coulomb functions at the surface; the long range multi-
pole interactions of the electron with the core are ignored
because the phase shift caused by this interaction is much
smaller than other errors in our procedure. At this point
there are open and closed channels (the wave function di-
verges as r —+ oo in the closed channels) in the calculation
as is usual in multichannel quantum defect theory [12].
This part of the calculation is completely nonrelativistic;
the K matrix and dipole matrix elements are in IS cou-
pling. We calculated these parameters at 200 energies
from —0.02 a.u. below the lowest ionization threshold
to 0.07 a.u. above the lowest ionization threshold; we
linearly interpolated the p matrix and the d/v I + K2
to obtain the K matrix and dipole matrix elements at
intermediate energies [8,13].

The B-matrix part of the calculation was very fast.
The total CPU time for all of the IS-coupled symme-
tries at 200 energies was about 22 CPU minutes on a
DecStation 5200 computer.

In Sc, the thresholds are split as a result of the spin-
orbit interaction. We incorporated this efFect through the
LS jj frame -transformation [12,14] which should work
well because of the small spin-orbit splitting of Sc+ ( 100
cm ); the LSjj frame tran-sformation works well for Ba
[10] which has spin-orbit splittings of the ion of 1000
cm . The final cross sections and bound states are ob-
tained by imposing the correct asymptotic boundary con-
ditions in the open and closed channels; the wave function
must satisfy the incoming-wave boundary condition in
open channels and it must converge to zero in the closed
channels. The rapid energy dependence of the scattering
parameters near a Rydberg autoionizing state is a result
of imposing the correct boundary conditions in the closed
channels.

The spin-orbit interaction splits the energies of the
states that only differ in their total angular momentum.
It also causes an interaction between states with the same
total angular momentum but different total spin or or-
bital angular momentum [for example, the (3d2) ~D2 state
will interact with the (3d ) P2 state causing a mixing].
We have included the erst interaction through the frame
transformation. We have not included the mixing in-
duced by the spin-orbit interaction because it has a neg-
ligible efFect on the dynamics for Sc.

The final length and velocity gauge cross sections were
calculated in jj coupling on a very 6.ne energy mesh.
There were 60 000 mesh points between the D and E
thresholds and 40000 mesh points between the E and
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G thresholds. The total CPU time to calculate the six
different length and velocity gauge cross sections on this
energy mesh was about 10 CPU hours on a DecStation
5200 computer. The large number of jj-coupled channels
slowed this part of the calculation.

0.5

0.0

3d

B. One-electron orbitals —05-

We do not expand our many electron basis functions
using the orbitals that are eigenstates of Eq. (2) because
of the slow convergence; the R-matrix method uses a
basis set expansion for describing the atomic dynamics,
making it advantageous to use orbitals that are better
suited to the problem [7,8]. We use orbitals that are bet-
ter suited to the Sc+ ion because they will converge the
core states faster. Our 48, 4p, and 3d orbitals were cho-
sen to minimize the total energy of all the 48, 3d, 4s3d,
4s4p, and 3d4p states [15]. Once these orbitals were Axed
the 58, 5p, and 4d orbitals were combined with the 48, 4p,
and 3d orbitals to construct two particle basis functions
to help converge the 48, 3d, 483d, 484p, and 3d4p states;
the 58, 5p, and 4d orbitals were chosen to minimize the
total energy of these states. Basis functions that con-
tained 6s, 6p, 5d, or nf orbitals did not contribute more
than I'Fo to the two-particle wave functions and were
not included in the target states.

Once we have determined the 4s, 4p, and 3d orbitals
we construct a potential that has these orbitals as eigen-
states. The form of the potential that we employ is [8]

We list the coeKcients that we found to give the best
values for the 4s, 4p, and 3d orbitals in Table III. The
58, 5p, and 4d orbitals were constructed by superposing
the orbitals for the potential of Eq. (3). For example, the
5s orbital was 0.80~5s) —0.35~6s) + 0.29~7s) — . where
the ~ns) are the eigenstates of Eq. (3) that are zero at
po = 21 a.u.

In Fig. 1 we plot the Sc+ 48 and 3d orbitals. The
3d orbital is much more compact than the 48 orbital.
Since the 48 orbital does not screen the nucleus as effec-
tively as the 3d orbital, it might be expected that the
phase shift of 48 ep waves will be larger than that for
3d48zp waves, which in turn will be larger than that for
3d cp waves. In Fig. 2 we plot the zero energy radial
p orbital for the (artificially) uncoupled (4s ) Sap P
channel, (4s3d)'D~p2P channel, and the (3d2)'Ssp 2P
channel [which has almost exactly the same phase shift as
the (3d ) D sp P channel]. Figure 2 bears out this ex-
pectation; a given node of an orbital moves closer to the
origin as the phase shift increases. The quantum defects

t ~ 0 I i I i ~ I s a a I i I

0 2 4 6 8
r(a. u. )

10

FIG. 1. The 48 (solid line) and 3d (dashed line) orbitals of
Sc+.

IV. CONSTRUCTING BASIS FUNCTIONS

In this section we describe the types of basis functions
used for the ground and final state atomic wave func-
tions; in Sec. V we describe the effect that leaving out
some of the types of basis functions had on the calculated
scattering parameters.

As in previous work we began the construction of the

0.2

0.0

—0.2

for these partial waves are p, = 1.82 for the (3d2) Ssp 2P
channel, p = 1.88 for the (4s3d) Dsp P channel, and
p, = 2.02 for the (4s ) Se'p P channel. However, this
expectation does not take into account exchange nor the
other terms in the 1/r, ~ interaction; the (4s3d)sDsp2P
phase shift is larger than the (3d ) Pep P phase shift
but slightly smaller than the (3d ) S, DEp P phase
shifts. The f waves do not penetrate as far as the p
waves and therefore the different screening of the 3d and
48 orbitals does not play a very strong role; interactions
arising from the long range multipoles or the polarizabil-
ity of the core can be more important. The erst antinode
of a zero energy f wave of Sc is near 10 a.u. , which is very
near the position of the first antinode of the zero energy
hydrogenic f wave orb-ital. The f wave phase -shifts of
Sc are small but non-negligible, typically between 0.05~
and 0.15m.

TABLE III. Parameters (in a.u. ) for the potential for the
natural orbitals.

—0.4—

l

0
1
2

3-4

0.10058
0.00000
0.86885
0.00000

0!2
2.81709
3.81433
0.00000
0.00000

—l
CI3

0.70314
0.65828
0.00000
0.00000

0 2 4 6
r(a. u. )

8 10

FIG. 2. The zero-energy p waves of Sc with different target
states and P final-state symmetry. The solid line is for the
(4s ) S core, the dotted line is for the (483d) D core, and the
dashed line is for the (3d ) S core.
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full atomic wave function by first assembling the basis
functions needed to make the target (or ionic) wave func-
tions. Where necessary we included configuration inter-
action in the target functions (e.g. , the 4s2 state also con-
tained 4p2 and 3d among other types of conFigurations)
so that 99%%uo of each of the target states was represented.
In choosing target basis functions we always try to work
with the minimum number necessary to achieve conver-
gence for the atomzc dynamics because each target basis
function translates to 10 atomic basis functions.

The energies of the target states using this restricted
basis set are given in Table I. The (3d ) P, I", and G
ionic states did not require any configuration interaction,
in contrast to the other states. The calculated wave func-
tion for the D state is 0.99~4s3d)+0. 14~4s4d). The calcu-
lated wave function for the lowest D state is 0.85~4s3d)+
0.14~4s4d)+0. 04~5s3d) +0.51~3d ) —0.06~4p ); the calcu-
lated wave function for the next D state is 0.49~4s3d) +
o »14s4d) + 0.091»3d) —o 8613d') —o »14p'). These
two D eigenvectors do not agree with those obtained
by Villemoes et al. [16] by fitting to the hyperfine lev-
els of Sc II. Their wave functions were very pure com-
pared to ours; for example, one of their wave functions
is 0.996~3d4s D2) + 0.076~3d D2) —0.035~3d4s D2).
They included mixing arising from the spin-orbit inter-
action which we have ignored. We do not know why
their eigenvectors are so pure; we expect large config-
uration interaction because of the near degeneracy of
the 3d and 4s energies. The calculated wave function
for the lowest energy S state is 0.91~4s ) —0.37~3d ) +
0.03i4d )+0.08i3d4d)+0. 12i4p ) —0.09i4s5s) —0.04i4p5p)
the calculated wave function for the next S state is
0.34~48 )+0.88~3d ) —0.12~4d ) —0.13~3d4d)+0.24~4p )+
0.05~4s5s) —0.12~4p5p). The odd-parity target states had
a similar level of mixing; we do not give their eigenvec-
tors because they were not part of any open channels in
this calculation.

As mentioned in Sec. IIIB, the orbitals were chosen
to give the best overall convergence for the lowest even-
and odd-parity target states; these are called the natural
orbitals [15]. Some of the "configuration interaction" of
the target states is caused by the difference in size and
shape of the 3d and 4s natural orbitals used in the cal-
culation from the 3d and 4s orbitals that give the best
convergence for that state; for example, if we utilize the
orbitals best suited for the D target state, the largest
mixing for that state would be O. leuc of 4p4f. This is
over an order of magnitude smaller than the 2%%uo mixing
of 4s3d when the wave functions were constructed from
natural orbitals.

The odd-parity atomic basis functions were con-
structed by attaching p- and f wave orbitals -onto the
even-parity target states and s-, d-, and g-wave orbitals
onto the odd-parity target states; the even waves at-
tached to the odd-parity target states were included to
correctly describe the polarizability of the even Sc+ lev-
els. Also, near the higher even-parity thresholds are per-
turbers of the 3d4p5s and 3d4p4d types that need to be
correctly described to converge the quantum defects. We
attached p- and f wave orbitals on-to the odd-parity tar-
get states and s-, d-, and g-wave orbitals onto the even-

parity target states to construct the even-parity initial
states.

All of these wave functions are essentially close cou-
pling type basis functions. We also included correlation
type basis functions related to the close coupling type
basis functions; for example, we included 4p basis func-
tions because there were 4p ey close coupling type basis
functions in the calculation. The inclusion of correlation
type basis functions inHuences the final result at the sev-
eral percent level.

The ground state was calculated using extensive con-
figuration interaction. The ground-state basis functions
were constructed using the same principle described in
the preceding paragraphs. These basis functions do
not necessarily give the best convergence of the ini-
tial state; however, they do tend to give better agree-
ment between the length and velocity gauge cross sec-
tions than basis functions that are indiscriminately cho-
sen to give the best convergence for the ground state.
It seems to be better to try to converge the initial and
final state to the same level and in the same manner.
Most of the ground-state basis functions describe re-
laxation of the orbitals due to the addition of the ex-
tra electron. The ground-state wave function (using
the Sc+ orbitals) is 0.91~(4s ) S3d)+0.24~(4s5s) S3d)+
0.08~4s(4p ) D) —0.16~4s(3d ) D) + 0.21~3d(4p ) S)—
0.08~(3d )iD) leaving out terms with amplitudes less
than 0.07 in magnitude. If we use Sc orbitals the
wave function is 0.95~(4s ) S3d) + 0.08~4s(4p ) D)—
0.17~4s(3d ) D)+0.21~3d(4p ) S) —0.08~(3d )iD) where
l(sc 4slsc+ 4s) ~' - 0 97 and ~(Sc 3d~sc+ 3d) ~' - 0.997.
The nearly complete overlap of the Sc 3d orbital with the
Sc+ 3d orbital indicates the negligible relaxation of the
3d orbital after the photoionization. Relaxation of the
4s orbital, while small as well, is an order of magnitude
larger.

V. CONVERGENCE TESTS

In Fig. 3 we present the results of a model calculation
that shows the effect of including basis functions needed
to describe the polarizability of the even parity ionic lev-

0.2

0.1—

0.0

—0.1

0.25 0.27 0.29 0.31

FIG. 3. The 4s sf quantum defect as a function of energy
in a.u. above the Sc ground state. The solid line is a sin-
gle-channel calculation; the dashed line is a calculation which
includes the 484p Pnd basis functions; the dot-dashed line
is a calculation which includes 4s4p Pnd and ng basis func-
tions.
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Q f Q
a

0.05

0.00 —. .

—0.05—

—0. 't 0
0.25 0.27 0.29 0.31

FIG. 4. The arctangents (divided by n) of the eigenvalues
of the K matrix for a simple two-channel calculation. The
solid lines are for single-term target states: (3d4s) Dsf I"
and (4s ) Ssf P The dotted lines are .for two-term target
states: (3d4s + 4d4s) Ds f P and (4s + 3d ) Ssf P

els. The solid line shows the quantum defects of a one
channel calculation with the channel being 4s sf; the
quantum defect in this case is nearly zero. The dashed
line shows the quantum defect obtained when closed basis
functions of the 4s4p( P )nd type were included in the
calculation; the quantum defect increases by 0.05. The
dot-dashed line shows the quantum defect when closed
basis functions of the 4s4p( P )nd and ng types were in-
cluded in the calculation; the quantum defect increases
by another 0.05. Not all of the channels are affected
to this extent by the polarizability and some may be af-
fected more strongly. This rather limited model calcula-
tion shows that the polarizability can affect the results
at the 10%%uo level (i.e. , 0.1 in quantum defect). There-
fore, channels with opposite parity target states may need
to be included in calculations even if they are strongly
closed.

In Fig. 4 we display the results of a two-channel model
calculation which shows the effect of including configu-
ration interaction in the description of the target states.
The results are given in terms of the arctangents (divided
by vr) of the eigenvalues of the K matrix; the eigenvec-
tors for the two different calculations were nearly iden-
tical. The continuum electron in both channels is an
f wave el-ectron and the total symmetry of the atom is
2I'; the two target states are (3d4s) D and (4s ) S. In
the first calculation (solid line) the basis functions con-
sisted of Hartree-Fock type target states. In the second
calculation (dotted line) we included one extra configu-
ration for each of the target states; the (3d4s) D state
became a(3d4s) + v 1 —a2(4d4s) iD where a2 0.96 and
the (4s )iS state became a(4s) + i/1 —a2(3d ) S where
a 0.83. The main effect of this configuration interac-
tion for these target states is to change the splitting of the
quantum defects from 0.07 to 0.035 which implies a
change by a factor of 4 in the small probability for scatter-
ing from the SEf channel into the Dsf channel in one
collision with the core. This calculation illustrates the
importance of including configuration interaction in the
target state even for f wave contin-uum electrons which
do not interact strongly with the core.

VI. RESULTS

In this section we discuss the origins of several of the
features in the cross section. We do not discuss the de-
tailed dynamics of individual lines; that analysis will be
reported in the following paper.

A. Cross sections

In Fig. 5 we show a photograph of one of the plates of
Garton et al. [5] together with a theoretical simulation
of a plate using the averaged length gauge cross section;
below these is a graph of the averaged length gauge cross
section which is 0.4 times the Js = 3/2 cross section plus
0.6 times the Jg = 5/2 cross section. We used a statis-
tical mixture of Jg = 3/2 and Jg = 5/2 ground states
to incorporate the thermal excitation of Sc in Ref. [5];
the temperature was near 2000 C and the ground-state
splitting is only 168.34 cm . The simulated plate was
constructed by experimenting with different relations be-
tween the darkness and the averaged cross section; cross
sections less than 3 Mb were set to white and cross sec-
tions greater than 18 Mb were set to black to simulate
saturation. It is clear from this figure that all of the ma-
jor features lie close to the correct position. The theoret-
ical widths of the lines are also in good agreement with
the experiment, to the extent that one can compare them
from inspection of the plates. This comparison is very en-
couraging since all of the strong features are states with
small values for the efFective quantum numbers; some of
the features have v as small as 5. For the classifications
of the lines on this figure, see the discussion below on
classifications, as well as the discussion of the classifica-
tions of the experimental lines marked on Fig. 1 of the
following paper.

In Fig. 6 we show the averaged length gauge cross sec-
tion and a reproduction of one of the plates between the
D and E thresholds. This figure shows the difIiculty

introduced by the perturbing states in this region (see the
individual cross sections in Fig. 7 for a clearer display of
the perturbers). This figure also shows the difficulty in-
troduced by having substantial populations in both of the
ground states; the cross sections from the two different
ground states are mixed to the extent that it is diKcult
to untangle the Rydberg series for each of the initial and
final state symmetries. It is only through the experimen-
tal determination of which peaks belong to each of the
ground states that the good agreement between the two
becomes manifest.

In Figs. 7 and 8 we plot the six diff'erent length (solid
line) and velocity (dashed line) gauge cross sections as
a function of wavelength. These figures show the good
agreement between length and velocity gauge that we
have achieved. The (4s3d) D ionization threshold is near
189 nm and the (3d ) G threshold is near 149 nm. The
order of the cross sections is 3/2 ~ 1 /2, 3/2 + 3 /2,
3/2 —

& 5 /2, 5/2 ~ 3 /2, 5/2 + 5 /2, and 5/2 —+ 7 /2
from bottom to top. The cross section has been divided
by a factor of 10 on two curves of Fig. 7 at the (4s ) S4f
autoionizing state to fit it on the graph. The cross section
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FIG. 5. Photograph (top) of one of the plates of Garton et al. [5] with a simulation (middle) of a plate using the theoretical
cross section. Below these is the Sc photoionization cross section in the length gauge.

was convolved with a Gaussian weight function of width
2 x 10 a.u. 4 cm which suppresses sharp features
with small oscillator strength. We have labeled some of
the more prominent series for excitation from the Jg ——

3 /2 ground state.
Figure 7 gives the cross section from the (4s3d) D

thresholds near 189 nm to the (3d ) E thresholds near
173 nm. The (4s3d) D threshold is near 181 nm. For
the 3/2 m 1 /2 cross section, the perturber marked with
a "1" is the (3d ) P5p P state, the series marked with
a "2" is the (4s3d) Dnp P Rydberg series, the line
marked with a "3" is the (3d2)~D4f P state, and the
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F1G 5 Photograph of one of the plates of Garton et al. [5] with the theoretical cross section in the length gauge w»ch
illustrates the difBculties of disentangling the averaged spectrum near perturbers.
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FIG. 7. The length (solid line) and ve-

locity (dashed line) gauge cross sections for
DJ —+ Jf. We have added 25 Mb to the

3/2 ~ 3 /2 cross section, 50 Mb to the
3/2 ~ 5 /2 cross section, 75 Mb to the
5/2 —+ 3 /2 cross section, 100 Mb to the
5/2 ~ 5 /2 cross section, and 125 Mb to the
5/2 ~ 7 /2 cross section. The (4s )4f line
has been divided by 10 in the 3/2 —+ 5 /2
and 5/2 —+ 7 /2 cross sections. The labels
are discussed in the text.

189 185 181
P,(nm)

177 175

"4" labels the (4s ) S6p P state. For the 3/2 —+ 3 /2
cross section, the states marked with a "1" are part of
the (4s3d) Dnp D Rydberg series, the states labeled
with a "2" and a "4" are mixtures of (3d )sFnp 2D
and D Rydberg series with the states marked "2"
more nearly having D symmetry (as the two series
approach the FJ spin-orbit split thresholds they be-
come more strongly mixed until the series are best de-
scribed in jj coupling), and the states marked with a
"3" are part of the (4s3d) Dnf D Rydberg series. For
the 3/2 —+ 5 /2 cross section, the states marked with a
"1" are part of a (3d ) F2np Rydberg series, the states
marked with a "2" are part of a (3d ) Fqnp Rydberg
series, the states marked with a "3" are part of the
(4s3d) Dnp 2F Rydberg series, the perturber marked
by the "4" is the (3d2)iG5p F state, and the "5" labels
the (4s ) S4f F state. The series attached to the FJ
thresholds are strongly mixed from the spin-orbit split-
ting of the thresholds. For example, the Jf = 5 /2 Fqnp

state at 182.2 nm is 0.61~ Fs8pq/2) + 0.48~ Fq8pI/2)+
other states; the other states make up 40%%uo of the wave
function.

Figure 8 gives the cross section from 172 nrem, just above
the (3d ) F thresholds, to near the (3d )iG threshold
near 149 nm. From the 3/2 ground state, the P thresh-
olds are near 153.5 nm, the S threshold is near 154.5
nm, and the D threshold is near 156.5 nm. For the
3/2 —+ 1 /2 cross section, the states marked with a "1"
are part of the (4s ) Snp P Rydberg series, the states
marked by a "2" are part of the (3d ) Pnp P Rydberg
series, the state marked by the "3" is the (3d ) D5f P
state, and the states marked by a "4" are part of the
(3d ) Dnp P Rydberg series. There are no prominent
3/2 —+ 3 /2 states in this region. For the 3/2 ~ 5 /2
cross section the states marked with a "1"are part of the
(4s )"Snf F Rydberg series, the three states labeled
with the "2" are (3d ) PJ 5f states, the states marked
by a "3" are part of the (3d )iDnf 2F Rydberg series,
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the
and

B. Accuracy of the cross sections

Garton et al. [5] provided numerical values for the
wavelengths of various autoionizing lines in their spec-

the state labeled with the "4,5" is the sum of two peaks
of (3d ) Dnp I" and (3d ) Gnp I" character, and the
states labeled with a "5" are part of the (3d ) Gnp F
Rydberg series.

The calculated quantum defects of
(4s2) ~ S21p Pq(2, (4s3d) D21p P~]2,
(3d ) D21p P~&2 states are 2.14, 1.91, and 1.97. From
the discussion of Sec. III B we would expect the
quantum defects to decrease from (4s ) S21p P to
(4s3d) D21p P to (3d ) D21p P . However, the
quantum defect for the (4s3d) D2lp 2'&2 state is
less than that for the (3d ) D21p P~&2 state because

it is interacting with the (3d ) P5p P~&2 state of

Fig. 7; the P5p P state is lower in energy than the
(4s3d) D21p P state and therefore the interaction be-
tween the two states pushes the 21p state to higher en-

ergy, i.e. , to smaller quantum defect. This comparison
demonstrates that a simple analysis as in Sec. IIIB can
help in understanding the dynamics underlying compli-
cated spectra; however, the spectrum is complicated and
the simple analysis may need modification for a fuller
understanding.

In the range of Fig. 8, the spectra are dominated by the
(4s )nf resonances. The only other features apparent on
the plates of Garton et ol. [5] are from the (3d ) Gnp I"
perturbers near 165 and 159 nm. This is not surprising
since the (4s )nf peaks are an order of magnitude larger
than anything else in this energy range. The (4s )np
resonances possibly have enough oscillator strength to
have been seen in the experiment; however, the calcu-
lated quantum defects for the two series differ by 0.03
and therefore the two series are degenerate within the
widths of the peaks. This explains the simplicity of the
experimental spectrum in this energy range even though
there are six thresholds.

One striking aspect of Figs. 7 and 8 is that almost
every Rydberg series is perturbed. This derives from
the large number of thresholds in a small energy range.
Another interesting aspect of these figures is that some
series derive most of their oscillator strength from per-
turbers, for example, in Fig. 7 the perturber labeled "1"
in the 3/2 ~ 1 /2 cross section and the perturber la-
beled "4" in the 3/2 -+ 5 /2 cross section. This property
of the spectra should serve as a warning: (a) to theorists
because even though the calculated scattering parame-
ters and dipole matrix elements may be accurate, low-n
perturbers will have relatively large errors in their en-

ergy; the resulting calculated spectra may not reseInble
the experimental spectra; and (b) to experimentalists be-
cause the perturbed Rydberg series, which have rapidly
changing quantum defects, may be more prominent than
unperturbed series; the classification of the spectra can
become problematical. The transition metals more com-
plicated than Sc will be even harder to interpret for this
reason.

tra. For several experimental lines we were able to un-
ambiguously identify the corresponding theoretical line.
From the difference in the energies we were able to esti-
mate the errors in the theoretical scattering parameters.
To estimate the errors we only utilized lines that were
not perturbed by lorn-n autoionizing states because of
the relatively large errors these perturbers can produce.

For the p-wave channels, we compared theoretical
and experimental lines of (4s3d) Dnp, (3d ) F~ np, and
(3d2) ~Gnp character. From the lines of these diferent se-
ries, we found the largest errors in the p-wave quantum
defects to be less than 0.03, with the errors of some series
between 0.01 and 0.02. For the f wav-e channels, we com-
pared theoretical and. experimental lines of (4s2) Snf,
(3d ) I"g nf, and (4s3d) Dnf character. From the lines
of these different series, we found the largest errors in
the f wave -quantum defects to be less than 0.02, with
typical errors of 0.01.

This examination only reveals the errors in the quan-
tum defects. It does not tell us anything about the errors
in the widths of the resonances. The widths are related
to the couplings of the resonances to the continua and
give information on the off-diagonal S-matrix elements.
Visual inspection of the plates in Ref. [5] shows that the
great majority of calculated resonance widths are close to
the experimental ones. The widths of the experimental
lines reported in Paper III are very close to the theoret-
ical widths. This gives us confidence that the errors in
the S matrix are small.

C. Propensities

In LS coupling we would expect to see autoioniz-
ing lines appear in two different Jy symmetries where

compatible with
~
Jy —Jg~ & 1, AS = 0, and AL

1. For example, a D state should appear in both
Da/~ ~ Ds&2 and D3» ~ Dz&2. Although it is

true that the lines do tend to appear in two Jy symme-
tries, usually one of the Jy's has a much larger oscillator
strength than the other. Two striking examples of this
are the 4s 6p state near 173.8 nm that appears much
more strongly in the D3/2 ~ P~» channel than in the

D3/2 ~ Ps&2 channel and the 4s 4f state near 174 nm

that has over a factor of 10 more oscillator strength in
the D5» —+ E~]2 channel than in the D5/~ m E~]2
channel. In the cases where there are two possible Jy,
the propensities are (a) for the excitation to the 2P
symmetry, 3/2 —+ 1 /2 dominates 3/2 —+ 3 /2, (b) for
the excitation to D symmetry, 3/2 —+ 3 /2 dominates
3/2 ~ 5 /2 and 5/2 —+ 5 /2 dominates 5/2 ~ 3 /2, and
(c) for excitation to F symmetry, 5/2 ~ 7 /2 domi-
nates 5/2 —+ 5 /2.

This propensity rule can be most easily understood by
realizing that the favored transitions are simply those for
which LJ = AL. One expects this classically because the
transition moment does not affect the spin vector. More
quantitatively, in quantum mechanics the strength of a
line depends on the square of its reduced dipole matrix el-
ement. This element is d = (pgS~Lg Jg~~D& l~~pfSfLf Jf)
and can be evaluated from Edmonds's [17] Eq. (7.1.8):
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d = (
—1)' '+ '+" (», +1)(»f+1) j' L' 1 (& L IID" ll&fLf)

L J 1 2

Jf f
(4)

where we have already substituted the values S~ = Sf ——

1/2. This is a standard formula of atomic physics. As can
be seen from Eq. (4), the only factors that depend on Js
and Jf are the square roots and the six-j coeKcient. The
six-j coeKcient is simple enough that it can be evaluated
analytically using Eqs. (6.3.3) and (6.3.4) of Ref. [17].
If Jg = Lg —1/2, the ratio of the line strength in the
Ly —1/2 channel to that in the Lf + 1/2 channel is (Lg +
1)(2Lg —1) if Lf = Lg and (Lg —1)(2Ls+ 1) if Lf = Is 1. —
This means the oscillator strength for D3/2 ~ D3 /2
is nine times larger than that for D3/2 —+ D5&2 and

the oscillator strength for D3(2 m Pq]2 is five times

larger than that for Dsy2 —+ Ps&2. If Js = Lg + 1/2,
the ratio of the line strength in the Lf + 1/2 channel to
that in the Lf —1/2 channel is Ls(2Ls + 3) if Lf = Lg
and (Ls + 2)(2Ls + 1) if Ly = Lg + 1. This means the
cross section for D5/2 ~ D3&2 is 14 times smaller than
that for D5~2 ~ D5&2 and the oscillator strength for

D&~2 m E~&2 is 20 times smaller than that for D5/2 m

E7&2. If J~ = Lg —1/2, it is much more probable to excite

Jf —Lf 1/2, and if Js = Lg + 1/2, it is much more
probable to excite Jf = If + 1/2. Again, all of these
strong propensity-favored transitions obey the expected
LJ = AL rule.

There is a striking bare spot in the 3/2 + 1 /2 and
5/2 ~ 3 /2 cross section on Fig. 7 which can be at-
tributed to the same angular factor discussed in the pre-
ceding paragraph. Between A 180 and 174 nm, we
would expect to see Rydberg series attached to the EJ
thresholds; these series would be jj coupled not L S cou-
pled, and thus we might not expect the arguments of the
preceding paragraph to apply. However, for Jf = 1 /2
there is only one p-wave Rydberg series; it can be repre-
sented by the LS coupling Esp Di(2 or by the jj cou-

pling F2ep3/2 Jf = 1 /2. Since the quartet final state
has zero dipole matrix element to the doublet ground
state, the autoionizing states of this channel will not have
oscillator strength. For the 5/2 —+ 3 /2 cross section,
the relevant jj-coupled channels are E2cpiy2, E2cp3y2,
and E3Ep3/2 and are obtained by mixing the LS-coupled
channels Esp D, Eep D, and Ecp E . However,
the only channel that has a dipole coupling to the ground
state (the D channel) has its dipole matrix element re-
duced by a factor of ~14 compared to the 5/2 i 5 /2
channel which accounts for the lack of prominent autoion-
izing states in this energy range for this symmetry. We do
not discuss the f wave channels in t-his energy range be-
cause only the 4s2e f channel has a strong dipole coupling
to the ground state compared to the p-wave channels.

The cross sections for 3/2 ~ 3 /2 and for 5/2 ~ 5 /2
in Fig. 8 do not have any prominent structures com-
pared to the other cross sections. For these two cross
sections most of the oscillator strength comes from the
D symmetry. However, the dipole matrix elements to

the (3d ) Pep and (3d ) Dep channels for this symme-
try are much smaller than for the other p-wave channels;
the dipole matrix elements to the f wa-ve channels of this
symmetry are also small. There is little direct excitation
to the autoionizing series in this energy range for the D
and therefore no prominent autoionizing lines for these
two cross sections. We do not have a simple explanation
for why the dipole matrix elements to the (3d2)sPep 2D
and (3d ) Dsp D channels are so small.

D. Detailed analysis of a perturber
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FIG. 9. The j = 3/2 —+ 3 /2 cross section as a func-
tion of the efFective quantum number from the (4s3d) D
threshold. The states marked with solid vertical lines are
(4s3d) Dnp D autoionizing states and those marked with
dotted vertical lines are (4s3d) Dn f D autoionizing states.
The quantum defect of the nf series is 0.07 and the quan-
tum defect of the unperturbed np series is 2. The 14f and
16p states are degenerate within the widths of the states.

Figure 9 shows a blowup of a region of the unconvolved
J = 3/2 i 3 /2 spectrum near a perturber plotted as
a function of the effective quantum number; this graph
covers the wavelength range 182.4—181.2 nm. This
perturber can be classified as (3d ) E8p Ds&2, the main

efFect of the perturber is felt by the (3d4s) Dnp Ds&2
Rydberg series. The sharp Rydberg series has the charac-
ter (3d4s) Dnf Ds&2 and does not interact very strongly
with the perturber. The quantum defect of a perturbed
Rydberg series "increases" by 1 as the energy increases
over the width of the perturber. Wang and Greene I18]
showed that the widths of the lines in a three-channel
perturbed Rydberg series trace out a Fano profile near a
perturber; this means there should be an energy where
the width goes to zero I19]. The line at v = 13.96 falls
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TABLE IV. The limited K matrix and dipole matrix (in
a.u. ) elements used to investigate Fig. 7. Channel 1 is Dsp,
channel 2 is DEp, and channel 3 is Fcp; all channels have
D total symmetry.

Chan. Chan. 1 2 3
1 -0.27 -0.49
2 -0.27 -0.16
3 -0.96

-0.24
-0.40

-0.49 -0.40

3.9 3.3 5.8

very close to this energy and thus has a very narrow
width.

Near a perturber the width and intensity of autoion-
izing lines usually change substantially over the width
of the perturber; the widths of the autoionizing lines in
Fig. 9 change fairly rapidly but the heights of the lines do
not change very much. To discover the origin of this ef-
fect we examined the 3 x 3 block of the D K matrix and
the dipole matrix elements for the channels Dcp, Dep,
and Esp; these parameters (near the D threshold) are
given in Table IV. With this limited set of parameters
we recover a structure very similar to that in Fig. 9 but
without the sharp ~Dnf autoionizing states.

To obtain the cross section, channels 2 and 3 need to
be closed off'. This is shorthand terminology for impos-
ing asymptotic boundary conditions in a closed MQDT
channel. We will first close channel 3 and then close
channel 2. When we close channel 3, we obtain a very
energy dependent 2 x 2 K matrix and two energy depen-
dent dipole matrix elements. Using Eqs. (2) of Ref. [18],
we find Kgg(E) = —0.24(1+ 1/Ts), Kg2(E) = Kzr (E) =
—0.27(1+0.74/Ts), K2z(E) = —0.16(1+1/Ts), dg(E) =
3.9(1+0.73/Ts), and d2(E) = 3.3(1+ 0 70/Ts) wh. ere

T3 —K33 + tan[7rvs (E)], with vs (E) = 1/ Q2 (Is —E)
the effective quantum number for channel 3. [A zero
width state would fall at energy Kq2(E) = 0.] For a two
channel problem the cross section is proportional to

constant and therefore the peak heights are nearly con-
stant. A fortuitous and unusual combination of parame-
ters was required to produce this unexpected constancy
of individual resonance peak heights across the perturber.

E. Scattering probability matrix

In Table V we give the elements of the weakly energy-
dependent scattering probability matrix for the P sym-
metry near the (3d ) E thresholds. The element ~S;~~ of
the scattering probability matrix is the probability for an
electron in channel i to scatter into channel j during one
collision with the core. If this number is relatively large
for i g j, we say the channels i and j interact strongly;
if it is relatively small we say the channels are weakly
interacting. As expected, the f wave-channels hardly in-
teract with other channels because f wave -electrons do
not penetrate into the core region for Sc at this energy
and therefore can only exert a weak force on the core.
The p-wave channels display stronger interactions.

There are some exceptions. To understand the
strength of the channel interactions we examined the
1/rq2 matrix elements between the channels; for weakly
interacting channels i and j, (i~ 1/rqz

~ j) will be small. For
example, the (3d4s) Dsp channel hardly interacts with
the (3d4s) Dsp channel. These channels only interact
through exchange; the interaction when the 3d electron
is the spectator is almost equal and opposite in sign to the
interaction when the 4s electron is the spectator (when
the 48 electron is the spectator the octupole interaction
is larger than the dipole interaction). As another exam-
ple, the (3d4s) DEp channel weakly interacts with the
(4s ) Sap channel; the direct quadrupole interaction is
nearly equal and opposite in sign to the exchange dipole
interaction. As a final example, the interaction between
the (4s2)~Sap channel and the (3dz)sPsp channel is zero
if these states are pure; only to the extent that (3d )~S
mixes with the (4s ) S will there be an interaction be-
tween the (4s ) Sap channel and the (3d2) Pep channels.

(dlT2 K12d2) /[T2 + (K11T2 K12K21) ] ~ (5) VII. CONCLUSIONS

where Tz ——K2z(E) + tan[vrvz(E)]. Resonances are near
T2 ——0 and therefore the heights of these resonances
are [d2(E)/Kq2(E)] . From the values of Kqz(E) and
d2(E) given above, it is easy to see that the ratio is nearly

We have presented some of our theoretical results on
the photoionization of Sc in the region near the low en-
ergy even-parity threshold states. We have tried to qual-

TABLE V. The scattering probability matrix for the P symmetry near the (3d ) F thresholds.
Channel 2 is (4s3d) Dsp, channel 5 is (3d ) Dsp, and channel 7 is (4s3d) Dsf

Dep
'D~p

Sap
PE'p

'Dcp
Dsf
DEf
F's f

DEp
0.351
0.001
0.258
0.206
0.146
0.019
0.019
0.002

Dcp
0.001
0.832
0.011
0.072
0.040
0.031
0.007
0.006

'Sop
0.258
0.011
0.625
0.014
0.035
0.043
0.007
0.008

PGp
0.206
0.072
0.014
0.582
0.043
0.047
0.018
0.018

DE'p
0.146
0.040
0.035
0.043
0.701
0.007
0.001
0.027

Dsf
0.019
0.031
0.043
0.047
0.007
0.838
0.001
0.015

DEf
0.019
0.007
0.007
0.018
0.001
0.001
0.946
0.001

Fsf
0.002
0.006
0.008
0.018
0.027
0.015
0.001
0.924
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itatively understand. the dynamics of Sc through a dis-
cussion of some of the factors that acct the convergence
of the scattering parameters, through a study of some
of the propensities in the photoionization cross section,
and through the classification of some of the prominent
features in our spectra. We have also examined in detail
the interaction of a perturber and a Rydberg series of
autoionizing states.

Sc is the simplest transition metal. Almost every one
of its Rydberg series is afFected by a low-n perturbing
state attached to a higher threshold. The other transi-
tion metals will also have this problem. The theoretical
and experimental description of these elements in the au-
toionizing region will be a very diKcult undertaking. Its
solution should provide a new window on the interaction
dynamics of several open shell atoms.

Despite the complexity of the spectra, the present cal-

culations demonstrate that the underlying channel in-
teraction dynamics (such as the scattering probability
matrix) exhibit remarkable simplicity despite the inher-
ent complexity of the spectra. Once the dificult task of
attaining agreement between calculated and experimen-
tal spectra is completed, it is possible to continue the
theoretical eKort and untangle the origin of much of the
dynamical complexity.
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