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Gaseous He- He magnetic dipolar spin relaxation
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We derive the nuclear-spin-relaxation rate of gaseous He due to the magnetic-dipole interaction
between the He nuclear spins. This dipolar relaxation rate is numerically evaluated for temperatures
from 0.1 to 550 K. At room temperature, the relaxation time for a He density of 10 amagats is 74.4
h. We have made a series of high-density (4—12 amagat) He samples for which nuclear relaxation
is limited by the magnetic-dipole interaction. Both our theoretical and experimental results are
particularly important for the growing use of He, polarized through spin exchange with optically
pumped Rb vapor.

PACS number(s): 34.50.Pi, 33.25.Bn, 32.80.Bx

I. INTRODUCTION
The relaxation of nuclear-spin-polarized He gas has

attracted considerable interest since the early pioneering
work in the field [1—3]. Until recently sHe nuclear re-
laxation at room temperature was dominated by wall ef-
fects or magnetic-field inhomogeneities [4]. However, we
are now consistently able to produce He samples with
relaxation rates close to a fundamental limit imposed by
the magnetic-dipole —dipole coupling between He nuclear
spins. In a binary collision between two He atoms, the
magnetic-dipole interaction couples the nuclear spins to
the relative angular momentum of the He atoms. As a
result, nuclear polarization is lost to orbital angular mo-
mentum. In this paper we present a theoretical deriva-
tion of the dipolar spin-relaxation rate, numerical results
for the spin relaxation of He, and experimental results
demonstrating that the relaxation of our samples is lim-
ited by dipolar spin relaxation.

Long He nuclear-spin-relaxation times are important
for the growing use of He samples polarized through spin
exchange with a polarized alkali-metal vapor, typically
Rb. In a recent experiment at the Stanford Linear Ac-
celerator Center, polarized electrons were scattered from
an 8 atm He target to resolve outstanding questions re-
garding the spin-structure function of the neutron [5].
In nuclear physics, polarized He targets have been em-
ployed to polarize neutrons [6, 7], examine the electro-
magnetic form factor of the neutron 8], and explore spin-
dependent pion-nucleon scattering [9]. Finally, several
atomic physics experiments have used polarized He [10,
11], the most exotic of these being the formation of po-
larized muonic He [12]. Long spin-relaxation times are
of practical importance for two reasons. First, in these
experiments, as well as in the experiment described here,
the He is polarized through spin exchange with optically
pumped alkali-metal vapor (typically Rb) [4, 13, 14]. For
a spin-exchange rate psE, the He polarization will satu-
rate at a value

PHe = PSE

PSE +
where P~ is the average alkali-metal polarization and I'
is the contribution to the He relaxation from all mech-

anisms other than alkali-metal —He spin exchange. At
typical Rb number densities of 5 x 10 cm, USE 0.3
hs i [4]. High polarizations can only result if I' (( psE.
Second, long relaxation times allow one to polarize the
He sample prior to and in a difFerent location than the

experiment. This approach was taken in Ref. [12] and
can allow for a great simplification of the experimental
apparatus.

We derive the spin relaxation caused by the dipole-
dipole interaction using spherical basis tensors and as-
suming only binary collisions. Since we consider a rather
general form of a spin-dependent scattering potential, the
derivation should also serve as a mathematical framework
for spin-dependent scattering. In the Appendix, we give
a particularly simple expression for the dipolar spin re-
laxation of a gas of spin-1/2 noninteracting Fermions.

We have numerically evaluated the expression for dipo-
lar spin relaxation for temperatures from 0.1 to 550 K
using three difFerent He- He interatomic potentials. At
room temperature (23'C), the dipolar relaxation rate is

['H ]„ (2)744

where [ He] is the He density in amagats. (An ama-
gat is a unit of density corresponding to 1 atm at O'C. )
Although these relaxation times are very long, we have
successfully produced glass cells containing 4—12 amagats
of He in which the spin relaxation is completely domi-
nated by dipolar relaxation.

The relaxation of polarized He at low temperatures
has received considerable attention [15] because of in-
terest in studying the transport properties of a polarized
Fermi gas [16]. Bulk dipolar relaxation has been observed
at temperatures from 1.7 to 19 K [17, 18]. Motivated by
these measurements, Shizgal derived an expression, simi-
lar but not identical to ours, for the dipolar relaxation of

He based on the generalized Boltzmann transport equa-
tion [19,20]. In this early work, it was suggested that the
relaxation rate could be used to constrain the empirical
He-He interatomic potential [18,20], as has been done by
Aziz, McCourt, and Wong [21]. Recently, Mullin, Lakoe,
and Richards [22] derived an expression for the relaxation
rate which agrees with our result.
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We briefly mention two other possible intrinsic bulk
relaxation mechanisms for a spin-1 j2 gas. The first is
relaxation due to the spin-rotation interaction. While
this relaxation dominates in polarized i2 Xe [23], it is
expected to be small for polarized sHe [18]. This ex-
pectation is confirmed by the small difFerence between
our measured relaxation rates and the theoretical dipolar
limit. The second is relaxation caused by the existence
of a permanent electric dipole moment (EDM) associated
with the spin. In fact, the relaxation of a spin-1/2 gas has
been considered as a candidate for a nuclear EDM search
[24]. However, Purcell showed [24] that the standard sim-
ple estimate of the relaxation rate from an EDM [25] is
many orders of magnitude too large because the electric
field experienced by the nucleus in successive collisions is
strongly correlated. As a result, the relaxation rate for
our He cells is extremely insensitive to the existence of
a nuclear EDM.

II. THEORY

A. Introduction

between the nuclear spins Iq and I2 of a pair of He
atoms, separated by r. The He nuclear magnetic mo-
ment is py. We consider only binary collisions, so that
the colliding pair can be represented in the center-of-mass
frame by a pseudoparticle with spin

S = Ig+ I2. (4)

The problem of He relaxation can then be cast in the
more general form of solving for the relaxation of particles
of spin S which are scattered by the potential

V = Vi'l(r) + WV~'l(r), (5)

located at the origin of a coordinate system. In the
case of He- He scattering, the spin-independent poten-
tial Vl l (r) is the interatomic potential. We have inserted
a perturbation parameter A in (5), which we use to keep
track of the various orders of perturbation theory.

Generally, we can write the noncentral spin-dependent
perturbing potential as

We are interested in solving for the nuclear-spin relax-
ation of He due to the dipolar interaction

Vl'l = B(r)Yj, (r) . Tr, (SS) ) (6)

V(i) Vs ' 1 & 3(Ii.r)(r. I2)1
i ' 2I r'g

which describes the interaction of the 2 -pole moment of
the spin S with the scattering center. The generalized
dot product between spherical tensors is

YL(r) ' TL (SS) = ) ( —1) Y&M(r)Tz, M(SS) = (—1) v 2L + 1 YL, (r)Tg )
00

where the coupling operation indicated by square brackets is defined by (8) below. The spin dependence is described
by the spherical basis tensor [26—30]

(ss') = Is) (s'I, M
= ) Is, &) (s', M —

&I c(ss'L; &, M —&),

(s s I
= (s —vl (—1)"".

Speciffcally, the dipole-dipole interaction (3) can be
rewritten in the form of (6) as

V ' = A(r)Y2(r) T2(ll), (10)

where the radial function is

where the sum on p extends over all allowed values of the
Clebsch-Gordan coefficient C and ~s, p, ) is the spin sub-
state of the particle with azimuthal angular momentum

p = —S, —S+1,. . . , S. We use a curly bracket to denote
a bra vector

We will solve below for the general case of spin relax-
ation due to a potential of the form (6). Using the general
expression derived, we then calculate the relaxation rate
for a dipolar interaction (10).

B. Spin currents

For the present, we will ignore the symmetry con-
straints for identical particles and make the appropriate
modifications for identical fermions in Sec. IIF. The
density matrix p describing the state of a particle (or
pseudoparticle representing a pair of colliding particles)
satisfies

The dipole-dipole interaction (10) is a triplet-space op-
erator. It can cause transitions between the azimuthal
sublevels of the triplet space, but it cannot couple triplet
and singlet components of the wave function.

|9p, 1—+ V'. j = —. [V, p].
Ot ih

The probability current density operator is

, (I«) (@I —I@)('7&1)
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where m is the mass of the particle or pseudoparticle and
~@) is its wave function.

If we define the probability Q by

to particles with spin. The first term accounts for the
forward scattering and the second accounts for the lateral
scat tering.

pd D. Distorted-wave Born approximation

the rate of change of S will be

—(S) = Tr(SQ),

j dA, (i6)

where the integral is over the surface of Os. Once the
current density j on the surface of the scattering volume
is known, we can calculate Q from (16), and from (15)
find the spin-relaxation rate.

C. Modified optical theorem

The scattering state with the proper asymptotic be-
havior and momentum hk is

where Q =,dq/dt.
Let us define a spherical source volume Os of radius

8 such that the scattering potential is negligibly small
outside of Os. If we assume p has reached a steady state
within Os, we can use (12) to find

1@k) = l&~ ') + & I&i", ) + &'l&g') + ".

Similarly, the scattering amplitude will be

f f (0) + $f (1) + P2 f (2) +
and the current (16) will be

q q(o) + pq(i) + $2q(2) +. . .

(22)

(24)

So far we have made no assumptions about the magni-
tude of the scattering potentials, but we will now assume
that V~ ~ is small compared to V~ ~. This is the case
for the dipole-dipole interaction, which is some eight or-
ders smaller than the spin-independent potential which
accounts for momentum-changing collisions.

The time-independent Schrodinger equation for the
particle is

—h h k" V'+V(')+&V(') —""
~

~y, ) =0.
( 2m 2m

The solution to (21) can be written as a distorted-wave
Born series

14'~) = ) .I~)4~&(r ~) (S IX)

( eikr-
l

e'"'+ f(k' k)
I l~)r (17)

Because of the rotational invariance of the potential V,
each term of the Born expansion of f must be invari-
ant to simultaneous rotations of r, k, and S. Thus, the
scattering amplitudes must have the form

f = ).l~)f-, ~(I I

= ).6 &~(ss).

Substituting the scattering state (17) into the defini-
tion of the current density (13), we find the probability
current (16) for a specific k is

Qi = (fir)(~l —Ix)(vlf') + »)(~If'd'k'

(19)

where the forward scattering amplitude f = f (k, k). In
writing (19), we have used

f (k', k) e'"'(' "'" ) (1 + k k') d k' f, (20)ks

where the direction of the scattered wave is k' = r" and
~p, ) describes the spin substate. We have introduced a
coherent, initial spin state ~y) = P„~p)(p~y) of the in-
coming particle. The expression in parentheses on the
right-hand side is formally the same as the expression
for the asymptotic probability amplitude for a spinless
particle, but f is to be interpreted as a spin operator,

f(") = ) . fi( (,
)

IYi (k ) Yi (k)], . T . (25)

f( ) = ) f . C(l'lj 00)Y.(k) . T .
4 (2& + i)

(26)

Following the usual derivation of the distorted-wave
Born approximation (DWBA) [31], we can find the
zeroth- and first-order contributions to the scattering am-
plitude f We write the z.eroth-order wave function as the
simple product of a spin function and a spatial function

Physically, the term labeled l'lj in the sum (25) repre-
sents the scattering of the Lth partial wave of the incident
beam into an outgoing spherical wave of angular momen-
tum l'. At the same time, the tensor T~ ensures that the
azimuthal quantum number of the particle's spin changes
enough to conserve angular momentum.

Using the addition formula for spherical harmonics, we
readily show that the nth-order forward scattering am-
plitude is

because the integrand will oscillate rapidly for all but
the forward scattering direction (k' = k) as A:s ~ oo.
Equation (19) is the familiar optical theorem, generalized

I &g ') = &g (r) I ~).

The solutions P& have the partial wave expansions

(27)
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p„+(r) = 47r ) i'e+* ' YL(k') YL(k)
l

~+ik7
ik r +

(28)

and they satisfy the boundary conditions

g) '0,

(29)

(30)

The radial wave functions gi of (28) obey the radial
Schrodinger equation

f(i) rfl

2' h
(t „,*(r') U(') (r') Pk+ (r') d r'. (34)

Substituting in the partial-wave expansions (28) for
Pi+, (r') and Pk, (r') and carrying out the angular and ra-
dial integrals, we find the tensor coefFicient of the first-
order scattering amplitude to be

f ( ) R (L'+L) i'(blr+LLL) /4~(2)f + ] )l lg h2I 3

x C(l'Ll; 00)h, ,l„ (35)

where the radial matrix element is

f (o) —f+
The standard result of the DWBA [31j is that the first-

order scattering amplitude is given by

( vrl
gi—»n

I
kr ——+ ~L

I
(31)r-+oo ( 2 )

The phase shifts bL of (30) determine the zeroth-order
spin-independent scattering amplitude

f+(r, k) = . ) (e ' ' —l)YL(k') YL(k),

f (r, k) = ff+(r, —k))*. (32)

Since the scattering state (17) has an outgoing spherical
wave, the zeroth-order scattering amplitude is

gi (r)gL(r)R(r) k dr (36)

E. General spin relaxation

Substituting the expansion for the current (23) into the
modified optical theorem (19), we find the three lowest-
order contributions to the probability current:

To first order, (35) shows that the spin-dependent po-
tential can change the orbital angular momentum of the
particle by as many as I units.

(0) y y y y (0)t + (0) y y (O)td2g (37)

0"= " (f'*'I )( l-xI x)( le'"x) +

Q" = (f"Ix)(xl —Ix)(xlf'") +—

(0)
& &

(i)t + (i)
& &

(o)

(0)
& &

(2) (38)

+ f"lx)(x f'") ~*('+ hk

m
f"Ix)(xlf"'d'k'. (39)

Using the zeroth-order scattering amplitude (33), one

can verify that Q& ——0 (i.e. , the spin-independent po-
tential produces no probability current between the spin
sublevels).

We are interested in spin relaxation for gaseous sam-
ples in thermal equilibrium, for which the distribution of
hk is isotropic. @le therefore define an angle-averaged
current by

to calculate the angle-averaged, second-order probability
current

.
(2) hk 1 ).( ), 2I+1

m 2k - 2S+1
l

x ie 2' ' f(0) + c.c. Iy)(yl

g(") = —' q(") d'k. (40)
(41)

2

+
4 ).fl'ii' rrlx)(xlTI ), .

l', l

Noting the b function in (35), we find Q( ) = 0 since the
average value of Yl.~(k) is zero.

We use (25), (26), (33), the b function in (35), and (39)

where c.c. is the complex conjugate of the preceding
expression. Since the total number of particles is con-
served, the trace of the probability current of any order
must vanish so
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2k~-( ')' 2S+1
l

x ie ' '
))0 +CC.

1 ~ (r) 2L+ 1'4. &- i«2S+1
L', l

We have used the identity, analogous to the addition for-
mula for spherical harmonics,

2L+ 1
TL TI 2S+ 1

(43)

We can eliminate the second-order scattering amplitudes
from (41) with the aid of (42) to find

2

Q =
4 ) ft&r+r 'Ix)(.xl&1 —

2~ IIx)(x~1).

x ) (2l + 1)(2l'+ 1)C (ll'2;00)
1,l' ll'

(48)

The Boltzmann probability distribution of relative rno-
menta is

4~5k ( h, k )—
exp

(2~mKT) ~ (2mrT) ' (50)

where r is Boltzmann's constant and T is the absolute
temperature.

The sum extends only over odd values of l and l'.
The thermally averaged spin-relaxation rate is simply

&(k) „„
k

Using this expression and the tensor identity

Tr, STL, = (2L+ 1)W(LSSl; SS)S,

where W denotes a Racah coefficient, Eq. (15) becomes

d 1—(S) = ——(S),dt

1 2m L(L+ 1)
h, 'ks S(S + 1)(2S + 1)

x ) (2l' + 1)(2l + 1)C (l'lL; 00)Bi i. (47)

where the spin-relaxation rate due to isotropic collisions
with relative momentum h, k is

G. Comparison with previous results

The relaxation rate for sHe (48) is identical to the re-
sult of Mullin, Laloe, and Richards [22], although the
two derivations are very different. The expression for
the relaxation rate derived by Shizgal [19, 20] is identi-
cal in form to our result. However, an error appears in
the derivation given in Ref. [19] between Eqs. (16) and
(24), which leads to the inclusion of an extra factor of
cosbi cosbi in the matrix element (36). Since the phase
shift bi ~ 0 as E —+ 0 for l ) 0 (and for l = 0 in the case
of He), the resulting error will increase with increas-
ing temperature. For He, the error in the relaxation
rate ranges from —16.4% to —23.8% over the tempera-
ture range of 4.2 to 20 K, considered in Refs. [17—20].

We have used the explicit values (35) of f&, && and the
algebraic formula for the Racah coefficient to write (47).
We have also introduced the number density [K] of scat-
terers. We implicitly assumed [K] = 1 in the asymptotic
form of the wave function (17).

F. Dipole-dipole relaxation for fermions

Formula (47) for 1/ry is true in general for the relax-
ation of a particle with spin S due to a potential of the
form (6). We now restrict our derivation to the dipo-
lar interaction where L = 2. The solution (22) with the
asymptotic behavior (17) does not obey the well-known
antisymmetry requirements for a pair of fermions, such as
two colliding He atoms. One can show the properly an-
tisymmetrized scattering amplitude I"» has no even par-
tial waves and the amplitude of the odd partial waves is
a factor of v 2 larger than is the case for the potential
scattering discussed above. Since the scattering rate is
proportional to the square of the scattering amplitude,
we should therefore put an additional factor of 2 in the
numerator of (47) and exclude even partial waves from
the sum. Substituting (10) and the extra factor of 2 into
(47), we find

III. NUMERICALLY CALCULATED
RELAXATION RATES

The evaluation of the relaxation rate 1/r for He in-
volves numerical integration of the Schrodinger equation
(29), the relevant matrix elements (36), and the final in-
tegral over momentum (49). Three different empirical
interatomic potentials Vl l(r) were employed in the cal-
culation of the radial eigenfunctions gi(r) (see Fig. 1)
[21, 32, 33]. Since the relaxation rates calculated with
these three interatomic potentials typically differ by only
1—2%, we performed the numerical calculation of 1/7 to
better than 1%.

The gi(r) are found by numerically integrating the ra-
dial Schrodinger equation (29). In practice, the wave
function is set to zero well inside the classical turning
point, typically at r; = 1 A. . This necessary approxima-
tion to the proper initial boundary condition (30) results
in a negligible contribution of the undesired solution to
(29) in the numerically calculated gi(r). The Schrodinger
equation is integrated outward in r until the interatomic
potential is only 0.03% of the kinetic energy of the par-
ticle. The numerically calculated wave function is then
normalized by matching it and its derivative to that of
the free-particle wave function
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FIG. 1. One of the three different He- He interatomic
potentials used in calculating the dipolar relaxation rate. The
HFD-B potential of Ref. [21] is shown, but the the mLJ-D
potential of Ref. [32] and the ESMSV II potential of Ref. [33]
are barely distinguishable from the HFD-B potential on this
scale. 1 32 4—= [%] pzv 8—7rmsvT . (56)

centrifugal barrier and the interatomic potential. The
analytical expressions (54) and (55) for the matrix ele-
ments for high l allowed us to numerically calculate the
sum (48) for 1/rk out to arbitrarily large l. (We chose
I = 1001.)

The relaxation rate (49) was calculated for tempera-
tures from 0.1 to 550 K and is shown in Figs. 2 and
3. As pointed out by Mullin, Laloe, and Richards [22],
the minimum at about 1 K occurs because the de Broglie
wavelength of the pseudoparticle has become equal to the
hard core repulsive potential wall. For temperatures well
below 1 K, even the I = 1 centrifugal barrier is much
larger than the interatomic potential at all r for which
the probability amplitude g(r) is significant. The relax-
ation rate then becomes identical to that calculated for
V~ ~ = 0. In the Appendix, we show that for V~ ~ = 0
the rate is

(
1 k

0.3—2,r lli rt
(52)

where rt is the classical turning point for the effective po-
tential of (29). For / )) kryo, the efFective potential of the
radial Schrodinger equation (29) is simply the centrifugal
barrier potential so that wave function is given by

gI = krji(kr) (53)

and need. not be calculated numerically. The integration
of the matrix elements can then be carried out analyti-
cally to find [35]

1 k3

rs
II 2l(l + 1)

(
1 k3

rs II+2 6(l + 1)(l + 2)

k= 0.5—2,
t

(54)

i55)

The differing numerical factors of 0.3 and 0.5 in (52) and
(54) are presumably due to the difFerent slopes of the

gI(
) (r) = kr [cos(8I)ji(kr) —sin(bI)rlI (kr)],

where ji (x) is the spherical Bessel function regular at the
origin and gI(x) is the irregular spherical Bessel func-
tion. The wave function (51) has the correct behavior
for large r (31) and is of course the general solution to
the Schrodinger equation (29) for V(o) = 0.

The numerical integration was carried out using the
Bulirsch —Stoer algorithm as implemented by Press et al.
[34]. The excellent programs of Ref. [34] are designed to
allow good control of any errors which may accumulate in
the integration. Reasonable variations in the parameters
controlling the integration, the value of r, , and the con-
ditions for matching gI (r) to (51) all resulted in changes
in I/ri, of less than 0.2% over. the entire energy range.

With the calculated gI(r), we numerically integrated
the matrix elements (1/r )II appearing in (48). These
matrix elements converged with increasing k or decreas-
ing l to the value

In Fig. 3, we see the relaxation rate converge to this
value for low temperatures.

IV. EXPERIMENTAL RESULTS

We have made a series of aluminosilicate (Corning No.
1720) glass cells containing 4—12 amagats of He gas, 75
Torr of N2, and a few mg of Rb. (The Rb and N2 are
necessary to polarize the He by the method described
in Sec. IVB.) In order to observe the bulk dipolar re-
laxation in He, all other relaxation mechanisms must be
suppressed. These mechanisms include relaxation due
to magnetic field inhomogeneities [36], relaxation on the
cell walls due either to the glass surface or to paramag-
netic centers on the surface [37—39], and relaxation due
to paramagnetic species in the bulk gas. Because relax-
ation from magnetic field inhomogeneities decreases with
increasing pressure, this relaxation was suppressed in our
high pressure targets. Although Pyrex glass is depolar-
izing to He, relaxation on aluminosilicate (Corning No.
1720) glass surfaces is very weak and can probably be

80

60

~ 40

20

0 I I I I I 1 I I I I I I I I I I I I I I I I I I I I 1

0 100 200 300 400 500
T(K)

FIG. 2. Temperature dependence of the relaxation time
for a 10 amagat polarized He sample due to the magnetic-
dipole interaction calculated with the HFD-B interatomic po-
tential. The relaxation times calculated using the mLJ-D po-
tential and the ESMSV II potential differ by less than a few
percent over the temperature range shown.
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FIG. 3. Low temperature relaxation time for a 10 amagat
polarized He sample calculated with the HFD-B interatomic
potential. The dotted line is the relaxation time (A16) for
no interatomic potential. Note that this calculation does not
agree with the results of Ref. [18] for the reasons explained
in Sec. IIG.
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ascribed to paramagnetic sites on the surface of the glass
[39]. Therefore, we were primarily concerned with reduc-
ing paramagnetic impurities both on the glass surface
and in the filling gases.

FIG. 4. Schematic of the vacuum system. Below valve
A the system is all glass. Above and including valve A, the
system is stainless steel or brass. The pressure gauge is a
Baratron model 310CHS-01000, which is accurate to O. 1+0.

A. Cell production

The procedure described here for filling the high pres-
sure cells is an extension of previous methods to produce

He cells [4, 40, 41]. In this earlier work, the relaxation
rates were somewhat unreproducible and were attributed
to wall relaxation. On the basis of this work, it appears
that if the filling gases are suKciently clean, and if the
interior glass surfaces are hand blown without the aid
of forming gases, almost all relaxation is due to the He
magnetic-dipole interaction. If it is not possible to use
freshly reblown glass, a significant reduction in wall relax-
ation can be achieved by cleaning the glass with HNO~.

The cells we produced were 1 in. diameter aluminosil-
icate glass spheres filled with 50 —100 Torr of 99.9995%
pure N2, 4—12 amagats of He [42], and a few milligrams
of natural Rb. The vacuum system used to fill the high
pressure He cells is shown in Fig. 4. The volume of each
section in the system was measured to 1% based on a
calibration volume not shown. A glass manifold with two
cells was attached to the system and baked out at 450'C
for 12 h under high vacuum. The cells were then filled
with 1—2 Torr of N2 and an rf discharge was run for about
10 min. The purpose of the discharge was to dislodge
any impurities on the walls. We note that there may be
evidence that such a discharge actually creates paramag-
netic sites on the glass surface [37]. After evacuating the
system, natural Rb was distilled from the retort into the
cell with a hand torch and N2 was loaded into the cell
manifold.

Perhaps the most important part of the cell making
process is the cleaning of the He. A small, removable liq-
uid He Dewar was constructed which could be clamped
around either the trapping region or the cell. The tem-
perature of the Dewar was adjusted by changing the How
of liquid He through the Dewar. With the trap region

warm, the ballast volume and trap region were filled to
about 900 Torr of He. Using the liquid He Dewar, the
trap was cooled to about 5K, pulling a large fraction of
the gas into the trap. By cycling the temperature be-
tween 5 and 25 K, about 1/4 of the gas was forced into
and out of the trap. This created a turbulent flow which
both mixed the gas in the ballast and trap regions and
decreased the time for a given atom to contact the trap
wall. Paramagnetic impurities in the gas were thus frozen
out in the trap. After 15—20 cycles, the temperature was
raised to 25 K leaving 500 Torr of purified He in
the ballast volume. The trap was then warmed and evac-
uated.

In preparation for cell filling, the He Dewar was
clamped around the cell. The dewar was cooled to 10
K keezing the desired amount of N2 in the cell. The pu-
rified He was then let into the manifold. By adjusting
the temperature of the Dewar, we regulated the amount
of He collected in the cell. Since the pressure in the
vacuum system was less than 1 atm, the cell could then
be tipped off from the manifold by heating a constriction
in the stem.

The total number of He atoms in the cell was taken
as the difference between the number of atoms in the
system before and after removing the cell, as determined
from the ideal gas law. After the cell was filled, its volume
was measured to 1% by determining its buoyancy force
in water and applying Archimedes's principle.

B. Experimental ~He relaxation rates

We measured the relaxation rate of He gas at room
temperature as a function of He density. The He gas
was polarized through spin-exchange collisions with op-
tically pumped Rb vapor [4, 13, 14]. The cells were first
heated to 180 C to achieve Rb number densities of
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5 x 10 cm . Circularly polarized light from a 4
W Ti:sapphire laser optically pumped the Rb atoms at
the Dz line (795 nm). The N2 gas was present to avoid
radiation trapping which would otherwise limit the Rb
polarization. A magnetic field of 10—30 G provided the
quantization axis. Over a period of hours, the He nuclei
became polarized to 10—50% by spin-exchange collisions
with the polarized Rb vapor. The cells were then cooled
to room temperature, reducing the Rb number density to
10 cm . The subsequent decay of the He polariza-
tion was monitored by measuring the nuclear magnetic
resonance adiabatic fast-passage (AFP) signal, which is
proportional to the He polarization [4]. The relaxation
rate I' for a given cell was determined by fitting the po-
larization as a function of time to a single decaying ex-
ponential.

Over the course of two years, cells were produced from
a total of seven manifolds. Shown in Fig. 5 are the relax-
ation rates as a function of [ He] for cells from six of these
manifolds. One of the manifolds is not included since it
appears to have been contaminated by impurities. The
total relaxation rate I' is the sum of the bulk dipolar re-
laxation rate 1/r, indicated by the solid line in Fig. 5,
and the relaxation rates due to wall relaxation, param-
agnetic impurities, magnetic field inhomogeneities, etc.
Therefore it must always be true that I ) 1/r, which
is consistent with the data. The proximity of the data
points to the solid line and the fact that all the measured
points lie above it indicates that we have consistently pro-
duced cells which are completely dominated by dipolar
relaxation. In fact, the contribution from other relax-
ation mechanisms ranges from (18 days) to (1 yr)

V. CONCLUSION

We have derived the spin-relaxation rate of a polarized
nondegenerate Fermi gas due to the magnetic dipole-
dipole interaction. A numerical calculation of this re-
laxation rate for nuclear polarized He shows that the
relaxation time is about 1 week for a 3 amagat cell. De-
spite these long relaxation times, we have successfully
produced He cells whose measured relaxation times are
dominated by this fundamental bulk dipolar relaxation.

0.3

0.2

0. 1

In a practical sense, our numerical results are impor-
tant for the production of polarized He cells. It is ex-
tremely useful to know the ultimate achievable relaxation
rate when making and. testing polarized He cells.
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APPENDIX: RELAXATION RATE
OF NONINTERACTING FERMIONS

The previously derived sum (48) for 1/rA, is of course
valid for Vl i = 0. With the matrix elements (54) and
(55), we could evaluate the sum (48) to find the relax-
ation rate. However, in this appendix we derive a simpler
closed expression.

Consider the limit

~(o) 0 (A1)

that is, a gas of spin-1/2 particles with no interaction at
all except for the magnetic-dipole —dipole interaction and
the requirements of Fermi statistics. We can start with
the Born approximation for the scattering amplitude,

f(k', k) =
2vrh

—i(k' —k) r' V(l)( i)ds (A2)

To calculate the relaxation of identical, spin-1/2 parti-
cles, we need the antisymmetrized scattering amplitude

F(k', k) = (f(k', k) —f (—k', k) )
—m

2~2~h' (e '+' —e ' ') V (r)d r.

(A3)

(A4)

It is understood here that I" refers only to triplet (S = 1)
scattering. The momentum transfer is q = k' —k and the
exchange momentum transfer is p = —k' —k. We note
that the two types of momentum transfer are orthogonal
a p=o

The irreducible tensor form (10) of the dipole-dipole
interaction (3) is not particularly convenient now. In-
stead we use the equivalent form

5 10
[He] (arnagats)

since (I V') (1/r) = 0 for I = 1/2. Integrating by parts,
we find

I' IG. 5. Experimental relaxation rate as a function of He
density. No corrections have been applied. The solid line
is the numerically calculated dipolar relaxation rate at T =
23 C. When not shovrn, the error bars are smaller than the
point size.

= —4~(S q) . (A5)

The antisymmetrized scattering amplitude is therefore
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F(k' k) =,„, (
—",') ((s q)'- (s p)') («)

An equivalent expression to (44) for the angle-averaged
spin probability current is

d kd k'(Eely)(y]Et —EFt~y)(y~) .

(A7)

The rate of change of the spin polarization (15) is there-
fore

—,', (s) =,'„, (
—

) d'kd k'(kf( (s q)' —(s p) fs (s q)' —(s p) — (s q)' —(s p)' )lk).

For S = 1, (S q) = (S . q) . By recoupling the scalar (S q)2, we find

2 8'
(S q)' = —+ —Tz Y2(q)3 15

Therefore, the squared operator in the second term of the integrand (A8) becomes

[(s . q)' —(s . p)' = (s . q)' —2(s . q) (s p) + (s . p)'
4 16'

T2 T2 Yj q Yj p +
9 75
4 4= ———P2(q p) +
9 9
2 + ~ ~ ~

3

(A9)

(A10)

where we have used (43) and the analogous addition formulas for spherical harmonics to obtain the Legendre polyno-
mial P2 and the other constant coeIIicients. In the last step, we noted that q p = 0 and therefore P2(q p) = —1/2.
The terms indicated by the dots are either of the form Y2M(q) or Y2(q) Y2(p) with L ) 0, both of which integrate

IM
to zero when (A10) is substituted back into (A8).

We turn now to the first term within the integrand (A8),

[(s q)' —(s p)'I s I(s q)' —(s p)' = (s.q)'s(s q)'+(s p)'s(s p)'
—(s . q) 's(s . p)' —(s . p)'s(s . (All)

Using (A9) and (45) we find

4 8'
(S q) S(S.q) = —S+ Tz Yz(q)ST—2 Y2(q) +

9 15
1= —S+
3

(A12)

—(s) = —',
(
—"')'

(s). (A14)

This is the relaxation for unit particle number density
[N] = 1, so the rate for any particle density low enough
to ignore Fermi degeneracy is

There is an analogous expression for (A12) with q m p.
We nova find the rotationally invariant part of one of the
expressions on the right-hand side of (All)

=(Nf, (—) (A15)

(S q) S(S . p) = —S + T2 Y2(q)ST2 —Y2(p) +4 8m

9 15
1 + ~ ~ ~

2
(A13)

Thus, including the results (A10)—(A13) in (A8) and car-
rying out the integrals over angles, @which gives a factor
of (4vr), we find

The spin relaxation at the temperature T (49) is

1 32 4—= [N] 4p, lv'7r8mrT, —
h

(A16)

where we have set I = 1j2. This result agrees with the
numerical result found by substituting the matrix ele-
ments (54) and (55) into the sum (48) and integrating
(49).
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