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Quantal and classical differential-scattering calculations
for the electron-impact excitation of argon ions
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Electron-scattering cross sections for the 3s —+3p dipole transition in Ar + are calculated in both the
quantal distorted-wave approximation and the classical-trajectory Monte Carlo method. The two ap-
proaches are in substantial agreement for the angular dift'erential cross section at 20-, 50-, and 100-eV in-

cident electron energy. This result indicates the degree to which classical scattering inAuences the dipole
excitation. Further distorted-wave calculations are made for the 3s ~3d and 3s ~4s transitions in Ar +

and the 3s 'S~3s3p "P transitions in Ar +. The forward-backward asymmetry in the angular distri-
bution of scattered electrons is examined for each transition. All transitions exhibit strong backward
scattering at energies near the excitation threshold.

PACS number(s): 34.80.Kw

I. INTRODUCTION

The angular differential cross section for an electron-
ion scattering process is generally a stronger probe of the
details of the collision dynamics than the integrated total
cross section. For low energies, where a partial-wave
quantal analysis is appropriate, the differential cross sec-
tion measures both the magnitude of and the relative
phase between the scattering matrix elements. The re-
cent development of crossed-beams experiments [1], to
measure fixed-angle differential cross sections, and
merged-beams experiments [2,3], to measure partial cross
sections integrated over a range of angles, gives added in-
centive to an examination of the differential scattering
dynamics found in electron collisions with multiply
charged ions.

In this paper we employ the perturbative distorted-
wave method [4] to examine the quantal aspects of the
differential cross section for the electron excitation of
both Ar + and Ar +. For these ions the distorted-wave
method should provide accurate nonresonant cross sec-
tions, since the method generally yields more exact cross
sections as the residual target-ion charge increases [5,6].
Of special interest to the design of the merged-beams ex-
periments is the strength of the backward scattering as a
function of transition type and incident electron energy.
To delineate the classical aspects of the differential cross
sections, we employ the classical-trajectory Monte Carlo
method [7] to calculate the 3s ~3p excitation of Ar . A
direct comparison of the quantal and classical calcula-
tions reveals the underlying dynamics common to both,
as well as the limitations of the classical approach (or
more precisely, the statistical quasiclassical approach).

In the following paragraphs we first present summaries
of the quantal distorted-wave method in Sec. II and the

classical trajectory Monte Carlo method in Sec. III. In
Sec. IV the quantal and classical methods are compared
for the differential cross section for the 3s~3p dipole
transition in Ar +. In Sec. V the forward-backward
asymmetries for the 3s~3p, 3d, 4s transitions in Ar +

and the 3s 'S —+3s3p 'P transitions in Ar + are
presented. Finally, in Sec. VI, we provide a brief sum-
mary of the results.

II. QUANTAL DISTORTED-WAVE THEORY

The fully quantal close-coupling method for the calcu-
lation of electron-ion excitation cross sections is based on
a partial-wave expansion of the total wave function for
the (N + 1)-electron system in terms of a previously cal-
culated spectrum of %-electron target-ion states [4]. The
close-coupling equations for the continuum radial wave
functions F, (r) are given by (in"atomic units)

l,. (l, +1) Z k.
+ ——+V„F,, (r)—dp2 2I.& I.

+g V, F,, (r)=0.
jwi

The channel index i denotes a collection of quantum
numbers (L;S;k;l,X/II) which couple the orbital (L;)
and spin (S, ) angular momentum of the target ion with
the orbital (l, ) and spin angular momentum of the scat-
tered electron to yield the total orbital (X) and spin (S)
angular momentum of the (%+1)-electron system. The
second index i represents the index of the incident chan-
nel, while k, is the linear momentum of the scattered
electron. The potential operators V," contain direct and
exchange electrostatic terms; as well as exchange-overlap
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terms, which arise because of the nonzero overlap be-
tween bound and continuum orbitals with the same orbit-
al angular momentum.

For multiply charged atomic ions, the close-coupling
equations of Eq. (1) may be accurately solved for the non-
resonant excitation cross section in the unitarized
distorted-wave approximation [6]. We drop all potential
terms V; (with i' ), in Eq. (1), which couple the various
channels, and solve the differential equations

l, (l, +1) Z k,
'

+ ——+ V;;
— f;(r)=0,

2 dr 2r

where the asymptotic form of the radial distorted-wave
function f;(r) is one times a sine function. The angular
differential cross section for excitation from an initial
term L, S, to a final term L&S& is given by [8]

do iy 1

8(2L, +1)(2S,+1)k,

l l' A, l~ l~ 1, , i(~, —~,+o, —~, )
l 1 .(I —l~)(1~—1 ) i 1 fX~(2~+1) ~ ~ 0 0 0 0 0 0 i ' ~i ~ ' e

1 1) 1I

l,- l~ j,
Xg( —1) ' (2j, +1) '

~r f i

Xg~ (L;S;&;LYSI&IJ,S)M(L;S;l;LISIIIJ,S) Pq(cosg) . (3)

The sums in Eq. (3) are performed over the multipolar-expansion parameter X, the free-electron angular momenta i, the
momentum-transfer quantum number j„and the total spin angular momentum S. The function M is defined by the
equation

M(L;S;l;L&S&l&j,S)= g ( —1) ' r+(2l;+ l)(2l&+1)(2/+1)

L; LI j,
X (

—1) (~+ 1) '

i i ?{I,S,l, I'SS~ l~;+11I)I.
. f

In the distorted-wave approximation the off-diagonal ele-
ments of the p matrix are given by

III. CLASSICAL- TRA JKCTORY
MONTE CARLO THEORY

pf; = J f&(r)V& f (r)dr
Qkk& o

(5)

and the diagonal elements of the p matrix are zero. The
reactance matrix 8 is found by the transformation

R =(sin5+cos5p)(cos5 —sin5p)

where 6 is a diagonal matrix containing the non-Coulomb
phase shifts 5, . The transition matrix T, whose elements
are found in Eq. (4), is related to the reactance matrix R
by the equation

T= —2'.
(1 iR)— (7)

For Ar + and Ar + the bound-state orbitals were gen-
erated in the single-configuration Hartree-Fock approxi-
mation [9] and then used to construct the potentials V;
found in Eqs. (2) and (5). Experimental energies [10] were
used for the LS term separations in both Ar + and Ar +.
The partial-wave expansion for the differential cross sec-
tion of Eq. (3) included all values up to X=50.

A large number of works have established the utility of
the classical-trajectory Monte Carlo technique in describ-
ing the intermediate-energy collisions of ions with atoms.
Comparatively fewer studies have explored its application
to light-particle impact; however, several recent studies
have examined in detail singly and doubly differential
cross sections for ionization by electron and positron im-
pact [11—13]. The classical-trajectory Monte Carlo
method was first applied to atomic collisions by Abrines
and Percival [7], adapting Monte Carlo methods previ-
ously employed in the study of molecular collisions. In
brief, the technique is the simulation of a collision in
which a large ensemble of initial electronic configurations
is sampled in order to reproduce as well as possible the
quantum-mechanical position and momentum distribu-
tions, and therefore the wave function, of the ion or
atom. The subsequent motion of the projectile, target
electron(s) and target core are then followed by solving
the classical Hamiltonian equations for a sequence of
time steps through the collision. Once the particles have
separated, knowledge of their positions and momenta al-
lows one to compute the scattering angle of any free elec-
trons, and the binding energies and orbital angular mo-
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l, = [(xy —yx ) + (xz —zx ) + (yz —zy ) ]
' (9)

where x, y, and z are the Cartesian coordinates of the
electron relative to the nucleus. The corresponding quan-
tal n and l are found by determining if the classical values
lie within the ranges specified by

[(n —1)(n —,' )n ]' —~n, & [n (n + —,
' )(n + 1)]' (10)

menta of any bound electrons. Several specific variations
of the general model are described below pertinent to the
present application to electron-impact excitation of Ar +.

To begin with, since the target contains a single elec-
tron outside closed shells, we represent it by a single ac-
tive electron bound by an amount given by the experi-
mental ionization potential of 143.5 eV [10]. The interac-
tion of this electron with the core, as well as that of the
projectile electron, is represented by a parametrized
Hartree-Pock model potential [14]. In addition, since the
target electron initially occupies the 3s state, we reject
from the initial conditions generated through the usual
Monte Carlo sampling any orbits which do not corre-
spond to n =3 and l =0. The quantal n and I corre-
sponding to the classical values obtained are specified by
the procedure described by Becker and MacKellar [15] in
which the classical n level is given by

n, =Z, /(2U)'

where Z is the effective nuclear charge and U is the bind-
ing energy in atomic units, and the classical l level is
given by

electron is recorded and ultimately the differential cross
section may be determined. Since in this model based on
classical dynamics, a range of energy losses of the projec-
tile can cause 3s —+3p excitation, in contrast to the quan-
tal requirement of 17.6 eV, we must chose an appropriate
subset. Inspection of Fig. 1, in which we compare the
spectroscopic energy levels with the corresponding classi-
cal n levels computed as above, suggests that a small in-
terval in classical n (denoted 5 in the figure), lying be-
tween the 3s and 3p levels should be assigned to represent
the 3p state. By choosing a range of values for this pa-
rameter and comparing to the distorted-wave calcula-
tions, we have chosen a range of +12.5 eV. The results
were not very sensitive to choices ranging from 7.5 to 15
eV. In the absence of a more robust theory of the
correspondence of classical and quantal levels in ions of
this complexity, this choice satisfies the criteria that the
final state should have n =3 [using Eq. (10) with Z, =9],
l =1, and that an energy loss, centered about the quantal
value of 17.6 eV, should have taken place. The range
chosen may be considered an adjustable parameter of the
final level binning, being fixed by comparison with the
distorted-wave calculations and being not very sensitive
to changes in its magnitude.

Finally, we note that electron exchange is included in
the classical calculations in that whenever as a result of
the collision the projectile electron remains bound to the
target core and the target electron is free, classical ex-
change has occurred. %'e have found that for the transi-
tion described here, classical exchange is entirely negligi-
ble.

IV. DIFFERENTIAL CROSS SECTIONS FOR Ar +

l~ l, ~l+1 .
n,

The efFective nuclear charge Z, has been chosen so as
to provide a convenient correspondence of the classical n

levels to the quantum n levels. For example, if we were
to use Z, =8, corresponding to the charge the valence
electron would experience if removed to a large distance
from the remaining ion (Ar +), the 3s, 3p, and 3d levels
would have classical n values of 2.46, 2.63, and 2.92, re-
spectively, using the spectroscopic energy levels compiled
by Kelly [10]. If instead we chose Z, =9, indicating that
the core levels less than completely screen the unbalanced
charge, these classical n levels are 2.77, 2.96, and 3.28.
This procedure amounts to the choice of a quantum de-
fect. Thus, the initial state is chosen so that it has the
correct experimental binding energy and classical values
of n and I which correspond to the 3s state.

After the initial conditions have been set and a ran-
domly selected impact parameter is chosen for the projec-
tile electron, the classical path of each particle is followed
until the projectile or the target electron has escaped into
the asymptotic regime. This procedure is repeated for a
large number of projectile-target configurations (e.g. ,
250000 to 750000 events) and on each trial, the final
state is examined to determine if 3s and 3p excitation has
occurred. In this case the scattering angle of the free

Quantal and classical scattering calculations for the
electron-impact excitation of the 3s ~3p dipole transition
in Ar are presented in Figs. 2 —4. The cross sections

Partial energy level diagram for Ar7+
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FIG. 1. Partial energy-level diagram for Ar'+ comparing the
spectroscopic energy levels belonging to the n =3 and 4 mani-
folds [10] with the corresponding classical n levels and the es-
tablished classical binning scheme of Becker and MacKellar
[15]. The energy range (or classical n-level interval) denoted by
6 indicates our choice of a binning for the 3p state and an
effective nuclear charge of Z, =9 was utilized (see text).



484336

1 0-16

C GRIFFIND R. SCHUL AND D. C.M. S. p IND ZOLA

10

m 10
CU

1 0-18
"D

1 0-18

I

150 180
1 0-19

60 900 30

Angle (deg)
~

fpr the 3 excita-oss
Sp]id c«v

The di
'dent electron

'Q'e«ntia C

energy.

cuba,

sslcd, tprted-wavequanta&

C )p methodMo~te Catra'ectory M

I

20 150 18060 90

Angle (deg~

I

10
0 30

„for the excita-
' ] ross sect&pn o

So/id curve
Ia 4. The d

dent electro
ig'erentia cr

n energy
c]assica

Op-eV '
. d shed cu

tion of Ar
ved storted-wquanta&

C &p methpd.Monte Car ory Mr j

a screenedtters from
f backward sca

otentia . e,
s an en anc

Coulom po
nucleus,

from a pure
f this effect in

'
ver that ro

and fig omp
Ref. [18 o

d o r thens from eit e
case, since t e

Ing
b otential). In

to the ion to1 t 1 1op ss iea lv

is accelera-
e of

h ff hg .c . hishast ee
'ectory in

n 1sbackwar
on-

e
h1onlc c

artia
'

1 waves co-1 t 1

oscillations a
diffraction a

nd

b k rdntinte
oulom - o

en hancement
'

hover a o - odistor - a
b l. []illustrated y e

nof

has been i

arding the comparisonc' ments regardingp cific corn

pp p

— ra ectory
its also seem p

act (Fig. 2, e
lt icks up vep

lateaus anear
d-wave re

e

cro

nd classical
ttering reg

b h
'

h
ssical t j
tt b

rise oft ec

all
lt at small g

n les an
in fact,

ec-very sm all cross s
gp

tion aat small angles.

1 0-16

1 0-18
a

I
I i I s

0 90 120 150 1800 30 60 90
Angle (deg)

3 excita-for the 3s —+3pntial cro orFIG. 3.

is - ave metho
at 5-e

distorted-waveq t 1

Monte Car otrajectory M

j

o, rner ies of 20, 50, andat incident energies o
h hldf

g

lose coup gh reviousnt wit
hi er

goo g
30 At

be in exce eare ound to bedistorted-wave
ther simi ar

center oh h h
e classica-1 uncertain

d deviations
h statistic a

1 t ajectory
were e
wav

1

ai
h xcitation a a

h indicates
t e

,11..„...d ins has been iample, as



QUANTAL AND CLASSICAL DIFFERENTIAL-SCATTERING. . . 4337

that large-impact-parameter collisions, and therefore
those contributing to small scattering angles, are predom-
inantly elastic events, since it requires some significant
momentum and energy transfer to cause the excitation.
Thus, those events in which excitation occurs are charac-
terized by scattering through some relatively large angle.
The semiclassical model of Hervieux and Guet [19] pre-
dicts well how the peak created by this mechanism shifts
to smaller angles with increasing energy. Quite simply,
for higher impact energies, a smaller relative transfer of
energy is necessary to cause the transition, and the elec-
tron need not be deflected as much.

Agreement with the distorted-wave results is not as
good regarding the initial rise of the cross section with in-
creasing scattering angle for 50-eV electron impact (Fig.
3), but the plateau and its variation is well reproduced.
Finally, for 100-eV electron impact (Fig. 4), both the rise
and the fall of the cross section through the maximum
and the backward enhancement are very well reproduced
by the classical-trajectory Monte Carlo model. Thus, our
conclusion is that the dominant scattering mechanisms
present in this excitation are classical in origin, but quan-
tal corrections due to the fact that the diffractive scatter-
ing arises from the contributions of relatively few partial
waves give rise to important modifications. Also, as ob-
served by Reinhold and Burgdorfer [20] who compared
classical and quantal treatments of ionization, the break-
down of the classical-quantal scattering correspondence
is great for small-momentum-transfer, large-impact-
parameter collisions. This is evident in the excitation
cross section at 20 eV where such collisions dominate at
small angles, leading to the discrepancy noted above.
However, for higher impact energies, where smaller-
impact-parameter ranges are active and the momentum
transfers generally greater, the classical small-angle
behavior is more like that exhibited by the quantal re-
sults.

For completeness, total cross sections for the electron-
impact excitation of the 3s —+3p dipole transition in Ar +

are presented in Table I. As is well known [21], the clas-
sical model yields total cross sections in the high-energy
limit which vary in proportion to 1/E for a given energy
E, for dipole-allowed excitation or for ionization. In con-
trast, quantum-mechanical results decrease as some con-
stant times ln(E) /E.

1.0

0.5—
E
G5

CL
0.0

CD

E
E -0.5—

3.0 4.0
reshold Units

FIG. 5. The forward-backward asymmetry parameter for the
3s~3p, 3s —+3d, and 3s~4s excitations in Ar'+. (Threshold
unit is the incident energy divided by the excitation energy. )

Ar + and the 3s 'S~3s3p ' P excitations in Ar + are
presented in Figs. 5 and 6. The forward-backward asym-
metry parameter is defined by

f sinOd8 —f sin0d8
o do ~y2 dO

f sinOd0
o dL9

(12)

&.0

where do. /dO is the differential cross section as a func-
tion of laboratory scattering angle 0. For 0& A & 1, for-
ward scattering is largest; while for —1& A &0, back-
ward scattering dominates. In Fig. 5 the excitation
threshold energies are 17.6, 41.2, and 71.4 eV for the
3s —+3p, 3d, and 4s transitions, respectively. The 3s~4s
monopole transition in Ar + exhibits pronounced back-
ward scattering to almost 2.5 times the threshold energy.
In Fig. 6 the excitation threshold energies are 14.2 and
21.2 eV for the 3s 'S~3s3p 'P transition, respectively.
The asymmetry parameter for the 3s 'S~3s3p 'P dipole
transition in Ar + is quite similar to the one for the
3s ~3p transition in Ar + over a wide energy range. The
3s 'S —+3s3p P spin-forbidden transition in Ar has a
negative asymmetry parameter for energies up to 5.0
times the threshold energy. As pointed out before [22],
the spin-forbidden angular distribution may be difficult to

V. FORWARD-BACKWARD ASYMMETRIES
FOR Ar7+ AND Ar6+

TABLE I. Total cross sections for the electron-impact exci-
tation of the 3s~3p transition in Ar +.

Energy
(eV)

Quantal distorted wave
(10 ' cm )

Classical-trajectory
Monte Carlo
(10 ' cm )

Quantal distorted-wave calculations for the electron-
impact excitation of the 3s —+3p, 3d and 4s transitions in
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FIG. 6. The forward-backward asymmetry parameter for the
3s 'S~3s3p 'P excitations in Ar +. (Threshold unit is the in-
cident energy divided by the excitation energy. )
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observe experimentally; the resonant contribution to the
cross section is relatively strong and will change the an-
gular distribution significantly.

VI. SUMMARY

The quantal distorted-wave and classical-trajectory
Monte Carlo methods are used to calculate electron-
impact excitation cross sections for the 3s~3p dipole
transition in Ar +. Upon comparison the classical calcu-
lations are able to reproduce the main features of the
differential cross section with scattering angle, although
not the detailed diffraction pattern. Further differential
cross-section calculations, using the distorted-wave
method, were carried out for the 3s —+3p, 3d, and 4s tran-
sitions in Ar + and 3s 'S~3s3p 'P transitions in Ar +

in order to ascertain the degree of backward scattering

likely to be found for multiply charged ions. All transi-
tions near the threshold for excitation were found to be
dominated by backscattering. Excitation cross sections
in the near-threshold energy region are further compli-
cated by the presence of autoionizing resonance struc-
tures. Their inclusion within a nonperturbative close-
coupling or perturbative distorted-wave approach will
lead to resonance structure superimposed on the back-
ground results reported in Sec. V for the forward-
backward asymmetry parameter.
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