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We report calculations of differential and integral cross sections for positron (e+) scattering from He,
Ne, Ar, Kr, and Xe rare gases. An optical-potential approach is employed in which the repulsive
Coulombic interaction is calculated exactly at the Hartree-Fock level and the attractive polarization and

correlation effects are included via a model potential determined from the use of a local density-

functional theory (DFT). These model calculations are further compared with the results from two oth-
er local potentials, one based on determining the short-range correlation energy, Fc, for a positron in an

homogeneous electron gas and the other from the correlation-polarization potential of an electron in-

teracting with a free-electron gas. We found that the present DFT-based, correlation-polarization treat-
ment is fairly simple to implement computationally and appears to be the most accurate of all the models

examined here. Our results are in fact compared with recent measurements of differential and integral
cross sections for positron scattering with rare gases and are found to be remarkably close to both sets of
experiments.

PACS number(s): 34.80.8m

I. INTRODUCTION

The past few years have witnessed a dramatic increase
in research studies on low-energy scattering of positrons
from atomic and molecular targets [1]. This increased
activity is partly due to the corresponding improvements
on the technology for producing reliable positron beams
[2—6]. Nevertheless, there are still considerable uncer-
tainties in the agreement between the measured values of
positron-molecule cross sections at collision energies
below a few eV, and away from positronium-formation
thresholds [7,8], while fundamental questions about the
true nature of the forces at play still plague the computa-
tions of the cross sections at such energies.

If the positronium formation and all the other inelastic
channels are assumed to be small, then the full interac-
tion between the impinging positrons and the atomic tar-
gets can be approximated as being made out of a repul-
sive static potential, V„, and an attractive polarization
potential, V„,&. Below the threshold for positronium for-
mation, the most serious of the questions concerns the
role played by polarization and short-range correlation
effects [9—11]:positron scattering results, in fact, are very
sensitive to the detailed manner in which these effects are
included in the calculations, especially at collision ener-
gies below a few eV.

When fully ab initio calculations are carried out
[10,11], they tend to be computationally very intensive
and therefore results are often limited either on the com-
plexity of the scattering system which is being studied or
on the level of completeness used in treating the long-

range and short-range polarization contributions. Thus,
there has been considerable interest in recent years in de-
veloping alternative treatments that employ parameter-
independent models to treat polarization forces, either in
the case of atomic targets or of molecular targets, for
positron scattering processes [12—14].

In the present paper we are reporting the application
of an alternative global modeling of positron-atom polar-
ization forces which employs a local version of density-
functional theory (DFT) for describing short-range
(dynamical) correlation effects and long-range perturba-
tion theory to treat polarization forces. We will show in
the following section that such a functional form is well
suited for describing positron scattering processes, espe-
cially for treating dynamic efFects in the short-range re-
gion of the correlation-polarization forces. The general
theory is outlined in Sec. II, while Sec. III reports our
present calculations and compares them with available
experiments and with other theoretical treatments. Our
final conclusions are presented in Sec. IV.

II. THE THEORETICAL MODEL

When one chooses a local representation of the polar-
ization interaction, one may qualitatively consider three
different regions in the physical space of the atomic or
molecular target [15]. At large distances from the target
the form of the interaction could be given by a simple and
familiar expression which contains the spherical, mul-
tipole polarizabilities of the target atom and holds both
for electrons and positron as projectiles:
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collectively for all the electronic coordinates:

p....«r) =pHF(r) (3)

@,„„,(x, x„)=NHp(x, . x„)(1+o. ), (2)

where x; stands for both spatial and spin coordinates,
&&Hi; is the "exact" Hartree-Fock (HF) wave function,
and o. is a correlation correction in the short-range re-
gion. It accounts for the dynamical aspects of correlation
efFects, those related to the cusp conditions for each
electron-electron interaction within the target charge
cloud [19]. If one can further exploits the following
definition for the target electronic density, p(r), where
the spin part has been now integrated out and x stands

I

It is the asymptotic limit of the multipole polarization
potential when is only given by second-order
perturbation-theory contributions [16]. As one moves
nearer to the target, however, Eq. (1) no longer character-
izes correctly the polarization effects and therefore
higher-order, intermediate-range corrections need to be
included, albeit still is an adiabatic, local form. It has
been pointed out by various model studies [17,18] that in
this region of interaction the sign of the perturbing
charge becomes important and therefore model treat-
ments introduced for electron projectiles cannot be used
directly for protons as projectiles. We will further dis-
cuss this point below when describing our present ap-
proach.

Finally, as the positron projectile penetrates within the
atomic or molecular charge density one further source of
error becomes important as the adiabatic approximation
breaks down and nonadiabatics effects play an increasing-
ly important role. Here the adiabatic approximation usu-
ally overestimates correlation contributions, leading to a
polarization potential which is too attractive, since it
does not allow for the virtual positronium formation
which should occur in this region. This is a different
effect from the velocity-dependent corrections which
should be included in the case of electron scattering,
whereby the electron's kinetic energy becomes locally
comparable with that of the bound electrons. This latter
feature comes from the strongly attractive, short-range
static exchange potential well which exists for electron
scattering but is absent for the positron scattering pro-
cesses. Because the static potential is now repulsive,
velocity-dependent effects are less important and the po-
sitronium formation becomes the dominant nonadiabatic
feature: it should occur gradually as the projectile
penetrates the molecular charge cloud.

The global approach that we employ in the present cal-
culations tries to describe as best as possible the correlat-
ed motion of each bound electron within the atomic or
molecular target by giving the following ansatz for the
X-electron target wave function:

then one can show [19] that the correlation factor for
each two-electron case, fc(r„rz), is given by

fc(r, , r2) =
—,
' 1— (4)

PHF(rl r2)

where the P' ' are now second-order density matrices
without spin, derived from the wave functions of Eq. (2).
This relation tells us that the correlation energy for the
bound electrons can be obtained simply as a correction to
the mean value of the electron-electron repulsion energy
if Eq. (3) can be considered realistic, i.e., when long-range
correlation effects (static correlation) play a negligible
role [20].

The conclusion drawn earlier on from the above con-
siderations [21,22] was that one could approximate the
correlation energy, Ec within the target electrons, by us-

ing an expression of the following type:

E (X)=——' fP' z(r, R)f, (r,R), (5)

where instead of (r&, r~) we have introduced now the
equivalent pair of variables: R= —,'(r&+r2); r=(r& —rz).
Several suggestions by various authors [21,23] produced
different choices for fc(r, R) and provided the correla-
tion energy as a direct, local functional of the target elec-
tronic density. We have discussed this derivation in de-
tail earlier on [19,24] and will not be repeating it here.
Su%ce it to say, however, that the evaluation of the
correlation energy as a functional of the target density,
and given by the specific form derived for fc(r, R) in Eq.
(4) [19],is based on the following physical picture [24]: (i)
The bound electron system is well described by a single-
determinant (SD), Hartree-Fock (HF) wave function and
therefore in the particular system being studied it is as-
sumed that static correlation forces play a secondary role.
(ii) The above density-functional-theory (DFT) approach
only deals with short-range, dynamic correlation forces
due to direct electron-electron interaction and averages
over the velocity-dependent effects by a convolution over
the target global charge density as given by second-order
density matrices.

The next step in the derivation allows one to obtain a
specific expression for the short-range correlation poten-
tial experienced by a type of pointlike incoming charge
by simply performing the functional derivative of the Ec
expression of before with respect to the target electronic
density in the region of strong overlap between the pro-
jectile and the target density [24]. We shall call the ensu-
ing local potential the OFT correlation-potential
(DFTCP) function:

I'cp'= Ec[p( )]DFT

&(EIp+Ei ) &bcI—p'" G ) p+ ——G) — [6)'pl ~pl'+ GI (3I ~pl'+2p~'p)+4G) &'p]

72
[36'i'pl%pl +GI(5lvpl +6pv' p)+4Giv' p], (6)



48 TEST OF LOCAL MODEL POTENTIALS FOR POSITRON. . . 4323

where the parameters a, b, c, and d were given in Ref. [23]

F, [p(r)] = [1+dp ' ],
G, [p(r)] =F, (r)p exp(cp ' ),

3
( 3 2)2/3

F io

(7a)

(7b)

(7c)

The symbols with primes correspond to the first and second derivatives of F, and G& with respect to p(r) Th. e func-
tional form of Vcp for values of r larger that a given r, is now taken to be given by the asymptotic form of Eq. (1)
while the corresponding short-range expression for separate a-spin and P-spin contributions is given by

Vcp (r)= a(F~—p+F2) 2 — abCF(G2(p ~ +p )—'G p
~

)

4 [pV Gz+4VGz Vp+4G2V p+Gz(pV p
—IVp )]

where

36 [3p V'G, +4Vp VG, +4G, V'p +3G,'(p V'p +ppV'pp)+G2(IVp I'+ IVppl')],

2 + 2

1+dp p r
(9)

The value of r, is chosen as the crossing distance be-
tween the value of the functional derivative of the corre-
lation energy (Ec) and the value of the asymptotic form
of the polarization potential in Eq. (1). This choice im-

plies that nonadiabatic corrections from short-range
correlation forces begin to act within the spatial volume
in which the correlation energy of the bound electrons
still has an appreciable gradient with respect to p(r). Our
DFTCP results will be compared with experiments as
well as with other models such as the positron correlation
polarization (PCP) potential of Jain [12] and the electron
correlation polarization (ECP) [25] obtained from a free-
electron-gas (FEG) derivation.

It is important to point out that the above treatment of
short-range correlation effects uses a DFT approach
within the target electronic density and ultimately pro-
duces a local potential which is adiabatic in its explicit
form. It was, however, derived by selecting an expression
for the correlation factor in Eq. (5) which contains nona-
diabatic effects implicitly via the specific choice of the
two-electron function that it uses [19,20]. Thus, we could
say that the present DFTCP potential is equally applica-
ble to both electron and positron scattering processes in
that it solely contains the correlation effects caused by
the bound electrons at a given point in space. Such a
choice, however, implies that it is plausible to define a lo-
cal functional form without having to distinguish be-
tween the nonadiabatic effects which electrons and posi-
trons have as projectiles on the target wave function but
by constructing only their global functional dependence
on the target electronic density. Since we have derived
the potential of Eq. (6) without any reference to exchange
forces, which are evaluated separately in the case of elec-
tron scattering processes [24], then one can also say that
the nonadiabatic effects included here come solely from
the electron —other-charge short-range repulsion operator
averaged over target states and can be directly used for
DFT positron-electron correlation forces. It still consid-

I

ers as negligible, however, the differences in nonadiabatic,
short-range effects between electron projectiles and posi-
tron projectiles. That this is a reasonable assumption for
the present case is borne out, we believe, by the calcula-
tions discussed in the next section. The full scattering
potential will, of course, include the exact static repulsion
part and therefore will take into account as much as pos-
sible differences which exist between target-electron and
target-positron interactions below the thresholds for ei-
ther electronic excitation or positronium formation.

It is also important to note that the two regions which
we mentioned before, i.e., the intermediate-range (IR)
and the long-range (LR) regions, are here treated
differently in the sense that the LR region is obtained
directly from perturbative schemes and could be de-
scribed either by the simple dipole term from second-
order perturbation theory as given in Eq. (1),

V „(r )„ „—ao/2r (10)

1 ~OO
P

(12)
(4)Vp„(rp) „yr—

7 ~OO

where B is the dipole-dipole —quadrupole hyperpolariza-
bility and y is the dipole-dipole —dipole-dipole hyperpo-
larizability [26,27]. The implication is that higher-order
perturbative terms can be disregarded and that the neces-

or by including further terms in that expansion,

V (r)(2) CXp CXg CXg

I o&
27" 2I" 274 6 8 7

P P

where a& and ao are the quadrupole and octupole static
polarizabilities, respectively [19],or, furthermore, by also
including the effects of the higher-order coefticients com-
ing from third-order and fourth-order perturbation
theory, i.e., the hyperpolarizability terms given by
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sary corrections of the global potential in the IR region
of interaction can be modeled via the use of the r, value
that is directly obtained by the crossings between the
V " of the SR region and the perturbation theory po-
tentials from the LR region. This very point needs fur-
ther analysis and will be discussed below in great detail.
It is also worth noting here that other types of model cal-
culations employing polarized-orbital treatments for
outer-shell electrons [28] have been used for positron
scattering off rare gases [29]. Their calculations, al-
though more involved than the present method, agree
only qualitatively with existing experiments and therefore
we decide not to further discuss them in our present
work.

The choice of either Eq. (10) or Eq. (11)could of course
change the values of the matching radii inside which the

DFT correlation is employed and therefore could affect
the final values of the computed cross sections in some
noticeable manner. This point will be analyzed in the
next section.

In order to compare with other theories, we have com-
puted integral and differential cross sections for the elas-
tic process using the free-electron —gas model of correla-
tion potential for electron scattering processes presented
earlier [24]: it will be called henceforth the ECP poten-
tial. Furthermore, we have also carried out calculations
using a positron-atom potential employed earlier on by
one of us [12], using the two-component DFT approach
derived directly for electron-positron systems [30]. We
will call them the PCP potential results.

The calculations of Fig. 1 show the relative behavior of
some of these potential functions for the case of the Ar
target. The upper part [Fig. 1(a)] shows a broader range
of potential values, while the lower part [Fig. 1(b)] shows
only a potential range of 0 2 a u. The solid line
represents the present DFTCP potential while the dashed
curve reports the corresponding asymptotic potential of
Eq. (11), i.e., with the inclusion of dipole, quadrupole,
and octupole contributions in Eq. (1). The simple dipole
results are shown by the curve with superimposed
crosses. The corresponding PCP potential function is
given by the dotted curve while the ECP is given only in
Fig. 1(a), by the curve showing the strongest potential
values and marked by data and dashes. One clearly sees
both the effect of higher-order terms in the asymptotic
potential and the differences between the DFTCP and the
other CP potentials: they are certainly marked in the case
of the ECP potential, which does not Gt on the same scale
as it is here a factor between 4 and 8 larger than the PCP
and DFTCP potentials. These drastic differences be-
tween correlation potentials wi11 show up accordingly in
the differences exhibited by the computed cross sections
discussed below and will also help us to shed more light
on the most effective modeling of correlation forces in the
IR regions.

—0.05—

e

III. THE COMPUTED SCATTERING OBSKRVABLES

A. Integral and differential cross sections
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FIT+. 1. Computed correlation-polarization potentials for
positron-Ar interactions. —X - X -; dipole-only asymptotic poten-
tial of Eq. (10); ———,full asymptotic potential of Eq. (11);

, DFTCP optical potential; - -, PCP optical potential;
—.——-, ECP optical potential. (b) Enlarged part of the in-
teraction without the ECP potential shown in the lower part of
(a).

The solution of the usual potential scattering problem
requires to solve the following differential equation for
each of the positron scattered radial functions pt, for the
1th partial wave at an energy of ~ in atomic units:

d q l(l +1)+,~ — —2V, , (r~ ) p((rp) =0, .
dl"p

(13)

where r~ is the positron radial coordinate and V, , (r~ ) is
the present local, real optical potential for the e —rare-
gas system written as a sum of the repulsive static in-
teraction, V„(r ), and the attractive correlation-
polarization interaction Vcp(r ). The former was ob-
tained exactly from HF target wave functions [24] while
the latter was computed using the local, global models
discussed in the previous section.

These radial equations were solved using Numerov's
algorithm with an energy-dependent radial mesh. The
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FIG. 5. Same as in the previous figures but for the case of Kr
atoms as the target. The meaning of the symbols is the same as
before.

lations have both the wrong energy dependence and the
wrong absolute values of the cross sections with respect
to experiments.

The same general trend is observed in the results for
Ar atoms (Fig. 4). The experimental data are here scat-
tered over a broader range of values, but our calculations
with the full asymptotic potential form and the DFTCP
optical potential (solid line) agree with them very well.
The ECP and DFTCP with only dipole polarizability are
once more very close to each other and close to the ex-
periments, while the PCP optical potential fails rather
markedly in reproducing the experiments.

The computational results for Kr and Xe, carried out
at the nonrelativistic level, are shown in Figs. 5 and 6, re-
spectively. The corresponding experimental results are
again very diff'erent from each other and show less evi-

dence for a low-energy minimum as one goes from Kr to
Xe. Our calculations indeed agree with such a trend and
do so better when using the full polarization of Eq. (11)
(solid line) than with the dipole-only term (dashed curve)
with the DFTCP optical potential. The ECP calculations
are once more in good accord with the dipole-onl - lus-DFTCP, ' '

ica po-calculations, thus indicating that the optical po-
tentials plotted in Fig. 1 only show differences as the col-
lision energy increases, while behaving essentially in the
same way in the low-energy regimes. The PCP calcula-
tions, on the other hand, produce the largest cross-
section values and appear to follow only qualitatively the
energy dependence of the experimental data.

To give a feeling of the induced differences in the long-
range part of the present DFTCP potentials, we report in
Table I the polarizability values employed in our calcula-
tions [35], together with the coefficients of the third-order
perturbation theory corrections [27], which we will dis-
cuss below.

As ss well known, the angular distributions of scattered
positrons, even at the elastic level below the positronium
formation thresholds, provide a very stringent test for the
theoretical models employed in their calculations. Thus,
we have carried out calculations for such quantities using
the optical potential which performed the best in the pre-
vious comparison between measured and computed in-
tegral cross sections, i.e., the DFTCP potential model.

The results for Ne target are shown in Fig. 7 at a col-
lision energy of 13.6 eV: Fig. 7(a) presents results on a
logarithmic scale while Fig. 7(b) shows them on a linear
scale. The experimental points are given by filled circles
in both cases and come from Ref. [33]. The calculations
which use the DFTCP discussed before are given by two
diA'erent curves in each set of plots: the solid line results
refer to using an asymptotic polarization form as given
by Eq. (11), while the dashed line reports the calculations
with dipole-only asymptotic potential. The agreement
between calculated and measured quantities is remark-
ably good for both models, although the use of a more ex-
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TABLE I. (a) Values of the dipole polarizabilities, uD, of the
quadrupole polarizabilities, o.& and of the octupole polarizabili-
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atoms as the target. The meaning of the symbols is the same as
before.
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tended long-range polarization potential appears to fare
slightly better. The same result was found before for the
integral cross sections of Fig. 3.

The calculated and measured differential cross sections
(DCS) for Ar atoms are shown in Fig. 8 for three difFerent
collision energies: at 2.18 eV [Fig. 8(a)], at 6.67 eV [Fig.
8(b)], and at 8.71 eV [Fig. 8(c)]. The filled circles report
the experimental points of Refs. [33,36], while the calcu-
lated curves have the same meaning as before, when
showing computed angular distributions for Ne targets.

The agreement between the solid curves and the exper-
imental data are again rather encouraging at all energies
since the calculations clearly reproduce the general drop
of angular distributions as the scattering angle gets
larger.
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FIG. 7. Computed and measured differential cross sections
(DCS) as a function of the scattering angle at a fixed energy of
13.6 eV (a) logarithmic scale; (b) linear scale, for neon atom tar-
gets. The filled circles are the experimental results from Ref.
[33]. The calculations are as follows:, DFTCP plus the
full asymptotic polarization of Eq. (11); ———,DFTCP plus
the dipole-only asymptotic polarization.
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FIG. 8. Computed and measured differential cross sections
(DCS) for argon targets. The experiments are the filled circles
and came from Ref. [361. (a) data and calculations at 2.18 eV;
(b) at 6.67 eV; (c) at 8.71 eV. The meaning of the computed
curves is the same as that for Fig. 7.
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One should keep in mind that such calculations are
really very easy to perform within the present model and
therefore indicate the attractiveness of using our DFT
approach for modeling positron scattering optical poten-
tials, since nearly quantitative agreement with experi-
ments is attained with a rather modest computational
effort.

B. The eÃects of perturbation-theory series truncation

As mentioned before the present DFTCP model ap-
proach employs a specific, nonadiabatic prescription to
treat short-range (SR) correlation forces and the
coefficients of second-, third-, and fourth-order perturba-
tion series expansion to describe long-range (LR) forces.
The next feature of this global model is related to the way
it treats the intermediate-range (IR) part of the interac-
tion. This is that special region of configuration space in
which adiabatic, higher-order effects are expected to play
a role, as well as the differences in nonadiabatic effects be-
tween electrons and positrons as projectiles.

As discussed earlier, Eqs. (10) and (11) are independent
of the charge of the projectile and specifically describe
LR adiabatic effects. On the other hand, Eq. (12) in-
cludes third-order and fourth-order effects and the sign of
its coefficients depends on the charge of the projectile. In
the case of a positron, the coefficients of that equation
(see Table I) are both attractive and therefore their net
effect on the global potential is to move the r, values to
the outer region, thereby making the DFTCP potential
stronger in the IR range of relative distances.

Figure 9 presents, in fact, the behavior of the V " po-
tential, for all the rare-gas targets, in the IR regions
around the crossing values, r, . The results for He atoms
are shown in Fig. 9(a), while the results with increasing
Z, from Ne to Xe, are shown in the figure from 9(b) to
9(e). The continuous line presents the calculations with
the DFTCP model; the line with stars, the dipole polar-
ization potential of Eq. (10); the line with crosses, the full
polarization potential of Eq. (11); while the line with
pluses presents the additional contributions of the
higher-order coe(ficients of Eq. (12) and Table I.

The following behavior can be extracted from examin-
ing the results shown in the figure.

(i) As expected from physical intuition, the crossing
values, r„ increase substantially from He to Xe and go
from about 2.0ao up to about 5.0ao. On the other hand,
the ECP model and the PCP model show a less marked
variation with the "size" of the atomic charge densities.

(ii) The complete interaction with contributions up to
third-order perturbation-theory (PT) terms decreases
more slowly with r and therefore always exhibits the
largest r, values for each system. Hence, the DFTCP
short-range contributions are extended more into the IR
region when such a potential is employed.

(iii) As Z increases, the larger r, values imply that the
crossing region falls into energy ranges which are smaller
and therefore our description of the IR effects moves out-
wards and produces weaker potentials. This result seems
to indicate that for the light atoms the choice of Eq. (10),
(11), or (12) to describe the V,&

part of the full interac-
tion produces more drastic differences in the description

of the IR region of the potential than it does for systems
such as Kr or Xe.

(iv) The heavier atomic targets show that, because of
the larger values of r„ the DFT correlation follows very
closely the curve with crosses in the outer region, while
the lighter atoms have their potentials markedly changed
after the crossings.

In sum, the comparison discussed above indicates that
the full correlation-polarization potentials describe the
IR region rather differently when one changes the V„,&
contributions, depending on whether one considers light
atomic targets or atomic targets with several electrons.

The same type of differences are provided by the in-
tegral cross-section calculations. To make the compar-
ison clearer, we show in Fig. 10 only the computed cross
sections obtained from the Vcp potential and with
different forms of V,~

as discussed before. The range of
energy shown is the same as that of Figs. 2 —6, where the
other model potentials and the experimental data were
also presented. The sequence of the different atomic tar-
gets goes from the helium target, in Fig. 10(a), to the xe-
non target, in Fig. 10(e).

The results given by the solid line present, as before,
the cross sections computed with the V, ~

of Eq. (11),
while those given by the dashed line refer to the user of
the dipole term only in the asymptotic region. The curve
marked by pluses shows the calculations carried out with
the higher-order terms of Eq. (12) added to the V,&

of
Eq. (11). One can draw the following conclusions from
an examination of the results of the figure.

(i) For the lighter atomic targets, He and Ne, the calcu-
lations which employ only the dipole potential of Eq. (10)
agree the best with the experiments of Figs. (2) and (3)
and describe well the cross-section minima in the low-
energy region. The higher-order PT contributions make
the IR region potential stronger and yield cross sections
which are too large.

(ii) For the heavier atoms, Ar, Kr, and Xe, the higher
terms in the PT expansion correctly eliminate any low-
energy minimum in the computed cross sections and
make them more in agreement with experiments, as one
can see from a perusal of Figs. 4—6 with the experimental
results.

(iii) At the higher collision energies, and below the po-
sitronium formation threshold, the various long-range
choices of V„,&

affect the computed cross sections only
very little and the latter are essentially entirely coincident
for the case of the lighter atoms.

In conclusion, the test of different PT series truncation
on computed cross sections and on the global shape of
our proposed DFTCP model suggests that, for light
atoms, the IR region interaction should be described by
the weakest possible potential model while for heavier
atomic targets the higher terms of the PT series are need-
ed in order to yield a stronger interaction potential for
positron projectiles.

IV. DISCUSSION AND CONCLUSIONS

We presented in the previous sections a comparison be-
tween different parameter-free model potentials for treat-
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ing positron scattering processes from rare gases at low
collision energies. The general aim of such potentials was
to generate, using physically realistic simplifications, lo™
cal, energy-independent forms of optical potentials for
scattering processes below the positronium formation
thresholds. Thus, we presented an approach based on
density-functional theory, which we labeled the DFTCP
optical potential, whereby the repulsive static interaction
was obtained exactly from HF target wave functions
while the short-range nonadiabatic polarization effects
were included in a global form as functional derivatives
with respect to the target electronic densities of N-
particle correlation energy, Ec. The basic assumption of
that approach was, as mentioned earlier, that the dynam-
ic correlation effects could be given in local form and
therefore the nonlocal differences between electrons and
positrons as interacting projectiles with the N bound elec-
trons could be considered as small. Since the original
derivation [19—24] for electron scattering processes clear-
ly separated exchange effects from direct correlation
effects, then the DFTCP potential could be used for posi-
tron scattering under the assumption that the nonlocal,
virtual excitation processes in the two cases differ rather
little from each other, in spite of their different physical
origins [18].

Furthermore, we have employed a recently proposed
short-range correlation potential which had been ob-
tained for positron-electron interactions where the bound
electrons were treated as a homogeneous-electron-gas
model [12,30]. We have called such a potential the PCP
potential model and found it to be only qualitatively in
agreement with experiments, with its behavior at higher
energies being closer to them than the one in the low-
energy regimes. The third model which we have em-
ployed in our calculations is the one suggested earlier for
treating electron scattering short-range correlation effects
[25], and which used a free-electron-gas model of the tar-
get system. We call it the ECP optical potential in the
present work and used the dipole-only asymptotic polar-
ization as its long-range part. The results of our calcula-
tions indicate that the ECP model agrees rather closely
with our DFTCP potential in the low-energy regimes but
departs from it as the collision energy increases towards
the positronium formation threshold: for more complex
target atoms its computed cross sections are invariably
smaller than the experimental data and smaller than
those from the DFTCP potential calculations. We have
also carried out a detailed analysis of truncating at vari-
ous levels the PT series coming from the LR region of in-
teraction, thereby modifying within our model the
description of the interaction in the IR region. Our
analysis shows that differences in the computed cross sec-
tions only appear at very low collision energies, while

from intermediate energies and up to the positronium
threshold the various contributions affect cross sections
only rather weakly.

Both angular distributions and integral cross-section
calculations indicate here that the DFTCP approach pro-
duces quantities which agree remarkably well with the
available experiments and is well suited for describing
short-range correlation effects in positron scattering
below threshold. Such effects are here essentially given
by a DFT model designed for electron scattering process-
es. In other words, although one is aware of the fact that
the physics of positron interaction with the target elec-
tronic cloud is different from that of an electron projec-
tile, especially in the short-range region where nonadia-
batic, energy-dependent virtual excitations come from
different processes in the two cases [37,38], one can nev-
ertheless effectively employ a local model approach where
an energy-independent, real optical potential is produced
from DFT. From the computational evidence of the
present comparison, one therefore could conclude that in
the low-energy scattering regimes the types of effective
potentials which are generated for electron scattering
correlation effects via density-functional models also can
be applied for positron scattering calculations in spite of
the differences in the physical processes which give rise to
those short-range nonlocal effects. On the other hand,
light and heavy targets show marked changes in their
computed cross sections at very low collision energies
when the LR treatment via a PT series is truncated at
different terms, the latter also being different from those
for electrons for positrons. Both angular-distribution
data and integral cross-section data indicate here the
realistic quality of the DFTCP and ECP models and the
rather poor performance of the PCP model potential.
How such an analysis could be extended to molecular sys-
tems is the subject of our current work on diatomic and
polyatomic targets and will be presented elsewhere.
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