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Laser-induced-resonance calculations for the photodissociation of Hz+
in an adiabatic electronic-field representation using the radiation-field gauge
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The properties of the laser-induced first resonance state in the photodissociation of H2+ are obtained
from calculations in the radiation-field (RF) gauge, also called the velocity gauge, as a function of inten-

sity and wavelength of the field within an adiabatic electronic-field representation, and the results are
compared to the corresponding ones obtained using a diabatic RF gauge representation and an adiabatic
electric-field gauge representation. Gauge transformation within the coupled equations used for these
calculations is also discussed.

PACS number(s): 33.80.Gj, 33.80.Wz, 42.50.Hz, 34.50.Rk

I. INTRODUCTION

Photo dissociation of diatomic molecules in intense
laser fields has to be investigated using theoretical formal-
isms that go beyond the traditional perturbative ap-
proaches [1—5]. The most effective of such formalisms
are the so-called dressed-molecule approach [3,4], which
considers the field and the molecule together as a single
conservative system, and the Floquet formalism, which
considers the time evolution of the molecular system in a
classical periodic field [6,7]. Even though both are de-
rived from different considerations, they yield identical
coupled equations if the field is intense enough [8,9].

In the dressed-molecule approach, an electronic-field
representation can be defined using a basis constructed
from the product of field-free electronic states calculated
within the Born-Oppenheimer approximation and
photon-number states. This electronic-field basis is dia-
batic with respect to radiative interactions because these
interactions are included via a nondiagonal potential cou-
pling matrix. In the case of H2, if the radiative interac-
tions between nuclear amplitudes of the molecule are ex-
pressed as the product of the electric field and the transi-
tion dipole moment, i.e., the interaction terms are ex-
pressed in the electric field (EF) or length gauge, then not
only do the couplings increase with increasing intensity
but with increasing internuclear distance as well due to
the ionic character of the molecule. Hence a large num-
ber of coupled diabatic channels are required to give con-
verged results [8]. Alternatively, the diabatic basis can be
transformed so as to diagonalize the potential coupling
matrix, and the resulting adiabatic channels will be cou-
pled by nonadiabatic interactions of the kinetic type
which can be considered negligible at infinite internuclear
separations.

In either representation, resonance states are created
by the mixing of continuum with bound states. As shown
in previous work [9], the calculation of the position and
width of adiabatic resonance states at a particular intensi-
ty generally requires fewer adiabatic channels than the
corresponding calculations of the position and width of
diabatic resonance states. In spite of the advantages of

the adiabatic representation [9], calculations in this rep-
resentation are scarce due to the difhculty associated with
integrations which properly take into account nonadia-
batic couplings.

In the diabatic representation, the calculation of the
position and width of the resonance states using the
electric-field gauge was done using the complex dilatation
method which consists of rotating the nuclear variables
into the complex plane, thereby ensuring that the nuclear
amplitudes are square integrable in the complex plane
[8,10]. The coupled equations can then be solved using a
complex-coordinate version of the Numerov algorithm.
The imaginary components of the resulting complex ei-
genvalues correspond to the widths of the resonance
states while the real components correspond to their posi-
tions. In the adiabatic representation, the coupled equa-
tions in the EF gauge have been solved directly using a
modified Numero v algorithm, the Nguyen-
Dang —Durocher —Atakek (NDDA) algorithm [9,11],
which has been specifically derived to take into account
nonadiabatic coupling terms. Since the nonadiabatic cou-
pling terms can be neglected at infinite internuclear dis-
tances [12], the asymptotic behavior of the adiabatic nu-
clear amplitudes have been analyzed in terms of a scatter-
ing matrix.

In previous work [11], the first resonance state in the
adiabatic representation was obtained from EF gauge cal-
culations and it was compared to the one calculated in
the diabatic representation also using the EF gauge [8].
It was shown that, in this gauge, diabatic and adiabatic
resonance states were not necessarily unitary equivalents.
This conclusion was illustrated in part by the existence of
shape resonances in the adiabatic representation that do
not exist in the diabatic representation [11].

It is well known that the choice of gauge representing
the matter-field interactions is not unique. Radiative
couplings may also be expressed in terms of the product
of the vector potential and the momentum operators, the
radiation-field (RF) gauge. The best gauge, EF or RF, to
use in dynamical calculations has been largely a rnatter of
choice which depends on the system being studied and
the intensity of the field, among other criteria. In princi-
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pie, the choice of gauge should not matter since they are
linked by a unitary transformation. As shown by Reiss
[13—15], gauge invariance depends on the approxima-
tions, if any, that are used in transforming the Hamiltoni-
an between the EF and RF gauges: approximations such
as the long-wavelength approximation (LWA), which,
when applied in the center-of-mass reference frame, leads
to a dipolar Hamiltonian in the RF gauge but gives rise
to a Hamiltonian which has an electric quadrupolar corn-
ponent in the EF gauge. This implies that there is a
difference between the L%'A and dipole approximations
in the EF gauge. Calculation of resonance states in both
gauges should give the same results provided the com-
plete set of electronic states is included to define the
electronic-field basis. In the photodissociation of H2
only the X X+ and 3 X„+ electronic states have been
used to define the basis. Neglecting the other electronic
states is expected to have a small effect on the gauge in-
variance of the resonances since the other excited states
of the H2+ molecule are relatively far in energy„and they
are not expected to make a large contribution to the reso-
nance calculations. However, recent theoretical investi-
gations of the time-resolved dynamics of the photodisso-
ciation of Hz using wave-packet techniques in both the
EF and RF gauges give results that do not appear to be
gauge invariant [16]. Hence the problem of gauge invari-
ance in photodissociation dynamics does not seem to
have been completely resolved. Insofar as the analysis of
field-induced resonances calculated in a time-independent
Floquet theoretical framework is concerned, the radiative
couplings expressed in the RF gauge in both the diabatic
and adiabatic representations vanish at large internuclear
distances, and hence the asymptotic behavior of the nu-
clear amplitudes in both representation may be analyzed
using unitarily equivalent scattering matrices. Thus the
spectrum of resonances in both representations should
coincide in this gauge. In contrast, in the EF gauge, the
nonadiabatic couplings in the adiabatic representation
are negligible at large internuclear distances while, in the
diabatic representation, the couplings diverge at infinite
internuclear separations. Hence the adiabatic field-
induced resonances, located using a scattering matrix ap-
proach, do not coincide with the diabatic ones [9].

In this work, the position and width of the field-
induced first resonance state in the photodissociation of
H2 is calculated in the diabatic and adiabatic represen-
tation as a function of intensity and wavelength using the
RF gauge, and these results are compared to the corre-
sponding adiabatic EF gauge resonance calculations.
Following the developments of Reiss [13—15], the rela-
tionship between the EF and RF gauge Hamiltonian will
first be examined in the context of high-intensity 6elds.
This review will serve to better identify the conditions
under which calculations in both gauges may be com-
pared, in spite of the inevitable use of approximation
such as the LWA, the dipole approximation, and the
truncation of the electronic Floquet Hamiltonian.

II. THE HAMILTVNIAN

N
H(t)= g 2'

'2

A(r, t) ' + V([r]), (1)

N
U(t)= exp g p(r ) A(r, t)

Ac
(3)

where )M(r ) is the dipole operator q r of the ath parti-
cle in the molecule. Following the developments of Reiss
[15],the transformed Hamiltonian

H'(r) = U (t)H(t) U(t) i AU (t) —U(t)—
Bt

in the EF gauge can be written as

N
H'(t)= g P~+ grok ')M(r ) Eki(r, t)k

a=1 2~a

2

N—g p(r ) E(r, t)+ V([r] ),
a=1

(5)

where Ei, i(r, t) is the electric field of the (k, A, ) mode as-
sociated with a vector potential through

and where the electric field E(r, t) is defined by

E(r, t)= QE„„(r,t) .
k, A,

(6')

In this work, only a single-mode monochromatic field of
frequency co (=c~k~) will be considered, and hence the
summation inside the brackets of (5) as well as the sum-
mation of (2) reduce to a single term which is intensity
and wavelength dependent.

It is important to note that the X.WA has not been im-
posed on the vector potential in (3); it defines the exact
transformation for the derivation of the EF gauge Hamil-
tonian. To determine the effect of the LWA and dipole
approximations, the Hamiltonians (1) and (5) must first be
transformed into the center-of-mass (c.m. ) coordinate sys-
tem by defining the position of the e.m. as

where A(r, t) is the vector potential, P is the kinetic-
energy operator, m is the mass and q is the charge of
the ath particle (electron or nucleus), and V( [r] ) is the
potential due to all the charged particles. The vector po-
tential in (1) has been expressed classically because the in-
tensity of the field will be considered to be high [17]. In
this case,

A(r, t)= V g [Ek,x~k, x(t) exp(ik r).+c c.
k, A,

where V ' is the quantization volume, ck & is the polar-
ization vector of the wave vector k in the field of wave-
length A, , and the sum in (2) means that A(r, t) is the
vector potential acting at the point r due to all the
modes of the field. The Hamiltonian (1) can be expressed
in the EF gauge using the transformation

T

The Hamiltonian for a molecule in an electromagnetic
field expressed in the RF gauge ean be written as

m

a=1
(7)
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where M is the total mass of the molecule, and by
defining the momentum of the c.m. as

N
and

p =r —R, , +=1,2, . . . , N —1

P, =gP
a=1

A. A maP"=P—
mN

P = —.V = —.g . V r .Vrp'
P

The remaining (N —1)-independent relative displace-
ments and momentum operators p and P", respectively,
are given by

+=1,2, . . . , N —1 .

The RF gauge Hamiltonian (1) can now be expressed as

N —1 1 1 1
N —1 N —1 qH(t)= g P" + P, — g P" Pp+ V(IpI ) —g A(p +R, , t) P"

m c

N —1 N —1

g q A(p +R, , t) P, + g q A(p +R, , t) P&+
N 1 q2

A (p +R, , t)
2m ac

A R,Mc

N —1 qNp, t P, + A R,
N —1 m

p, t
mN

N —1

~ gP r
a=1

2

2mNc

N —1 m
p, t

a=1

2

The LWA assumes that the wavelength of the field is much larger than the dimension of the molecule, and hence k-p is
much smaller than 1 thereby causing the vector potential to depend only on the position of the c.m. and time. The
LWA does not imply that k R, is much less than 1

I
13]. In this case, the Hamiltonian (11)becomes

1 2 1H(r)= g P."'+
2m 2M

+ g A(R, , r) P" + g

N —1

P" P&+ V(Ip)) —g A(R, , t) P" — A(R, , t) P,
a,P=1 mc ' Mc

2',
I A«. ....t)l',

2m ac
(12)

where Q is the total charge of the molecule. Applying (12) to Hz+ using

M =2m +m, =—2m

Q =2q +q, =q

(13a)

(13b)

where m and m, are the masses of the proton and electron, respectively, q and q, are the charges of the proton and
electron, respectively, and writing the summations in (12) explicitly in terms of the relative electronic canonical vari-
ables

pe = re Rc.m.

P, =P,'

and nuclear canonical variables

(14a)

(14b)

p= —,'(r, —r2) =
—,'R,

P~ =2P",
where R is the internuclear distance, the Hamiltonian (12) is expressed as

(15a)

(15b)

H(t)= Pz+ P, + P, — Pz P, +V(IRp, I)— A(R, , t) Pz — A(R, , t) P,

2 2

A(R, , t) P, , +, I A(R, ,t)l'+, I A(R, , t)l' . (16)

If it is assumed that nuclear and electronic motions are very weakly coupled, then the Pz.P, term can be neglected rel-
ative to the other motions leaving
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1 9'pH(t)= 'P~ — A(R, , t) . + ~P, —
al 2C ' 2' e

2

A(R, , t) . +
c ' ' 4m

2

A(R, , t) + V(IR,p, I ) .
C

(17)

H'(r) =
Plp

The Hamiltonian in the EF gauge (5) can also be transformed into the c.m. frame of reference and, after applying the
LWA and the definitions (13) to (15) for Hz+, becomes

'2 2

P~+ R E(R, , t)k + P, + p, E(R, , t)k .
2c 2' e C

+ P,' + ' R, E(R, , r)k P~+, [R, .E(R, , t)]'

+ Ip, .E(R, , t)J [R, E(R, , t)I —q,p, E(R, , t) —q&R, „, E(R, , t)+ V([R,p, ]),9'e

PleC

where again it has been assumed that the electronic
motion is very weakly coupled to the motion of the pro-
tons and to the motion of the c.m. and hence the Pz.p,
term has been neglected, as well as the terms which cou-
ple the electronic displacement vector to the nuclear
momentum operator and the one which couples the c.m.
displacement vector to the electronic momentum opera-
tor. As discussed by Reiss [13—15], in the RF gauge, the
LWA gives the Hamiltonian (17), while, in the EF gauge,
the LWA gives the Hamiltonian (18) which contains elec-
tric quadrupole and magnetic dipole terms obtained from
the R E(R, , t)k P terms [13]. These terms are approx-
imately 200 times smaller than the electric dipole interac-
tion terms for an intensity of 10' W/cm with a wave-
length of 100 nm and for an intensity of 10' W/cm with
a wavelength of 1000 nm [15]. Hence they can be
neglected for field intensities up to —10' W/cm, and
the Hamiltonian (18) in this dipole approximation will be

H'(t) = P~ + P,'+ — P,' —
q, R, E(R, , t)

mp 2me 4mp

—q, p, E(R, , t)+ V( IR,p, ] ) . (19)

A last approximation will be made concerning the
motion of the c.m. ; it will be assumed that the motion of
the c.m. can be adiabatically separated from the motion
of the relative internal coordinates of the molecule in
both gauges. Therefore, the RF gauge Hamiltonian used
in this work is written as

2

H(t)= 'P~ — A(r)
mp 2c

to the corresponding Hamiltonian in the RF gauge (20)
has not been fully examined. In going from the EF to the
RF gauge Hamiltonian, the matter-field interaction term
given by the third term of (21) has simply been replaced
by the A(t) P, term of (20) [18]. As seen from (20), this
amounts to neglecting the direct interaction between the
field and the relative motion of the nuclei. Interestingly,
the resulting RF gauge Hamiltonian is unitarily
equivalent to the EF gauge Hamiltonian (21). This is
surprising in light of the approximations and
simplifications made in the parallel derivations of both
the RF and EF gauge Hamiltonians. These Hamiltonians
were obtained using the LWA in the c.m. coordinate sys-
tem. In the EF gauge, the quadrupolar terms were
neglected, thereby highlighting the diA'erence between the
LWA and dipole approximations. In both gauges, the
correlation between the nuclear and electronic momenta
were neglected, and the motion of the c.m. is adiabatical-
ly decoupled from the motion of the internal molecular
coordinates.

In previous work [4—6,8,9], the EF gauge Hamiltonian
(21) has been used in the time-dependent Schrodinger
equation for the two-channel model of the dissociation of
H2+ within both the Floquet and electronic-field ap-
proaches. These approaches are equivalent at high laser
field intensities and hence the Floquet approach will be
used in this work. In this approach, the matter-field in-
teraction terms in (20) and (21) can be expressed using
classical expressions for the electric field and its associat-
ed vector potential as

+ P, — A(t) . +V(IR,p, ]),
2me c

while the EF gauge Hami, ltonian is written as

(20)
E(t) =Eocos(cot)

A(t) = ——Eosin(cot),
H'(t) = -P„+ P, —q,p, E(t)+ V( IR,p, ) ), (21)

Hap 2m e

where the field and its associated vector potential now de-
pend only on time. The Hamiltonian (21) has been used in
previous calculations on Hz+ [6,8,9], but its relationship

respectively. The solutions of the time-dependent
Schrodinger equation
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are sought for with the Hamiltonian given by (20) or (21).
For the photodissociation of H2+, the electronic part of
the Hamiltonian is written in a truncated basis of the
field-free Born-Oppenheimer states defined by

P, + V( IR,P, ] ) Qk(P„R)=Ek(R)fk(P„R),2' e

(25)

which define the potential energy surfaces Ek(R) that de-
pend parametrically on the nuclear coordinates R. As
noted in previous work on H2+ [8,9], the nuclear coordi-
nate R can be replaced by R, and only two solutions of
(25) are needed to describe the photodissociation of the
ion from the ground state; the

~

lo.
g ) and

~

let�„)

electron-
ic states corresponding to the bound Es(R) and dissocia-
tive E„(R)potential-energy curves. The periodicity of the
applied field and hence of the solution ~%'z ) can be ex-
ploited to express the solution of the full time-dependent
Schrodinger equation as a quasienergy state (QES's)
defined in terms of a Fourier expansion with respect to
the frequency of the applied field cu

where p k(R) is the parametrically R-dependent transi-
gk

tion dipole moment defined by

P~k(R) JdP i' (P R)& P ek(P (28)

The coupled equations (27) may be written in matrix
form [9]

where Xs (R ) and X"„(R) are nuclear amPlitudes [6,8].
The QES (26) has been used in the time-dependent
Schrodinger equation expressed in terms of the EF gauge
Hamiltonian, and, after integration over the electronic
coordinates and over one period defined by the frequency
of the applied field co, this gave rise to an infinite set of
time-independent coupled equations given by [6,8,9]

[ Tic +Es ( R ) + n fico E]X—s ( R )

+ —,'p „(R).Eo[X„"'(R)+X"„'(R) ] =0, (27a)

[ T~ +E„(R) + ( n + 1 )Aco E]X—„"
+ '( R )

+ ,'P„s(R—)Eo[Xg+ (R)+ps(R)]=0,
(27b)

l
~%'z, t ) = exp — Et g —exp(incot) [T EI+ V"—(R)]X " (R)=0 (29)

X [Xg(R)~ lo )

+X"„(R)~lo „)], (26)
I

where I is the identity matrix, and V " (R ) is the diabatic
potential matrix

—EF
V«ab (R )

E (R)+(n +2)fico

V (R)

V "(R)
E„(R)+(n + 1)A'co

V. (R)

V "(R)
Es(R)+nftco

v,'„", (R)

V "(R)

E„(R)+(n —1)fico

(30)

and V;„",(R) is defined by

V;„,(R)= ,'p„s(R) Eo= —,'P—g„(R)Eo . (31)

I

usiIig

X' (R)=C (R)X "(R) (34)

In (29), X " (R) is a vector consisting of the diabatic nu-
clear amplitudes

Xn +2(R )

Xn + 1(R )

The resulting adiabatic channels are illustrated in Fig. 1.
As in previous work [9], the centrifugal terms obtained
from the angular expansion of the nuclear amplitudes
have been implicitly included in the diabatic potentials
and hence the EF gauge radial adiabatic matrix equation
is [9]

X«nb(R) = 2 2

+Q(R) + W~p(R) .X' (R)=0,
dR

where

(35)

v (R)=c'(R) v"„"(R)c(R) (33)

In principle, the diabatic potential matrix is of infinite di-
mension and it is made up of Floquet blocks, each of
which consists of an E /E„2X2 block in (30). An adia-
batic electronic-field basis can be defined by diagonalizingV" (R)

and

Q(R)=2C (R) C(R)d
dR

(36)

Alp d'
W;d (R)=,' [EI—V~d„(R)]+et(R) C(R) .

(37)
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—RF
Vdiab

( R )

E (R)+(n +1)llico

VRF(R )

0

VRF(R )

VRF(R )

E„(R) + n hen

0

0 VRF(R )

E (R)+nfico —V~„"(R)
—Vg„"(R) E„(R)+(n —1)A'co

(45)

1 0 0 0 1

2
0 0

0 1 0 0 0

0 0 1 0 0 0

1

2
0

1

2

1

2

0
0

0
0

0
1

0
0

0
0 (46)

0 0 0 1 0

0 0 1

2
0 0 0 1

0
0
1

0
0
0
0

0
0
0
1

0
0
0

0
0
0
1

0
0

0

0
0
0
1

0

0
0
0

0
0
0

—1 ~ ~ ~
(47)

Ldlab(R ) =
ys(R )

'(R)

+n
—1(R )

(48)

and L ""(R)is a vector consisting of the diabatic nuclear
amplitudes

~n + 1(R )

y"„(R)

2 2

+ Q(R)—
m

V C (R)TC(R)

I

Fig. 1. Hence the solution of a six-channel matrix equa-
tion in the EF gauge can be compared to the solution of a
ten-channel matrix equation in the RF gauge. As in pre-
vious work [9], centrifugal terms obtained from the angu-
lar expansion of the nuclear amplitudes have been impli-
citly included in the diabatic potentials. Hence the radial
adiabatic matrix equation to be solved is

Again, these matrices are in principle of infinite dimen-
sion.

An adiabatic electronic-field basis can be defined by re-
quiring that the sum of VR„' (R ) and VOP be diagonalized

+WRF(R) — " V C (R)TC(R)Q(R) .
2A

X~ad(R ) =0

where

(50)

V R„(R)=C (R)[V„'„' (R)+ VOP]C(R) (49) mp
WRdF(R)= [EI VRF(R)]+C (R) 2

—C(R) (51)

so that the adiabatic nuclear amplitude matrix may be
written in the same form as (34). The RF gauge adiabatic
channels are illustrated in Fig. 2, and they can be com-
pared to the EF gauge adiabatic channels in Fig. 1. The
EF gauge Floquet blocks in Fig. 1 are separated by 2%co,
the energy of two photons, while the RF gauge Floquet
blocks, designated by both solid and dashed lines in Fig.
2, are separated by the energy of one photon. The
configuration of the three RF gauge Floquet blocks in
Fig. 2 designated by the solid lines is exactly the same as
the configuration of the three EF gauge Floquet blocks in

and V has been replaced by the scalar V . The nonadia-
batic coupling matrix Q(R) is given by the same expres-
sion as the EF gauge nonadiabatic coupling matrix (36).

The EF gauge adiabatic matrix equation (35) and both
the diabatic (44) and adiabatic (50) matrix equations con-
tain terms of the kinetic type and hence the use of the
generalization of Numero v integration formula of
Nguyen-Dang, Durocher, and Atabek [9,11], which has
specifically been designed to take into account kinetic
coupling terms, is required to solve them.
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In this work, the results of resonance calculations ob-
tained by solving the diabatic and adiabatic RF gauge
matrix equations (44) and (50), respectively, will be com-
pared to those obtained by solving the adiabatic EF ma-
trix equation (35).

IV. COMPUTATIONAL ASPECTS

The parametrically R-dependent model potentials for
the electronic states involved in the photodissociation of
the H2+ molecule and the transition dipole moment used
in the calculations in this work are the same as those used
in previous work [6,8,9]. Other computational considera-
tions such as the evaluation of the elements of the skew-
symmetric Q(R) matrix and the integration procedure
are identical to those described in earlier work in the EF
gauge [9]. Integration was carried out to R =21 a.u. in
all cases, with a step size of 2. 5X10 a.u. Moreover, in
the region of avoided crossings of the adiabatic potential
curves, this step size was reduced by a factor of 2", where
n is an integer which depends of the steepness of the
nonadiabatic coupling terms [9,11]. The results given in
this work have converged with respect to these computa-
tional parameters.

Since the couplings in the RF gauge (43) in both the di-
abatic and adiabatic representations vanish at large inter-
nuclear distances, the asymptotic behavior of the nuclear
amplitudes can be used to give an energy-dependent S
matrix S(E) whose determinant can be expressed in
terms of an energy-dependent phase

det[S(E)]= exp[2i5(E)] . (52)

The sharp variation of the phase with respect to energy in
(52) signals the presence of a resonance. In previous

E„—4h Cd
400000

0 2 4 6 8 10 12 14 16 18 20 22
R (a.Lt)

FIG. 2. The adiabatic potential energy curves of H~+ in a
field of wavelength 100 nm calculated at an intensity of
1.41 X 10' W/cm obtained from the diagonalization of the RF
gauge diabatic potential matrix. This illustration consists of five
Floquet blocks and ten dressed channels. The labels on the
asymptotes refer to the dressed diabatic potentials used to
derive them. The avoided crossings cannot be distinguished on
this scale.

work in the EF gauge [9], in addition to the S matrix ob-
tained from nuclear amplitudes, which are solution of the
full adiabatic coupled matrix equation S(E), an S matrix
So(E) was also obtained from the asymptotic behavior of
adiabatic nuclear amplitudes calculated using only the di-
agonal elements of the adiabatic matrix equation. The
S(E) was used to identify resonance states resulting from
the coupling of bound states to dissociative states, the
Feshbach resonances, while So(E) was used to identify
states with finite lifetimes existing on the adiabatic poten-
tial energy surfaces, resonances of the type shape. Howev-
er, for the purposes of comparing the diabatic and adia-
batic representations, only those resonances arising from
the mixing of dissociative and bound electronic states,
Feshbach resonances, will be required since there are no
shape resonances in the diabatic representation. Hence,
in this work, the S matrix obtained from the full coupled
matrix equations, S(E), will be used to identify reso-
nances in all cases.

V. RESULTS AND DISCUSSION

Calculations have been performed with laser wave-
lengths of 100—200 nm at intensities varying from 10' to
—10' W/cm to locate the first resonance level. In sub-
sequent results, the position of the first resonance will be
expressed in terms of an energy shift AE =E„—E0 of the
position of the resonance E„ from the U =0, J = 1 energy
level of the ground electronic state of the H2+ molecule
at zero intensity E0.

The solution of the diabatic and adiabatic RF gauge
coupled matrix equations (44) and (50), respectively, may
be simplified by neglecting the TV terms in both equa-
tions. This has the eflect of reducing the number of Flo-
quet blocks required for the calculation from those shown
in Fig. 2 to those shown in Fig. 1; the Floquet blocks de-
picted by dashed lines in Fig. 2 are neglected in this pro-
cedure. Calculations using the complete matrix equation
have been performed using six channels and they are
compared in Table I to the equivalent calculation which
used an approximate four-channel matrix equation that
did not include the TV term for a laser wavelength of
100 nm. The results obtained using the approximate cou-
pled equations are not drastically difFerent from those ob-
tained using the complete coupled equations. From
Table I, the resonance width calculated in both the dia-
batic and adiabatic representations is more sensitive to
this approximation than the corresponding resonance
shift. The diabatic and adiabatic widths obtained from
the complete matrix equation difFer from the correspond-
ing approximate matrix equation result by at most 1% at
low intensities. At high intensities, the difI'erences be-
tween the complete and approximate equation results
reaches 5%. Results for other wavelengths show similar
trends. For both the diabatic and adiabatic representa-
tions, the approximate coupled matrix equations
represent a reduction in the size of the matrix equation to
be solved. Moreover, the solution of the approximate
coupled matrix equation can be and was obtained using
the traditional Numerov integration scheme. In the case
of the diabatic representation, the complete matrix equa-
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TABLE I. A comparison of the shift AE and width I /2 in cm ' of the first resonance level of H2+
in a field of wavelength 100 nm calculated using the complete six-channel coupled RF gauge Hamiltoni-
an matrix equation with those calculated using the equivalent approximate four-channel RF gauge
Hamiltonian coupled matrix equation that does not include the TV~ term [cf. Eq. (43)] in the diabatic
and adiabatic representations. The first column is the log&0 of the intensity, the second and third
columns are the adiabatic complete and approximate, respectively, coupled equation shift and width,
and the fourth and fifth columns are the diabatic complete and approximate, respectively, coupled
equation shift and width.

Complete

Adiabatic

Approximate Complete

Diabatic

Approximate

log |01

13.15
13.00
12.75
12.50
12.25
12.00
11.75
11.50

r/2

366.88
248.88
129.79
72.20
40.28
22.63
12.73
7.19

266.43
191.78
109.51
62.40
35.52
20.01
11.50
6.55

I /2

383.18
251.26
133~ 16
72.97
40.52
22.64
12.68
7.12

266.31
191.71
109.52
62.40
35.52
20.01
11.50
6.55

I"/2

399.69
265.72
142.45
78.52
43.74
24.48
13.73
7.71

239.75
171.88
97.15
54.69
30.76
17.30
9.73
5.47

r/2

417.82
273.13
144.53
79.14
43.93
24.54
13.75
7.72

239.68
171.86
97.14
54.69
30.76
17.30
9.73
5.47

tion must be integrated using the NDDA integration al-
gorithm [11]because the TV term is a nonadiabatic cou-
pling, denoting a purely nuclear contribution to the radi-
ative interactions. Since this term appears only in the RF
gauge coupled equations (41), neglecting it amounts to
constructing the RF gauge Hamiltonian using only the
electronic-field interactions, i.e., the nuclei-field interac-
tions are neglected. Even though this simplification
represents a considerable reduction in computational
time owing to the reduction of the dimension of the ma-
trix equation to be solved, it should not be used at inten-

sities much higher than those considered in this work.
Henceforth, the results discussed in this work have been
calculated using the simplified approximate matrix equa-
tion.

Figure 3 shows the first resonance shift AE and width
I /2 in the adiabatic representation using the RF gauge.
The shift and width are divided by the intensity I and
plotted against the logarithm of the intensity to facilitate
comparisons with previously published EF gauge results
[8,9] and to better differentiate between the low- (linear)
and high- (nonlinear) intensity regimes. Figures 3(a) and
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FIG. 3. The variation of the first adiabatic
RF gauge resonance shift and width, AE/I
and I /2I, respectively (in units of 10
cm/W), versus log, ol for wavelengths of 100,
120, 140, 160, 180, and 200 nm. These results
were calculated using six channels. Panels (a)
and (c) give hE/I and I /2I calculated using
five open channels while panels (b) and (d) give
AE/I and I /2I calculated using three open
channels.
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3(c) depict the resonance shift and width results, respec-
tively, calculated using three coupled Floquet blocks
similar to those shown in Fig. 1 with five open channels.
These calculations include two Floquet blocks consisting
of channels that are dressed by lower photon numbers
with respect to the block that supports the position of the
resonance state. This means that the resonance state is
only accessible by the absorption of photons, in this case
absorption of a maximum of five photons, and hence the
results of these calculations reAect photon absorption
only and no photon emission effects are included. In con-
trast, Figs. 3(b) and 3(d) depict the corresponding reso-
nance shift and width, respectively, calculated using three
coupled Floquet blocks but with three open channels. In
these calculations, there is one Floquet block which lies
below the one supporting the resonance state which con-
sists of channels dressed by lower photon numbers, the
open Floquet block, and another block which lies above
the Floquet block supporting the resonance state that
consists of channels dressed by higher photon numbers,
the closed Floquet block. In this case, the resonance
state accounts for absorption of up to three photons from
the open Floquet block and emission of up to two pho-
tons corresponding to transition to the upper closed Flo-
quet block. Hence the results of such calculations ac-
count for photon absorption and emission. The zero-
intensity ground-state energy of the v =O,J=1 level Eo
used to calculate hE was obtained by fitting a few low-
intensity points to a straight line since, at low intensities,
the shift AE is expected to vary linearly with field intensi-
ty. In the case of the 180- and 200-nm results in Fig. 3,
the nonlinear behavior of the shift at low intensities is
due to the presence of a second crossing point, the three-
photon crossing point, to the left of the main crossing
point, the one-photon crossing point, for example, see
Fig. 1, which is low enough in energy to affect the posi-
tion of the resonance. As discussed in Ref. [9], the nona-
diabatic coupling associated with the three-photon cross-
ing point is almost a 6 function at these low intensities
and hence integration over this crossing point produces
large numerical errors in the resonance shift. At lower
wavelengths, the three-photon crossing point is high
enough in energy so that integration over this region does
not contribute any significant errors to the position of the
resonance. In the case of the 100-, 120-, 140-, and 160-
nm calculations of the low-intensity shift in Figs. 3(a) and
3(b), the nonadiabatic coupling associated with the main,
i.e., one-photon, crossing point behaves more like a 6
function as the field intensity decreases (=10' W/cm
and lower) and the integration yields errors which cause
the shift to exhibit a nonlinear behavior with respect to a
decrease in intensity. This reAects the well-known fact
that the adiabatic representation is more appropriate for
strongly coupled diabatic systems than for weakly cou-
pled ones. It is for this reason that the estimate of Eo
was calculated using results ranging from log&OI =10.75
to log&o-—11.25 rather than from the lowest-intensity re-
sults.

The results of Fig. 3 show the effect of taking into ac-
count photon emission in the calculation of the position
of the first resonance. The trends in the AE/I curves for

all wavelengths in Fig. 3(a) are generally the same as the
corresponding ones in Fig. 3(b); however, the absorption-
emission results in Fig. 3(b), i.e., those which take into ac-
count photon emission as well as absorption (six-channel
calculation, three of which are open), are shifted down
with respect to the corresponding absorption-only results
in Fig. 3(a), i.e., those that only take into account photon
absorption (six-channel calculation, five of which are
open) by an amount which increases with increasing
wavelength and remains constant with intensity. Since
the curves in Figs. 3(a) and 3(b) represent b,E/I, for a
given wavelength, the difference between the calculated
b,E of Fig. 3(a) and those of Fig. 3(b) varies linearly with
intensity. In principle, the Floquet matrix is of infinite
size, and every Floquet block is Banked above by a
closed-channel block and below by an open-channel
block. Due to the periodicity of the infinite Floquet ma-
trix which, in frequency space, is a consequence of the
temporal periodicity of the cw field, the shift and the
width of a resonance found within a given Floquet block
(a Brillouin zone), henceforth referred to as the reference
block, should be independent of the position of this refer-
ence block. The resonance state is influenced by the pres-
ence of both closed- and open-channel Floquet blocks ly-

ing above and below, respectively, the reference block. In
practice, a truncation of the Floquet matrix to a finite
size introduces a differentiation between the various
reference blocks or Brillouin zones. Hence it is not
surprising that the properties of resonances supported by
frontier blocks, i.e., blocks located at the edge of the
truncated Floquet matrix, differ from those of resonances
supported by the central or inner zone. The positions
and widths of the Floquet resonance states must be deter-
mined by calculations which include both open- and
closed-channel Floquet blocks. Thus the absorption-only
shift of Fig. 3(a) rejects the effects of having selected the
reference Floquet block to be the uppermost block, i.e.,

edge effects, while the absorption-emission shift in Fig.
3(b) better reAects the ideal Floquet scheme. This con-
clusion is reinforced by the results of ten-channel test cal-
culations performed with five open channels which give a
shift that is very close to the one obtained using six-
channel —three-open calculations for the a wavelength of
100 nm, in the low- to intermediate-intensity regime
(I =10' —10' W/cm ). These results also show that the
six-channel calculations are already convergent in this in-
tensity range and residual interblock couplings are indeed
weak in the adiabatic representation.

Comparing Figs. 3(c) and 3(d), the horizontal trend of
the I /2I curves for all wavelengths at low intensities is
reproduced and, at these low intensities, the results are
insensitive to the inclusion of photon emission interac-
tions which is expected since the rotating-wave approxi-
mation (RWA) is valid in this intensity regime, and cou-
pling between Floquet blocks can be neglected. Further-
more, in the low-intensity regime, the so-called Markovi-
an regime [19], the resonance width is inversely propor-
tional to the lifetime of the resonance state which, in
turn, is inversely proportional to the height of the adia-
batic potential barrier at the avoided crossing. As the in-
tensity increases, the height of this barrier decreases and
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the lifetime of the resonance state decreases correspond-
ing to an increase in the tunneling rate through the bar-
rier. Hence the resonance width increases with increas-
ing intensity and it is independent of the coupling be-
tween Floquet blocks, be they open- or closed-channel
blocks. However, at high intensities, the RWA is not val-
id and coupling between Floquet blocks cannot be
neglected and hence the results in Fig. 3(d) differ from
those in Fig. 3(c). The observations made from the re-
sults of these adiabatic RF gauge calculations have also
been made by He, Atabek, and Giusti-Suzor [8] from the
results of diabatic EF gauge resonance calculations in the
photodissociation of Hz+. These authors also found that
the resonance shift is more sensitive to the presence of
open-channel Floquet blocks than the resonance width.

Figures 4 show the shift and width of the first reso-
nance calculated in the diabatic representation using the
RF gauge as a function of field intensity and wavelength.
As was the case for Fig. 3, Figs. 4(a) and 4(c) give the
shift and width resulting from calculations that included
three coupled Floquet blocks with five open channels
which account for photon absorptions only. Similarly,
Figs. 4(c) and 4(d) give the shift and width resulting from
calculations which take into account photon absorption
and emission by using three coupled Floquet blocks with
three open channels. The same technique used to esti-
mate the position of the zero-intensity v =O,J = 1 energy
level from adiabatic RF gauge resonance shift calcula-
tions has been used. The Eo calculated in this way gives
a resonance shift that behaves linearly with respect to in-
tensity in low intensity regime.

A comparison of the diabatic RF gauge first resonance
shift of Fig. 4 with the adiabatic resonance shift of Fig. 3

shows the absence of any divergent behavior of the dia-
batic resonance shift at low intensities. The diabatic
absorption-emission b,E /I curves, Fig. 4(b), show the
same trend but are shifted downwards with respect to the
corresponding absorption-only curves, Fig. 4(a), as was
the case for the adiabatic RF gauge results. The
difference between the corresponding absorption-only
and absorption-emission AE/I curves increases with in-
creasing wavelength and it is identical to the correspond-
ing difference between the adiabatic hE/I curves dis-
cussed previously, Figs. 3(a) and 3(b); this difference is
mainly a reAection of the edge effects encountered as a re-
sult of truncating the Floquet matrix to a finite size. Fi-
nally, the comparison between the pair of Figs. 4(a) and
4(b) with the pair of Figs. 3(a) and 3(b) shows that, as the
field intensity increases, the adiabatic resonance shift ap-
proaches the corresponding diabatic one.

The behavior of the adiabatic and diabatic absorption-
emission RF gauge resonance widths exhibit a common
trend, Figs. 3(d) and 4(d). However, the adiabatic 1 /2I
curves in Fig. 3(d) are shifted downwards with respect to
the corresponding diabatic curves in Fig. 4(d) by an
amount which decreases with increasing wavelength and
which is constant with respect to field intensity. This in-
dicates that, for a given wavelength, the difference be-
tween the adiabatic and diabatic results for the resonance
width itself I /2 varies linearly with intensity with a slope
that decreases with increasing wavelength. The adiabatic
and diabatic absorption-only I /2I curves in Figs. 3(c)
and 4(c), respectively, exhibit the same trend, showing the
same constant downward shift at low intensities, but they
manifest widely differing trends at high intensities. The
differences between the diabatic absorption-only and
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absorption-emission high-intensity I /2I results, Figs.
4(c) and 4(d), are more significant than the difference be-
tween the corresponding adiabatic absorption-only and
absorption-emission results, Figs. 3(c) and 3(d), which in-
dicates that, as field intensities increase, absorption-
emission effects are more important in the diabatic than
in the adiabatic representation. From the numerical
viewpoint, this is not surprising since the coupling be-
tween different Floquet blocks increases with increasing
intensity in the diabatic representation, while, in the adia-
batic representation, the nonadiabatic coupling decreases
with increasing intensity.

A comparison of Figs. 3 and 4 shows that adiabatic
and diabatic results do not coincide even for this first
lowest-lying resonance (this can also be seen from the re-
sults presented in Table I). Yet, as discussed in Sec. I and
Ref. [9], since the RF gauge interchannel couplings van-
ish at large internuclear distances in both the diabatic
and adiabatic representation, the scattering matrices cal-
culated from the asymptotic values of the nuclear ampli-
tudes in both representations were expected to be unitari-
ly equivalent, thereby ensuring that the adiabatic and dia-
batic resonances would coincide. In this respect, it is in-
teresting to note that while the nonadiabatic coupling be-
tween any pair of adiabatic dressed channels is localized
and falls to a finite but relatively small value near the ori-
gin, the adiabatic (non-diabatic) potential coupling be-
tween the corresponding diabatic dressed channels
diverges in the vicinity of the origin. This effect is a
peculiarity of the RF gauge couplings and it is stronger
the higher the field intensity. At this stage, the authors
believe that the difference between the adiabatic and dia-
batic resonances may be due, in part, to the difference be-

tween the behavior of the adiabatic couplings in the dia-
batic representation and the nonadiabatic couplings in
the adiabatic representation near the origin. This
difference makes it dif5cult to ensure equivalent boundary
conditions near the origin. The photodissociation prob-
lem viewed as a half-collision is better defined in the adia-
batic representation since the residual nonadiabatic cou-
plings near the origin almost vanish and better justify the
use of regular boundary conditions in this limit. The
difhculty discussed here, which is essentially associated
with the diabatic representation, may be avoided by con-
sidering the corresponding full-collision problem which is
expected to involve the same resonances as the half-
collision problem. This work is currently in progress.

The adiabatic RF gauge results discussed above can be
compared to the corresponding adiabatic EF gauge re-
sults presented in Fig. 5. The relative trends of the
curves describing the adiabatic absorption-emission RF
gauge resonance shift and width, Figs. 3(b) and 3(d), are
generally the same as the corresponding adiabatic EF
gauge results, Figs. 5(b) and 5(d). The effects of photon
emission are more noticeable in the trends exhibited by
the adiabatic RF gauge resonance shift, as seen by com-
paring Fig. 3(a) with 3(b), than in the trends exhibited by
the adiabatic EF gauge resonance shift, comparing Fig.
5(a) with 5(b). In the low-intensity regime, the adiabatic
RF gauge I /2I curve for a given wavelength in Figs. 3(c)
and 3(d) is shifted down with respect to the correspond-
ing EF gauge curve in Figs. 5(c) and 5(d) by an amount
which decreases with increasing wavelength. The trends
of the corresponding adiabatic RF and EF gauge I /2I
curves differ markedly only in the high-intensity regime.
Numerically, this is understood by recalling the funda-
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mentally different asymptotic behavior of the nondiabatic
interchannel coupling in the two gauges. The intensity-
dependent couplings vanish in the RF gauge, giving rise
to completely uncoupled adiabatic potentials that asymp-
totically perfectly horizontal. In contrast, the EF gauge
nondiabatic couplings give rise to asymptotically diver-
gent adiabatic potentials among which small, slowly de-
caying residual nonadiabatic coupling extend to relatively
large internuclear distances. The differences between the
EF and RF gauge results, particularly those at lower in-
tensities, cannot be solely attributed to the effects of the
different asymptotic behavior of non-diabatic couplings
just discussed. Rather, the unitary equivalence which ex-
isted between the EF and RF gauge formulation has been
intrinsically destroyed by truncation of the problem to
the two lowest-lying electronic states of H2+. In light of
these approximations, the comparison between EF and
RF resonance properties appears relatively favorable at
low intensities.

Comparing the adiabatic EF gauge results of Fig. 5
with the diabatic results of Fig. 4, it is interesting to note
that the low-intensity diabatic RF gauge results, both res-
onance shift and width, which take into account photon
absorption and emission coincide numerically with the
corresponding adiabatic EF gauge results.

VI. SUMMARY AND CONCLUSIONS

The diabatic and adiabatic coupled equations which
describe the photodissociation of H2+ in the RF gauge
have been presented. Two versions of each of these ma-
trix equations have been derived, one which includes the
explicit nuclei-field coupling terms and another which
does not. The EF and RF gauge Hamiltonians, expressed
within the LWA and which do not include the effects of
the motion of the c.m. were shown to be unitary
equivalents provided the EF gauge Hamiltonian was fur-
ther simplified by neglecting all higher-order multipolar
interaction terms. This EF gauge Hamiltonian gives the
diabatic and adiabatic coupled equations of Refs. [8] and
[9], respectively, used for calculations on the same two-
channel system considered here.

The numerical study of the shift and width of the first
resonance state in the photodissociation of H2+ induced
by a laser field of variable frequency and intensity
presented in this work leads to the following conclusions.

(i) The presence of the explicit nuclei-field interactions
in the RF gauge calculations have little effect on the

behavior of the properties of the first resonance state. At
field intensities higher than those considered in this work,
the presence of these interaction terms may break the un-
itary equivalence between the LWA RF and EF gauge
descriptions.

(ii) The effects of couplings between different Floquet
blocks are effectively limited to nearest-neighbor interac-
tions. Specifically, the energy shift of the resonance is
more sensitive than the width to an asymmetrical Floquet
description of photon absorption and emission.

(iii) The adiabatic resonance calculations are more reli-
able than the diabatic ones at high-field intensities. In
the diabatic EF gauge description, calculations are hin-
dered by asymptotically divergent nondiabatic couplings
arising because of the ionic character of the molecnle
while, in the diabatic RF gauge description, calculations
are hindered by divergent radiative couplings near the
origin. In contrast, in the adiabatic representation, the
nonadiabatic couplings are localized near the avoided
crossings of the adiabatic potential energy curves and
hence there are no ambiguous boundary conditions either
at the origin or as R approaches infinity. However, as the
field intensity decreases, the nonadiabatic couplings near
the avoided crossings behave more like 6 functions and
they cause large numerical integration errors in the re-
sults.

The expected coincidence between the adiabatic EF
and RF gauge resonances due to the previously discussed
unitary equivalence of the EF and RF gauge simplified
Hamiltonians was not observed, although the comparison
between the adiabatic EF and RF results did reveal quali-
tative similarities in these behavior of the properties of
first resonance state with respect to field intensity and
wavelength. This lack of invariance is mainly due to the
truncation of the electronic Hamiltonian to a two-state
representation.
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