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Theoretical investigations of charge exchange with ion excitation in atomic collisions
at thermal energies
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The process of charge exchange with ion excitation is investigated theoretically. The multielectron
and Inultichannel model for the process under consideration is proposed. The formulas for two-electron
exchange coupling are obtained and discussed. The model is applied to the investigation of charge ex-
change with ion excitation in collisions of helium ions with mercury atoms at thermal energies. The ma-
trix elements of exchange coupling, the adiabatic potential energies, the partial cross section, and the
partial rate constant for the process under consideration are calculated. The matrix elements of ex-
change coupling in this case are mainly determined by electron-core interactions. The effective poten-
tials are used for these interactions. The calculated partial rate constant for excitation of Hg+(7p P3/2)
agrees with experimental data.

PACS number(s): 34.70.+e, 82.30.Fi, 34.50.Fa

I. INTRODUCTION

Ever since the 1930s, when Manley and Duffendack [1]
studied experimentally processes of charge exchange with
ion excitation, there has been interest in this kind of reac-
tion:

A ++M~ A +M+(f)+bEf,
where 3 +, 2, M denote the ground states of an ion and
atoms, respectively, M+(f ) is an excited state of an ion
M+, numbered by index f, and b Ef is the energy defect.
In practice 3 is usually an atom of noble gas and M is a
metal atom. The special feature of these reactions is that
at least two electrons change their wave functions during
transitions. In the literature the process (1.1) is called
"charge exchange with ion excitation, " to distinguish it
from a process of charge transfer into an excited state:
3++M~A +M

Intensive, mainly experimental, investigations of these
processes have been carried out since the 1960's when the
role of these processes as the pumping mechanism for
several transitions in ionic lasers became clear (see, for
example, [2—5] and references therein). It has been deter-
mined that the exothermic processes under consideration
could occur efBciently at thermal energies. However, ex-
perimental data were few, and often contradictory, and
this fact stimulated renewed interest [6—16] both experi-
mentally and theoretically in processes (1.1).

Despite a great number of works concerning processes
of charge exchange with ion excitation, up to now there
was no clear understanding of this kind of reaction nei-
ther experimentally nor theoretically. For instance, pre-
vious theoretical approaches did not provide reliable par-
tial cross sections and partial rate constants; there exist
discrepancies both between experimental and calculated
data, and between the calculations of different authors.

Putting aside discussion of experimental methods and
results, it should be mentioned that quantities measured
directly are rate constants and that experimental data of

different approaches are substantially distinguished from
each other, especially for partial rate constants, although
partial values are of prominent importance in analyses of
laser level pumping. Recently measurements of Ref. [14]
have obtained agreement with the results of Sadeghi and
co-workers [6] in He++Cd collisions, however, the par-
tial rate constants for some states have discrepancies up
to factors of 6. This fact suggests that some partial rate
constants are measured quite accurately. So the data of
Refs. [6,14] for He++Cd collisions, as well as ones of
Ref. [7] and Ref. [13] for He++Zn and He++Hg col-
lisions, respectively, are assumed to be the most reliable
experimental data.

The previous theoretical treatments [2,8 —15] being
asymptotic should be best applicable for excitation of
states with the smallest energy defects, because of the
largest internuclear distances. But the main result of ap-
plying the previous theoretical approaches to concrete
processes is that calculated partial rate constants for exci-
tation of states with the smallest energy defects are much
smaller than experimental values. For instance, the pro-
nounced discrepancies are 8000—95000 [12,14] for exci-
tation of the Cd+(9p) states in He++Cd collisions and at
least 50 [13] for excitation of the Hg+(7p P3&2) state in
He+ +Hg collisions.

This result is a consequence of the fact that the previ-
ous theoretical approaches were applied to the processes,
for which the main prerequisite of the models are not
fulfilled. The point is that practically all previous
theoretical interpretations, except of [12] (see below),
have tacitly assumed that in nonadiabatic regions the
main maximum of the wave function for the excited elec-
tron is far from the nucleus of an incoming ion. Howev-
er, the consideration of wave functions and analysis of ex-
change couplings presented below in the present work
show that this assumption is not fulfilled.

Thus, it is necessary to study theoretically processes of
charge exchange with ion excitation. In connection with
this, Sec. II presents a theoretical approach, which has
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been begun in Ref. [16]. Section III contains the results
of applying this theoretical approach to collisions of heli-
um ions with mercury atoms at thermal energies. Section
IV presents an asymptotic limit for processes (1.1).

Throughout the paper atomic units (m, =e =]r]= 1) are
used unless stated otherwise.

II. THEORY

The important point in theoretical investigations of
collisions in both nonadiabatic approach and coupled-
channel equations is the calculation of the matrix ele-

ments of exchange couplings H;&..

Hy=~%;(I »3 )lH, (1,2, 3, )l'Py(1, 2, 3 )),
(2.1)

where 4; & are basis multielectron antisymmetrized com-
plete (coordinate and spin) wave functions of the initial
and final quasimolecular states, respectively;
H, (1,2, 3, . . . ) is the multielectron electronic Hamiltoni-
an of the quasimolecule.

In Hund's case (c), when the total angular momentum
J of the molecule is quantized along the axis of the mole-
cule, wave functions +; and 4& are written as

%,.(1,2, 3, . . . ;J, , Q) = A gC'@M(r], r2)C&,+(r, . . . )y +(r3)4&,+(r&, . . . )5„&5„&5„& (2.2)

+f ( 1 2 3 ~ Jf II) +yc 'pM+(f)(r] )@M2+(r )~ / (r2 r3)@/2+(rp ~ )~
P 1A ) PPX2 P313

(2.3)

Here J; & are the total angular momenta of an initial and
a final state, respectively; 0 is their projection upon the
molecular axis; 2 is the operator of antisymmetrization
for all electrons under consideration; C', C" denote all
necessary Clebsch-Gordan coefficients; y(r) and @ are a
single- and a many-electron (nonantisymmetrized) coordi-
nate wave functions, respectively; 5 &

is the Kroneker
symbol; p is projection of the spin of an electron; k is spin
variable. The summation in Eqs. (2.2) and (2.3) is carried
out on all projections, except of 0,.

An expression for exchange coupling derived by substi-
tuting Eqs. (2.2) and (2.3) into Eq. (2.1) depends on
whether valence electrons of an atom, M are equivalent.
Neglecting terms which correspond to the transition of
three and more electrons, in the case of equivalent
valence electrons in an atom M Eq. (2.1) becomes

H,~
=Ch;~,

where

(2.4)

h;&= (4M(r„rz) ~H, (1,2)~y~(r, )y +, ,(rz) ), (2.5)

H, (1,2) being the two-electron electronic Hamiltonian of
the quasimolecule, C being some coefficient dependent on
the quantum numbers of the examined states and over-
lapping integrals of other electrons. This coefficient ap-
pears due to quantum addition of angular momenta, an-
tisymmetrization of electrons, and the summation over
spin variables. It can be explicitly determined for con-
crete processes. From here on ( ) means integrating
over coordinate variables only.

So the problem is reduced to consideration of two elec-
trons, but the presence of others leads to a correct
coefficient C in Eq. (2.4). For instance, in He++Cd, Zn,
Hg collisions three electrons should be taken into ac-
count [11,12].

In order to calculate matrix elements h,&, and hence
H;& let us use linear combination of atomic orbitals

(LCAO) as a first approximation. It is well known (see,
for example, [17]) that LCAO does not provide a strict
asymptotic expression on the exchange coupling for
single-electron transfer, but at interatomic distances R
near 10 a.u. an error is about 10/o, and for smaller dis-
tances LCAO can be more accurate than an asymptotic
approach. Single-electron atomic orbitals can be calcu-
lated, for instance, in the Hartree-Fock [18] and the
Coulombic [19] approximations for ground and excited
states, respectively; for example y~(r) is a solution of the
following Schrodinger equation:

Jfg (1)])]]g(r) =&/]pg(r), (2.6)

Az(1) being the single-electron Hamiltonian of an atom

Matrix elements of exchange coupling h,&, Eq. (2.5),
could be calculated by direct integration of all terms in
the two-electron Hamiltonian H, (1,2) with a known
two-electron wave function @M(r„rz). However, in this
case very accurate operators of electron-core interactions
should be used, otherwise it could lead to an error in the
determination of matrix elements. The more reliable way
is to pick out dominant terms, using properties of wave
functions and Hamiltonians. Dominant terms, and
hence, representation of the Hamiltonian H, (1,2) depend
on wave functions of valence electrons. Respecting cal-
culations of coupling matrix elements for the process
(1.1), there exist two different cases with regard to shapes
of valence electrons' wave functions along the molecular
axis, as depicted in Fig. 1. The distinction between them
is that the main maximum of the wave function for the
excited electron in M+ is far from [case (a), Fig. 1(a)] or
near to [case (b), Fig. 1(b)] a nucleus of an ion A +.

In case (a) a "final" representation of H, (1,2) can be
used, that is, picking out the "final" Hamiltonians H„(1)
and H +(2) from 8, (1,2). In case (b) it is better to use

an "initial" representation of the electronic Hamiltonian,
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a known wave function calculated, say, in the Hartree-
Fock approximation, that is,

V,„~= V' +(r) =Eg +
2Vw r

(2.11)

where 6 is Laplacian. In accordance with the fact that
the Hartree-Fock approximation does not provide a
correct asymptotic behavior of a wave function, the
correct asymptotic behavior of potentials should be used.

Thus, in the case when the main maximum of the wave
function for an excited electron in a metal ion is near an
incoming ion nucleus, and when valence electrons in a
metal atom are equivalent, the matrix elements of ex-
change coupling can be calculated by means of Eqs. (2.10)
and (2.11) and strict expansion of interelectron interac-
tion [19].

III. RESULTS AND DISCUSSIQNS

~He( lsi 'So)+Hg+(nlj I J )+DE„(, , (3.1)

where l,j and I.,J are the quantum numbers of orbital
and total angular momenta for an excited electron and
the excited state, respectively; n is a principle quantum
number of an excited electron in a mercury ion, hE„& is
the energy defect for excitation of a Hg+ (nlj) state.

Within the nonadiabatic approach [21] adiabatic po-
tential energies U are obtained by finding roots of the sec-
ular equation

detiII —US
i
=0, (3.2)

where H is a matrix of the electronic Hamiltonian H, in a
basis set t4] of antisymmetrized complete wave func-
tions and S is a matrix of overlap integrals in the same
basis set. In the internuclear distances range of interest
for process (3.1) several initial and final wave functions
should be taken into account [22]. The basis set Iq/] is
divided into several sets:

(3.3)

where ['Ii, ] is a basis set of wave functions describing the
initial states of the quasimolecule, [qiI] and [q/ ] are
the same for final and intermediate states, respectively.
Using Eq. (3.3), a matrix H can be represented by the fol-
lowing:

a'~
Hff
Hmf

Hfm

Hfm

H mrn

(3.4)

where H" is a submatrix for determining initial potential
calculated without taking into account final and inter-
mediate states, H' is a submatrix of exchange couplings
between initial and final states and so on. The utility of

In the present paper the process of charge exchange of
helium ions ( A =He) on mercury atoms (M=Hg) with
excitation of mercury ions is investigated at thermal ener-
gies:

He+( Is S,/i)+Hg(6s 'So)

representing matrix H in the form of Eq. (3.4) is the op-
portunity to use some submatrices calculated by means of
simplified basis wave functions (say, single-electron ones)
and to compute others by using more complicated wave
functions.

The initial wave function 4'; correlates to the
multiconfiguration wave function 0'zg of a mercury atom
Hg(6s 'So) in the ground state. It can be expressed
through the following Slater determinants [23]:

+H Cl (6S 1/2 )+C2(6J 1/2 )+C3(6P 3/2 ) (3.5)

At the first approximation a basis set [ 4; ] for the quasi-
molecule (HeHg)+ can be restricted by the only initial
wave function because the configuration weight
coe%cient C& is close to unity. So the matrix H" in Eq.
(3.4) consists of the only matrix element H;, and the po-
larization potential may be used for this element in pro-
cess (3.1) at internuclear distances R )4 a.u. [22]. The
matrix H has been calculated [22] by means of the
pseudopotential method with a quasimolecular basis set
of Hund's "c" type of coupling. Twelve final wave func-
tions corresponding to an interaction of a helium atom in
a ground state with a mercury ion in excited states from
Hg+(7s) to Hg+(Sp) at an infinite internuclear separation
have been taken into account.

The exchange-coupling matrix elements H;I for pro-
cess (3.1) have been examined by using "initial" and
"final" representations of the electronic Hamiltonian, as
well as by direct integration of all terms in it, and results
of calculations coincide with each other [it should be
mentioned that using Coulombic potentials instead of
effective ones leads to an error of about 15% in Eq. (2.10)
and to other values of exchange couplings in direct in-
tegrating]. But the calculations show that an "initial"
representation picks out dominant terms which are the
first two terms in Eq. (2.10), while results in a "final" rep-
resentation and direct integrating are close to a mutual
cancellation of terms. This is because in process (3.1)
case (b) is realized. As an example, the wave functions of
valence electrons before and after a transition corre-
sponding to excitation of the Hg+(7p P3/2) state are
shown in Fig. 2 along the molecular axis (the internuclear
distance R approximately corresponds to a nonadiabatic
region). Single-electron coordinate wave functions have
been calculated in the Hartree-Fock [18,24] and the
Coulombic [19] approximations. It is seen that the main
maximum of the wave function for an excited electron in
a mercury ion is near a helium nucleus.

So in the examined case the "initial" representation is
preferable and the dominant terms of H;& correspond to
interactions of valence electrons with a helium ion. Ma-
trix elements of interelectron interaction, which have
been assumed to be dominant in previous models, are not
really dominant ones and exchange couplings of the pre-
vious calculations were therefore diminished.

Thus, in the present work the calculations of
exchange-coupling matrix elements H;& and, hence, a ma-
trix H' have been carried out by means of Eq. (2.10) with
the coefficient [11]
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(the brackets denote the Clebsch-Gordan coefficient) and
the effective potential V'+(r), Eq. (2.11), for electron-
core interaction. Interelectron interaction is accounted
for according to the strict expansion [19]. The calculated
matrix elements have greater theoretical accuracy in
comparison with the previous ones and the present calcu-
lations provide exchange couplings greater than in the
previous calculations.

The matrices H', H", H and S calculated by this
manner allow us to compute the adiabatic potential ener-
gies of a quasimolecule (HeHg)+. The most important
adiabatic and diabatic potentials for process (3.1) are
shown in Fig. 3. It should be pointed out that at internu-
clear distances R )4 a.u. the initial diabatic potential

yk = g apf(R)+f, k ) 1,
f

(3.6b)

where%"=S ' + is a basis set of orthogonal wave func-
tions, a is the matrix of eigenfunctions for the matrix
(Hf )' of the electromc Hamiltonian in I'Il'[ representa-
tion. The off-diagonal elements (H;f )z have the meaning
of the matrix elements of exchange coupling in Iy] repre-
sentation and can be written in terms of the matrix ele-
ments H,fin [O'I re. presentation as

(H;f)r= g S;„' H„S k'/ akf(R) .
n, m, k

(3.7)

Analysis shows that the exchange couplings (H;f )r are
mainly determined by a destroyed s wave due to substan-
tial mixing of the final wave functions by interatomic in-
teraction, not only between wave functions of the fine
structure but also between the ones of diferent
configurations, and due to sufficiently large magnitudes of
exchange couplings H,f, especially between the initial
and He + Hg+(ns) states. In the examined vicinity the
off-diagonal matrix elements (8;f)& are much smaller
than diA'erences of diagonal ones in the same representa-
tion, except of (H, ~ )r (the index nlj indicates correla-
tion of the quasimolecular and the atomic states). More-
over, a minimum of the adiabatic splitting in the nonadia-
batic region 6=3.006X10 a.u. is in excellent agree-
ment with double exchange coupling 2(H, 7 )&~ 7P3y2 X
=2.996X10 a.u. obtained from Eq. (3.7) at the same
internuclear distance. So the consideration here can be
restricted by two wave functions y& and y7

In accordance with this inference and that the ex-
change coupling (H&7~ )z [Eq. (3.7)] is weakly changed1 773&2 X

and small, as well as that the Massey parameter has a low
value (=0.02), both the perturbation theory and the
Landau-Zener model are valid and yield coincided results
[21] in the nonadiabatic region of interest.

It is seen from Fig. 3 that the process (3.1) turns out to
be a multichannel one. The probability Pf for a quasi-
molecule to transfer from an initial state i to a final statef in the case of I' possible final channels during a double
passage of the nonadiabatic regions is [11]

(curve 1 in Fig. 3) intersects four final diabatic potentials
(curves 2 —5 in Fig. 3; the diabatic potentials 4 and 5 coin-
cide with the respective adiabatic potentials). But due to
strong exchange coupling between initial He++Hg and
final He+Hg+(7si/z) states at R (7 a.u. the adiabatic
potentials are considerably distinguished from the diabat-
ic potentials [especially the initial and final He +
Hg+(7p, /2), He + Hg+(7s, /2) potentials] and at R )4
a.u. there exist only two nonadiabatic regions, corre-
sponding to quasi-intersections of the initial and He+
Hg+(7@3/2 i/2) final states.

In order to analyze the electronic Hamiltonian matrix
in the vicinity of the intersection of the initial He++Hg
and final He + Hg+(7p&/2) diabatic potentials (R =7.44
a.u. ) let us transfer to the diabatic basis set IyI

(3.6a)
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f—1

Pf I2Pf(1 Pf )I ' gpf
j=1

2(F—f) m

X . 1+ g Q ( Pf+[(k+()n
m =1 k=1

(3.8)

where pk is the probability of a paired nonadiabatic tran-
sition during a single passage of the nonadiabaticity re-
gion related to the interaction of the U' and U potential
energies; square brackets denote the largest integer of a
number. It should be mentioned that a similar expression
for Pf but in a different form was obtained earlier by
Salop and Olson [25] under the same prerequisites.
Equation (3.8) has simple physical meaning, that is, the
probability Pf is a product of three probabilities. The
first set of curly brackets in Eq. (3.8) is the probability of
a transition i —+f in a two-channel approximation. The
second set of curly brackets represents the probability for
a quasimolecule to survive in initial state i in the interval
( ~,Rf ) [26]. The last set of curly brackets in Eq. (3.8)
takes into account the presence of channels lying below
channel f and takes on values from 0.5 to 1. Thus,
neglecting the states lying below f may lead to a result
overstated by a factor of 2, but neglecting the states lying
above channel f may lead to a large error.

The total probability pD for the quasimolecule to decay
from the initial state is found to be

2F m

PD 2 X H ( P[(k+))12] )
m =1k=1

(3.9)

and the probability P& of the quasimolecule to survive in
the initial state is

2F m

X II ( P[(k + ))/2] ) '

m =1k =1
(3.10)

In the present work partial cross sections and partial
rate constants are calculated by means of the formulas of
Ref. [11]. Those formulas take into account the orbital
effect in the attractive initial potential and the fact that
the problem is multichannel. The partial values for exci-
tation of Hg+(7p P3&2) (the state with the smallest ener-

gy defect b E7 =0.267 eV in He+ +Hg collisions) are

presented in Figs. 4 and 5. The energy dependence of the
cross section is about o(E)—E ' . In co.ntrast, the par-
tial rate constant is close to a constant value over a wide
temperature interval, equals K( T= 1000 K)
1.16X 10 ' cm /s, and agrees well with the most reliable
experimental value K'""+ = (7+4) X 10 " cm /s

Hg (7p 3/2 )

[13].
In the vicinity of the quasi-intersection of the initial

He++Hg and final He + Hg+(7p(&2) potentials the
Landau-Zener model is not completely correct and pro-
vides estimates greater than experimental data
Kex(" =(8+3)X 10 "cm /s [13].

Hg (7p]/2 )

It should be mentioned that the partial rate constants
of the Hg+(7p) states excitation are less than 10% of the
total rate constant K;,"t(,") =1.6X10 cm /s [5] for de-
caying of helium ions in collisions with mercury atoms.
In order to specify other excited states the potential ener-
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gies should be calculated at internuclear distances R (4
a.u. In this region the basis set ((I'] should be increased
by intermediate wave functions 4' [16]. Because of the
large polarizabilities of He(2 'S) and He(2 S) the diabat-
ic potentials of the He(2 ' S) + Hg+ intermediate states
intersect the diabatic potentials of both initial and final
states. This could explain the excitation of the endoth-
ermic states [16] that have been experimentally observed
in He++Cd collisions [14]. The other states which may
be included in I

ql ] correspond to the Beutler states, for
instance, He + Hg+(Sd 6s ). There is some guess
[10,14] that the diabatic potential of this state crosses
both the initial and the final ones, but because of the large
energy defect, =10 eV, it may be at small distances and
the question of the potential behavior is still open. Exci-
tation of the Hg+(Sd 6s ) state has the rate constant
KH~+'(&d96 2) =(4+1.5) X 10 ' cm /s [27] and cannot ex-

plain the total decaying of He+ in collisions with Hg.
In accordance with Eq. (3.8) the transition probability

and, hence, the partial rate constant of Hg+(7p P3&2) ex-
citation may be decreased by the presence of additional
nonadiabatic regions, but this could just improve agree-

25

20

E

o 1 5

05
Ma
O
O
a& 10
G$

CC

I

500
I

1000.
Temperature T (K)

I

1500 2000

FIG. 5. The calculated temperature dependence of the par-
tial rate constant for excitation of Hg+(7p P3/2) in He++Hg
collisions.
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ment between the theoretical and experimental data. The
agreement of the calculated partial rate constant for exci-
tation of Hg (7p P3/2) with the experimental value
shows that the present approach provides the correct
theoretical treatment of charge exchange with ion excita-
tion at thermal energies.

Thus, the adiabatic potential energies of the (HeHg)+
quasimolecule, the energy dependence of the partial cross
section, and the temperature dependence of the partial
rate constant for excitation of the Hg (7p P3/2) state in
collisions of helium ions with mercury atoms at thermal
energies calculated in the present work are sufBciently re-
liable and agree well with experimental data.

IV. CONCLUSION

In conclusion, let us briefly compare the derived theory
with previous ones. In the previous models the exchange
couplings have been mainly calculated by means of in-
tegrating interelectron interaction over some regions in
six-dimensional (6D) configurational space with asymp-
totically corrected wave functions [9—11].
Multiconfiguration final wave functions have been taken
into account in Ref. [15]. An attempt to take into ac-
count the operator V „+ has been made in Ref. [13].
The two-electron Holstein-Herring approach has also

been used for the exchange interaction 6=20,f in terms
of an integral over the midplane X& for an exchanged
electron [8,12]

(4.1)

where 4;f are asymptotic analogs of %', f (for informa-
tion about the many-electron asymptotic approximation
see, for example, [28] and references therein). Reference
[12] has examined two cases: low [in fact this is case (a)
in Fig. 1(a)] and high (when an orbit radius is much
greater than R) excited energies in M+(f). It has been
shown [12] that in the first case the result of applying the
Holstein-Herring approach coincides with the 6D in-
tegral of interelectron interaction [9—11,15]. In the
second case, the exchange interaction has been calculated
in the same manner with another corrected wave function
[12].

As is mentioned above, Eqs. (2.9) and (2.10) do not pro-
vide a strict asymptotic expression as derived from
LCAO. The substitution of antisymmetrized asymptotic
wave functions 4, f [similarly Eqs. (2.2) and (2.3)] into
Eq. (4.1) leads to asymptotic exchange interaction for
processes of charge exchange with ion excitation, that is,
in a two-electron transition approximation,

A=C f dr, f dXi[4& (ri r2)Vicf(ri r~) @f(ri rz)ViC (r»rz)]
Xi

+ f dr, f dX2[4, (r„rz)V2C f(ii I2) 4f(r„r 2)V' 42';(r„r 2)]
X~

(4.2)

where C is the same coefficient as in Eq. (2.4), 4, f (r„r2)
are nonantisymmetrized asymptotic two-electron coordi-
nate wave functions, X2 is the same as X& but for an excit-
ed electron. In Refs. [8,12] only the first term in Eq. (4.2)
has been taken into account. The last equation can be
written as

b, = C[S~b, , +S,b2], (4.3)

where S& 2 and 6& 2 are single-electron overlap integrals
and exchange interactions of asymptotic wave functions
for exchanged and excited electrons, respectively.

Thus, Eqs. (4.2) and (4.3) are a natural asymptotic gen-
eralization of Eq. (2.9) and have an asymptotic accuracy.
In case (a) the second term in Eqs. (4.2) and (4.3) is van-
ished in comparison with the first one.

The purpose of this paper has been to propose the
theoretical model describing the process of charge ex-
change with ion excitation at thermal collisions and to
apply this model to collisions of helium ions with mercu-
ry atoms. The important part of the model is the deter-
mination of exchange couplings. The derived approach

picks out the dominant terms in the exchange couplings
and extracts a mechanism for the process. In the exam-
ined process the dominant terms correspond to interac-
tion of valence electrons with a helium ion. The effective
potentials are used for these interactions instead of the
Coulombic ones. The model yields su%ciently reliable re-
sults for the exchange couplings and for the partial rate
constant.
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