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Electron-impact excitation of the n = 3 and n =2 states of a hydrogen atom
at intermediate (14—100-ev) energies
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A 17-state basis containing seven exact atomic states and ten pseudostates is employed in a calculation
of cross sections for the electron-impact excitation of a hydrogen atom from the 1s to the n =2 and n =3
states. The incident energies range from 14 to 100 eV. The results are compared with some other recent
calculations and with experiment. Improved eftective (thermally averaged) collision strengths are
presented for the excitation of the n =3 states.

PACS number(s): 34.80.Dp, 34.80.Bm

I. INTRODUCTION

Recent calculations concerning the excitation of the 2s
and 2p states of hydrogen atoms at intermediate energies
(roughly 13.6—100 eV) by several difFerent methods relat-
ed to close-coupling expansions have significantly in-
creased an understanding of this old but still challenging
problem [1—4]. DifFerential cross sections are in reason-
ably good agreement with experiment at selected energies
[5]. There are, however, some discrepancies relating to
angular correlation functions [5—10]. In this paper, we
will emphasize determination of integrated cross sections
as functions of energy. These are the most important
quantities in applications in astrophysics and plasma
physics where one requires rate coefficients that are readi-
ly obtained from the integrated cross sections. The re-
cent calculations of the n =2 excitation cross sections
mentioned above agree with each other within (roughly)
10%%uo. Experimental results for these quantities for n =2
excitations [11,12] are, unfortunately, fairly meager and
rather old.

Much less is known about the excitation of n =3 states
in this energy range. The few calculations of the close-
coupling type that have been reported differ substantially
and must be considered to be of uncertain validity. There
are, so far as we know, no experimental measurements of
differential cross sections, a few measurements relating to
orientation and alignment parameters [13,14], and a sin-
gle investigation of integrated cross sections [15]. Al-
though we report here some results for elastic scattering
and n =2 excitations, we will focus on the n =3 states.

We begin with a brief summary of some previous
theoretical work concerning 1s~n =3 transitions. Vari-
ational calculations using a 28-state basis (including all
exact atomic states through n =4, plus 18 pseudostates)
have been reported in the low-energy region, below the
n =4 threshold [16]. A complicated structure of overlap-
ping resonances in different partial waves has been found.
There are also two shape resonances just above the n =3

threshold ( P' and 'D') which were recently studied by
Ho [17]. These two resonances, however, seem to have
little effect on the 1s ~n =3 excitations. Aggarwal et al.
[18] have reported R-matrix close-coupling calculations
using a basis of all 15 exact atomic states through n =5,
covering energies from threshold up to an incident energy
of 27 eV. Their results agree rather well with the varia-
tional calculations where there is overlap. Above the ion-
ization threshold, however, their results differ quite
significantly from our previous work in which a second-
order optical potential was incorporated into a six-state
close-coupling calculation [1]. At an incident energy of
1.96 Ry, the results of Aggarwal et al. [18] for 3s excita-
tion are larger than those of Ref. [1] by nearly a factor of
2 for 3s excitation, while for 3p, the factor is greater than
2. In the case of 3d, the situation is not so extreme, al-
though surprisingly, the direction is reversed: the optical
potential results are larger by about 25% at this energy.
It is, of course, possible that neither calculation is accu-
rate in this energy range.

Quite recently results of an intermediate-energy R-
matrix calculation for n = 1 and n =2 transitions to n =3
were reported for a single partial wave ('S) [19]. Al-
though this approach is quite promising, the results now
available are not yet sufficient for comparison with exper-
iment.

The present calculation was undertaken in order to
determine more accurate results for n = 3 excitation from
the ionization threshold up to 100 eV. To do this, we de-
cided to perform close-coupling calculations employing a
basis containing both exact atomic states and pseudo-
states. The channels associated with the pseudostates are
allowed to be open, which means that the wave-function
components in the pseudochannels show oscillatory
asymptotic behavior. The particle Aux into open pseudo-
state channels at energies above the ionization threshold
is moderately successful in simulating ionization [20] and
leads to much improved (generally smaller) values for
cross sections for bound-state excitation in comparison to
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a calculation employing only exact bound states in the
target basis.

This paper is organized as follows. The pseudostate
basis employed is described in Sec. II, which also con-
tains a brief discussion of important features of our calcu-
lative procedures. Our results for elastic scattering and
excitation of the n =2 and n =3 states are presented in
Sec. III. For technical reasons associated with the ex-
tremely slow convergence of the partial™wave expansion,
we defer consideration of n =2 to n =3 transitions to a
subsequent paper. In Sec. IV, we combine the present re-
sults with those of Refs. [16,18] in order to obtain im-
proved values of efFective (thermally averaged) collision
strengths for 1s ~n =3 transitions.

II. CALCULATION PROCEDURES

The radial basis wave functions for target angular
momentum l are expressed as a combination of orbitals as
follows:

The index j denotes the state number, which may refer ei-
ther to an exact atomic state or a pseudostate. The basis
set is determined when the n; and g; are specified. The
coe%cients c, and the energies E are determined by di-
agonalization of the isolated atom Hamiltonian.

The orbital basis, defined by the chosen values of n,
and g, , was chosen to meet the following objectives: (1) it
had to contain the components required to generate all
the exact atomic wave functions through n =3; (2) the ex-
act ground-state dipole and quadrupole polarizabilities
should be reproduced, and functions should be included
in order to enable a reasonable description of short-range
correlations. In addition, because we were seriously con-
cerned about the correctness of our previously reported
results for 3d excitation, we thought it important to in-
clude the exact 4f state with which the 3d interacts
strongly. The parameters chosen, and the energies E. of
the states are listed in Table I.

There are 8s, 5p, 3d, and 1f states in the basis (8-5-3-1
set). Inspection of the energies in Table I shows that the
set contains a fair approximation to the 4s and 4p states,
and eight states with energies in the continuum. We ex-
pect this set to be adequate above the ionization thresh-
old well up into the continuum, hopefully up to around
100 eV. This basis set will not be a good one in the reso-
nance region below the ionization threshold: there one re-
quires (at least) the exact n =4 states and functions cap-
able of describing long-range correlations, as is the case
for the 11-9-5-2-1 basis set used in Ref. [16]. Hence we
confine our presentation of results in the next section to
energies above the ionization threshold.

We employed two methods in the solution of the cou-
pled integro-differential equations. For small values of
the total angular momentum (L + 3), we employed the
algebraic variational method [21]. For larger values of L,
we employed a linear algebraic integral-equation ap-
proach [22]. The variational method appears to be supe-
rior in terms of its ability to handle closed channels, but

TABLE I. Parameters and energies of the 8-5-3-1 pseudo-
state set.

n;

I=O
1.0000
0.5000
0.5000
0.3333
0.3333
0.3333
1.0
1.5

E; (Ry)

—1.0000
—0.2500
—0.1111
—0.0587
+0.0270

0.3306
1.5347
9.5975

/=1
1.0000
0.5000
0.3333
0.3333
1.0000

—0.2500
—0.1111
—0.0388
+0.2770

2.1179

1=2
1.0000
1.0000
0.3333

—0.1111
+0.1072

1.3183

l=3
0.2500 —0.0625

is limited to small angular momentum; the integral-
equation approach has no obvious limitations in regard to
angular momentum, but requires substantial computer
memory when there are many channels. A radial grid of
253 points was employed. For the energies considered,
there were at most 30 open channels. Our choice of the
number of basis functions discussed above was con-
strained by available computer-memory requirements.

The integral equation calculations were made in an an-
gular momentum range 4 L ~L, where L increased
with energy from L =9 at k = 1.00 to L =23 at
k =4.0, 5.0, and L =35 at k =7.35. Cross sections
were extrapolated to L = ~ under the assumption of a
geometric series. However, L is su%ciently large so
that the extrapolated contribution, which only has to be
considered for p and d states, is small. For example, the
extrapolated contribution (L )L ) to the 3p cross sec-
tion is less than l%%uo at k =4.0 and about 1.6% at
k =7.35. Even if the error in extrapolation is as large as
30go, which we believe to be unlikely, the error in the
final results would be less than 0.5% at the highest ener-

gy, and much less in other cases.
The use of a small set of discrete pseudostates to

represent the continuum leads to strongly energy-
dependent but unphysical structure ("pseudoresonances")
near the pseudostate thresholds. This has to be removed
by some averaging procedure. We employed a method,
previously described in Ref. [23], in which a least-squares
fit is made to the complex transition amplitudes for a
given L and S with a low-order polynomial in energy.
This averaging procedure was applied for L ~5. We
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found that the pseudothreshold structure was small
enough to be neglected for L ~6. Further, we see from
Table I that there are no pseudothresholds in the range of
45 —100 eV. Our results for incident energies k =4.0,
5.0, and 7.35 did not require this averaging.

The averaging process requires calculation on a rela-
tively closely spaced grid of energies on which the pseu-
dothreshold structure is resolved. We used 31 points,
ranging from k =0.98 to k =3.5. Calculations were
performed for L ~ 5 at each of these energies plus the
three higher-energy points mentioned above. The exten-
sion to higher L is quite time consuming. This was car-
ried out (6~L ~L ) for ll energies (k =1.00, 1.21,
1.44, 1.80, 2.20, 2.60, 3.00, 3.50, 4.00, 5.00, and 7.35). As
the sums of high-L partial cross sections were smooth
functions of energy, we simply used Lagrangian interpo-
lation to determine the high-L contribution at the
remainder of the energies considered. Although this pro-
cedure is less than optimal, we believe that the resulting
uncertainties are much smaller than those introduced by
the necessary process of averaging over the pseudothresh-
olds.

III. RESULTS: CROSS SECTIONS

Our results for elastic scattering, 1s ~n =2, 1s~n = 3
transitions, and the total cross section are given in Table
II.

We consider elastic scattering first. Our cross sections
are shown graphically in Fig. 1. We show for comparison
results of the "intermediate-energy R-matrix" calculation
of Scott et al. [2] (open circles) and the Sturmian-basis
close-coupling calculation of Bray and Stelbovics [4]
(open squares). The agreement is reasonably good. The
total cross section is also shown in Fig. 1. We are partic-
ularly encouraged by the rather good agreement between
our results and those of Ref. [4], as those authors argue
that their results are converged with respect to the num-
ber of basis functions. It appears that a modest number
of carefully chosen pseudostates can give results quite
comparable in quality to a much larger but unselective
basis. We are not aware of any experimental measure-
ments of these fundamental cross sections in this energy
range.

TABLE II. Integrated cross sections (units ~ao) for elastic scattering, 1$~n =2, 1$~n =3 transi-
tions and the total cross section.

E (Ry)

1.05
1.10
1.15
1.21
1.25
1.30
1.35
1.44
1.50
1.60
1.69
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
4.00
5.00
7.35

1$-1$

4.931
4.682
4.455
4.206
4.053
3.875
3.708
3.439
3.276
3.033
2.838
2.627
2.457
2.305
2.168
2.044
1.931
1.829
1.735
1.649
1.570
1.497
1.430
1.369
1.313
1.262
1.214
1.171
1.131
0.950
0.715
0.445

1$-2$

0.140
0.130
0.122
0.116
0.112
0.108
0.105
0.101
0.098
0.094
0.090
0.086
0.084
0.081
0.079
0.078
0.076
0.075
0.074
0.074
0.073
0.072
0.071
0.070
0.069
0.068
0.067
0.065
0.064
0.062
0.054
0.041

1$-2p

0.433
0.453
0.476
0.504
0.523
0.545
0.565
0.597
0.615
0.639
0.656
0.673
0.685
0.695
0.704
0.712
0.719
0.726
0.733
0.739
0.745
0.750
0.754
0.758
0.760
0.762
0.762
0.762
0.761
0.748
0.721
0.637

Cross section

1$-3$

0.031
0.027
0.025
0.025
0.025
0.025
0.025
0.024
0.023
0.022
0.020
0.017
0.016
0.015
0.014
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.012
0.012
0.012
0.011
0.011
0.011
0.0102
0.0081

1$-3p

0.062
0.061
0.066
0.076
0.083
0.091
0.098
0.109
0.113
0.118
0.119
0.120
0.119
0.118
0.117
0.116
0.116
0.116
0.117
0.117
0.118
0.119
0.120
0.121
0.122
0.123
0.124
0.124
0.125
0.121
0.116
0.103

0.036
0.037
0.038
0.040
0.041
0.041
0.041
0.040
0.039
0.036
0.035
0.033
0.031
0.030
0.029
0.029
0.028
0.027
0.027
0.026
0.025
0.024
0.024
0.023
0.022
0.022
0.022
0.021
0.022
0.019
0.016
0.011

1$-tl

5.827
5.632
5.457
5.267
5.149
5.015
4.892
4.695
4.580
4.411
4.279
4.138
4.026
3.925
3.832
3.745
3.663
3.584
3.507
3.434
3.364
3.296
3.234
3.174
3.119
3.068
3.022
2.978
2.938
2.746
2.422
1.956
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0.20

0.15— 1s-3p

CJ(tr, aoz)

0.1 0

0.05—

Our results for 1s~2s and 1s~2p transitions are
shown in Figs. 2 and 3, respectively. They are compared
with the theoretical results of Scott et al. [2] and Bray
and Stelbovics [4] as above. We have also attempted to
include experimental results. This is, however, not sim-
ple. The basic experimental observations reported in
Refs. [11,12] involve the detection of Lyman-a photons
emitted when the excited hydrogen atoms decay to their
ground state. In the case of 2p excitation, the decay is al-
most immediate, but the much longer lived 2s state must
be quenched through the application of an external elec-
tric field. There are two critical problems: (1) normaliza-
tion of the cross sections, and (2) correction for cascade
from higher states into the n =2 levels. Significant un-
certainties are involved. We have not attempted to make
an independent analysis of these effects. Instead, we have
simply utilized the results of the analysis of the experi-
mental measurements contained in Ref. [2], and we have
reproduced in our Figs. 2 and 3 the values given in the
similar figures in Ref. [2]. The agreement between our re-
sults and the analyzed experimental data is rather good
for the 2s, but our results are consistently higher than
those data points for the 2p. In the case of the 2p excita-
tion, there is a single point at 54.4 eV from an absolute
measurement of Williams [5]. This value does not agree
well either with the theories or with the other experimen-
tal results as interpreted in Ref. [2]. Clearly, further ex-
perimental investigation is required.

We now consider the results for 3s, 3p, and 3d excita-
tion, which are shown in Figs. 4, 5, and 6. Our results as
shown here are based on a smooth fit (as described below
in Sec. IV) to the data of Table II. The experimental

0.05

0.04— 1s-3d

0.03—

C7(xazo)

0.02—

0.0 l—

0.00
1.0 2.0

I I

3.0 4.0
I

5.0
I

6.0
I

7.0 8.0

Energy (Ry)

FIG. 6. Similar to Fig. 4 for 1s-3d excitation.

IV. EFFECTIVE COLLISION STRENGTHS

points with error bars were obtained from graphical data
in Ref. [15]. We think the agreement is reasonably good,
perhaps surprisingly so.

The figures do not show previous theoretical results, as
many would be off scale. We confirm the suspected
inadequacy of a basis consisting entirely of bound atomic
states at energies above the ionization threshold. At
k =1.44 the results of Aggarwal et al. [18] are larger
than the present ones by a factor of 2.5 for 2s excitation
and 2. 1 for 3p excitation. For the 3d excitation, the
discrepancy is much smaller ( —20%) but in the same
direction. We would like to emphasize that we do not
criticize the results of Ref. [18] below the ionization
threshold. Moreover we think that the present results are
a considerable improvement over our previous optical po-
tential calculations [1]. The differences are not at all so
large as we found in regard to those of Ref. [18] and are
not easy to describe simply. Quantitatively most
difFerences are in the range +10% to +30%%uo (both signs
occur) in contrast to factors of 2.

0.00
1.0 20

I

3.0
I

4.0
I

5.0
I

6.0
I

7.0

Energy (Ry)

FIG. 5. Similar to Fig. 4 for 1s-3p excitations.

8.0 .

y,t.= f Ate ~ ' d(EtlktiT), (2)

The effective collision strength for a transition i f, -

denoted here y,&, is a thermal average of the cross section
over a Maxwell distribution of electron velocities. It is
dimensionless, but rather simply related to the excitation
rate coen.cient. Specifically if o. &is the cross section,
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where Ef is the kinetic energy of the outgoing electron, T
is the plasma temperature, kz is Boltzmann's constant,
and

0.08

Q,f=g, k, o.,gk, ), (3)
0.07'—

with k, being the incident electron energy (in Ry). Final-
ly g, is the degeneracy of the initial state including spin
(thus g„=2).

The efFective collision strengths for 1s~n =2 excita-
tions of hydrogen atoms are given adequately from previ-
ous work and are not discussed here. The interested
reader will find a review of calculations of efFective col-
lision strengths for neutral hydrogen and hydrogenic
ions, considering work up to March 1992, in Ref. [24].
Since the present results for 1s ~n = 3 transitions should
be a significant improvement, we have repeated the calcu-
lations of these efFective collision strengths.

In order to do this, we first made least-squares fits to
the quantity Q,f of Eq. (3) with data from Table II, using
a functional form suggested by the Born approximation

Q,f= g a~x '+a„+,lnx,
j=0

(4)

TABLE III. Effective collision strengths.

k~T (Ry) 1s-3s

Collision strength

1s-3p 1s-3d

where x =k, /bE, and b,E i.s the excitation energy, —,'Ry
in the present case. The quantity a„+& vanishes for tran-
sitions to the 3s and 3d states. We took n =6 for 3s,
n =5 for 3p, and n =7 for 3d. The resulting fits were
used to generate the smooth curves of the cross sections
shown in Figs. 4, 5, and 6.

The evaluation of the integral in Eq. (2) requires cross
sections at lower energies than those considered in the

0.06

0.05—

0.01 0.02
I

0.05
I

0.10

kBT (Ry}

0.20
I

0.50 1.00

calculations described in Secs. II and III. We used the
variational results of Ref. [16] for energies from the n =3
threshold at 0.8889 Ry up to k =0.931 Ry. The results
of Aggarwal et al. [18] were used in the range
0.931&k &1.00. In this way, cross sections are used
that are the best available in the resonance region. The
final effective collision strengths are listed in Table III,
and are shown graphically in Figs. 7—9. Results from
Ref. [18] are shown for comparison. At low tempera-
tures, the differences between the results are in the range
of 10—15 %, but are much larger for temperatures
greater than 0.1 Ry. This is obviously the result of the
overestimate of the excitation cross sections above the
ionization threshold in Ref. [18]. The agreement with the
efFective collision strengths recommended in Ref. [24] is
much closer, but we think the present values are prefer-
able.

A four-term empirical polynomial fit to the effective
collision strengths

FIG. 7. Dimensionless effective collision strength for 1s-3s
transitions. Solid curve, present results; dashed curve, results of
Ref. [18].
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I
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FICy. 8. Similar to Fig. 7, but for 1s-3p.

3

y= g b, T'
i=0

(where T is the temperature in Ry) gives agreement to
3% (often better) for T )0.02 Ry. The coeKcients are
given in Table IV.
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0.115

0.105

TABLE IV. Coefficients b; appearing in the empirical fit to
the collision strengths, Eq. (5).

73d

0.095

0.085

0.075

0.065

3$

0.0588
0.0512

—0.1134
0.0722

3p

0.0967
0.2807
0.1483

—0.1251

3d

0.0520
0.1600

—0.1884
0.0875

0.055

0.045
0.01 0.02 0.05 0.10

kBT (Ry)

0.20 0.50 1.00

FIG. 9. Similar to Fig. 7, but for 1s-3d.

V. SUMMARY

We have calculated integrated cross sections for elastic
scattering, 1s ~n =2, 1s ~n = 3 transitions, and the to-
tal cross section for electron impact on neutral hydrogen
atoms for incident energies from 14 to 100 eV. The cal-
culations are of the close-coupling type, and employ a
basis containing seven exact atomic states (Is, 2s, 3s, 2p,
3p, 3d, and 4f) plus ten pseudostates (Ss-like, 3p-like, and
2d-like). Pseudothreshold structure in the continuum
was removed by a fitting process. The results for the
1s —+n =3 transitions, which have not been the subject of
intensive study previously, are significantly different from

theoretical results in the recent literature, and are in
reasonably good agreement with the one reported set of
experimental measurements. In the other cases studied,
n =2 excitations, elastic and total cross sections, the re-
sults are in fairly good though not perfect agreement with
other calculations and with the relatively meager experi-
mental results. In general, one can conclude that with a
modest set of carefully chosen pseudostates, one can ob-
tain cross sections of accuracy quite comparable to that
found using other, much larger, discrete basis sets. The
present results for excitation of the n = 3 states are com-
bined with previously published results at lower energies
to generate effective (thermally averaged) collision
strengths.
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