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M. C. Chidichimo and D. W. Schranz
Department ofApplied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L3G1

B. Zygelman
Department of Physics, University of Nevada Las -Vegas, Las Vegas, Nevada 89154

(Received 17 March 1993; revised manuscript received 30 June 1993)

We present scaling relations for the total cross sections and collision strengths of bound-state excita-

tion in positive ions. The colliding particle can be positively or negatively charged and can be a fully

ionized atom, an electron, or a positron. We consider collisions in which the kinetic energy of relative

motion is large and consequently the adiabaticity parameter g ((1. We illustrate our general method by

calculating collision strengths for proton-impact excitation of fine-structure transitions in hydrogenlike

ions. The limiting case of infinite nuclear charge is also included in our calculations. Using a unitarized

Coulomb-Born approximation, we show that, for dipole transitions, colliding particles with large orbital

angular momenta (l ~2000) make an important contribution (-70%) to the collision strength of

proton-impact excitation. For a nonrelativistic projectile energy E;~~, we use the Born approxima-

tion to obtain the scaled collision strengths. These limiting values, dependent only on the particular

transition, confirm the correct high-energy behavior of our data. We also use the interactive graphics

computer program oMEUps [Burgess and Tully, Astron. Astrophys. 254, 436 (1992)] to extrapolate our

data to higher energies.

PACS number(s): 34.10.+x, 34.50.Fa, 34.80.Kw

I. INTRODUCTION

Total cross sections for the excitation of positive ions
by particles by arbitrary charge and mass are needed in
the analysis of fusion and astrophysical plasmas and labo-
ratory x-ray lasers. We have developed a scaling ap-
proach for the evaluation of these quantities. To unravel
the complex dynamics of terrestial and astrophysical
plasma we need information on the electron and ion den-
sities and the electron and ion temperature distributions.
Atomic data for the excitation rate of positive ions by
electrons and ion impact are therefore essential to the
deduction of temperatures and density parameters from
the emission spectrum of a hot plasma [1,2].

Most of the previous quantal calculations on bound-
state excitation in ion-ion collisions have been confined to
the low-energy and intermediate-energy region of the im-
pact energy [3—S], and work in this subject has been re-
viewed by Percival [6], Dalgarno [7], Reid [8], and Wal-
ling and Weisheit [9]. The semiclassical treatment has
been used to treat a variety of inelastic ion-ion collisions
involving very fast ions [9], although the accuracy of the
semiclassical approximation may be questionable when
the relative velocity is large. Our purpose is to extend to
the high-energy range the calculations of ion-impact col-
lisional transitions among fine-structure levels of hydro-
genic ions.

We have used a unitarized Coulomb-Born approxima-
tion to consider all transitions among states having the
n, =2 principal quantum number of hydrogenlike ions.
The limiting case of infinite nuclear charge is also includ-

ed in our calculations. We show that colliding particles
with large orbital angular momenta make an important
contribution (60—70%) to the total collision strength of
proton-impact excitation of dipole-allowed transitions in
positive ions. This work also stresses the importance and
the significant effect that short-range interactions have on
quadrupole transitions at high proton-impact energies.
We have used atomic units throughout this paper, except
for energies where we have used rydberg units.

II. THEORY

For any atomic transition from an initial state i to a
final state f, induced by the time-dependent electric field

generated by the incident particle, the relationship be-
tween the total cross section Q,f and the dimensionless
collision strength fl,f is Q,f=rrQ, f/co, k, . This formula is

valid for incident particles with arbitrary mass. If
Hartree's atomic units are used, then the square wave
number k,- is numerically equal to the reduced mass M
expressed in electron mass times the initial kinetic energy
of relative motion E, in rydbergs (13.60.58 eV) and the to-
tal cross section Q,f is measured in era c units

(8.797 35X10 ' cm ). The cross section Q,f depends
mainly on the velocity of the incident particle and the
magnitude of its charge, irrespective of its mass; therefore
we write the scaled total cross section (Z, +1) Q,f, mea-

sured in ~a 0 units, in terms of a dimensionless scaled col-
lision strength Q,fby the following equations:
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(Z, +1) Q,f= 2 (Irao)
co;K;

including the limit Z& ~~. Extending Burgess, Hum-
mer, and Tully's [ll] approach we scale out the main
(Z, + 1) dependence as follows:

and

(Z, +1)
Q = 0

2Z2 (2) aIld

P(nLlu)=(ZI+1) '/ P„l ((ZI+1)lr)

p ' V(Kl p)=f3 ' (Z Z M)' F (Z, lR),

(7)

where

K;=
(Z, +1)Z2

(3)

where

kK— —
lit

Z, +1 '
MZIZ2

The dimensionless parameter K; is numerically equal to
the magnitude of the scaled initial velocity of relative
motion U; /(Z I + 1)Z2 measured in e /III units
(2.187 69 X 10 cm s '), M is the reduced mass of the pro-
jectile and the ion in electron mass units (M= 1 for elec-
trons and positrons), Z, is the ion charge number, Z2 is
the projectile charge number (Z2=1 for protons, elec-
trons, and positrons), and ai, is the degeneracy of the ini-
tial state.

Our objective is the calculation of Q,& when the initial
kinetic energy of relative motion E; =(Z, +1) ZzMIC;
(Ry) is large.

The collision strength O,f has the partial wave expan-
sion

u =(Z, +1)r, p=MZ, Z2R .

Then

f P(n;L, lu)P(nfL;lu)du =5„„
and

P-'"v(«l p)

—1/2 lI (i + 1+ /K)l -2 / I+I
(2I + 1)!

X,F, I + 1+—,21+2; —2i xp
l

(9)

(10)

(4) while asymptotically [12]Q(f g g 01
1,. =0 If

I3
' P(Kllp)

—1/2 —1/2 ln( 2Kp ) m.l
K Siii KP

K 2

where I, and t'f are the initial and final quantum numbers
of the colliding particle. The expression for AI I in termsf i

of the scaled transmission matrix T is

&I I
= g (2J+ 1 ) I

f'( n; L;J; l;, nf LfJflf, J)l' +argI l + 1+—l
K

(12)

n;

0
1

1

1

0
1

1

1

1

2
1

2
3
2
3
2
1

2
1

2
3
2
3
2

J 1

2J+ 1

J 3
2J+—,
'

J+-,'
1

2
1

2J+—,
'

J
J
J
J
J
J
J
J

1(A)
2(A)
3(A)
4(A)
1(B)
2(B)
3(B)
4(B)

parity

( 1)J—1/2

( 1)J—I/2
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( 1)J+1/2

1 )
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We label the states with parity ( —1) ' as A states
and those with parity ( —1) +'/ as B states and intro-
duce a concise notation for the matrix elements

f'& „(J,AlB)=f'(n;L; J;l;,nfLf J/lf, 'J, AlB) . (6)

We are interested in evaluating collision strengths for all
values of the charge (Z1+ 1) seen by the valence electron,

where n;L; J; denotes the target states and J is the con-
served total angular momenta. We represent the coupled
states n; L,.J; l,J of the system by a subscript p according
to the scheme [10]

The scaled transmission matrix T in terms of the scaled
reactance matrix R is given by

carr 2~R ca

(Z, +1)
I —i R

2

(13)

We refer to this unitarization scheme as approximation II
(strong coupling). If R «1, the T matrix can beP;Pf
written as

T '= —2iR (14)

(15)

the short-range contribution R and the long-
range contribution R ' (Coulomb-Bethe approxima-
tion). The short-range component is defined by

which is referred to as approximation I (weak coupling).
In the limiting case Z& = ~ approximations I and II be-
come identical.

We formulate the theory for an ion with one electron
outside a closed shell and separate the R matrix ele-

~t~f
ments into two components

R CB R SR+R Cae
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+5&& 5J+ b f V(K;I;Ip)P(Kflflp)sv n;L;, nfLf', dp

+b g A$ I I (A, ,J)f P(K, l, Ip)9'(Kflf Ip)si n, L;,nfLf, .dp
()1) ff f '

0
(16)

The function Z, tr(p), defined by Zo+Z, tr(p) —N =Z(p)
with Z,s( ~ )=0 and Z,ir(0)=N —1, measures the in-
crease in the effective nuclear charge number Zo+Z, s(p)
as the incident particle penetrates the electron cloud. Z0
is the nuclear charge number, X is the number of elec-
trons in the ion, and Z, =Zo N. T—he function Z,s(p)
equals 0 for all p in the case of hydrogenic ions.

The integral s& behaves as a decreasing exponential for
large p (short-range potential) [11]and is given by

tional to the ratio between the collision time t =a/U, ,
where i2 =Z, Z2e /Mv;vf is half the symmetrized dis-
tance of closest approach in a head-on collision [13],and
the atomic period r= A/E, f, is defined by

g=gf —g; =g, [(1—x) '/ —1], (22)

where the dimensionless parameter g; (ratio between
Z, Z2e /Mv; and the wavelength i(, /2m=k; ' of the pro-
jectile) is given by

s& niL, , nfLf,' 71
1

1

E(Z+1) ' ' E,
Z I Z2, (23)

n, t.; u nfLf u
du

b p/b A, +1

—(A, +1)

f P(n,.L, I u)P(nf Lf I
u)u du,

p/b

where b =MZ2/3.
The CBe reactance matrix may be expressed as

8 „„'=2b ' g Ai' J L (X,J)B(n;L;,nfLf A)~~f ~( 1)
f f f

XI(K 1, ,Kflf A,.),
where the integral B is defined by

B(n;L, , nfLf, i)= f P(n;L; Iu)P(nfLf Iu)u du
0

and

9(K; I, I p ) 9'( KfIf I p )
I(K;I;,Kflf A, )=f ~+, dp

0 p'+'

(17)

(20)

and measures the e6'ective strength of the interaction.
The parameter x is the ratio between the excitation ener-
gy Ef and the initial kinetic energy E; and is given by

M (Z, +1)'Z'Z' (24)

I (Kl, Kl + 1; 1)= —,'K[1+(l + 1) K ] (25)

In Eqs. (22)—(24) the magnitude v, of the velocity is mea-
sured in e /A' units (2.18769X10 cms '), the reduced
mass M is measured in electron masses, and E; and E,f
are measured in rydbergs (13.6058 eV). In the case of col-
lisions with fast particles, the values of g, x =Ef/E;, and
therefore g/q, are small compared with unity. For
values of I such that l «E, /Ef (i.e., lg/g, «1) the
Coulomb integrals I(K, l, , Kflf, k, ) are independent of Ef
and may be calculated with E,f=0 (i.e., /=0) [11]. In the
limit g —+0, K;,Kf ~K and the integrals I simplify appreci-
ably [11,13]. For the dipole case we have

is an integral that may be evaluated in terms of general-
ized hypergeometric functions [11,13]. A is the angular
factor [10]corresponding to fine-structure transitions and
is given by

'tf Jf J
A i i i (g J) ( 1)J—1/2+i, ~

J. I.

and for the quadrupole case
2

m.(e /' —1)+K
0(1+s K)

l(l+1)(2l+1)I Kl, Kl;2 =

and

I(KI —1,Kl +1;2)

(26)

[J J ]i/2[I I ]
1/2 (21)

3

[ 1 + I 2K2 ]
—1/2[ I + ( I + 1 )2K2 ]

—1/2

6
(27)

It is convenient to de6ne all the collision parameters in-
volved in our algebraic expressions as function of the ini-
tial kinetic energy E, and the excitation energy E,f . The
dimensionless adiabaticity parameter g, which is propor-

If gl/g, ) 1, e.g., at lower collision energies and/or larger
transition energy Ef, Eqs. (25) —(27) are not valid.

To carry out our calculations we split Eq. (4) into two
parts
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III. SUM CONTRIBUTION FOR J 11+ ~ AND li li

Define

Qq=(2J+1) g T„„(J)l
I,. If

The total scaled collision strength is then given by

(29)

Q~= g Q~ .
J=1/2

(30)

We suppose that QJ has been calculated for all values
of J less than or equal to Ji =l1+—,'; then for l, l1

I,

g Q( ( (2pt/2-2$)/2)
I,. =0 lf

I 1+1/2

Q —2(l + I)lT»(l&+-,', ~)l',
J=1/2

I1

g Q& &
(2$, /2-2p3/2 )

I,. =0 If

(31)

I1 oo

Q~= g QQ( (+ g QQ( (
I. —0 lf I' ll+1 If

We choose the value l1 such that l1 «E, /E,&
and for all

1, & l& (i) the interaction is weak, i.e., the scaled reactance
matrix elements R„„«1 and therefore T„„P;Pf P;Pf

2i—R„„; and (ii) only the long-range potential~,Vf

p
' +" is effective, i.e., R„„-R„„.P;Pf P;Pf

IV. SUM CONTRIBUTION FOR /. ) 11

For dipole-allowed transitions the dominant part of the
total collision strength 0,& comes from large angular mo-
menta l; & 2000. On the other hand, the sum over partial
wave contributions QI I converges rather slowly. Bur-

i f
gess [14,15] has discovered a sum rule for partial collision
strengths, calculated in the Coulomb-Bethe approxima-
tion that overcomes this problem.

For quadrupole transitions, and l; &) 1,QI =al;
where Q& = g& Q& &

and 1& =1,, l;+2 The . high-
I f f i

angular-momentum contribution to Q & is given by [16]

gQ( (-—,'Q( ~, + J, Q(dl
I. =I +1 I 1+1
i 1 f

4(l, +1)
(37)

The constant of proportionality a has been determined
from QI +1.

1

The matrix elements T „(J)have been evaluated using
Pilaf

Eqs. (13)—(18) and (25) —(27). As J increases the short-
range contribution R„„becomes negligible. In practiceP;Pf
we use the full CB approximation P„„ for all J ~ Jo and

t

for J0&J J1 we assume R„„-R„„'.We have ob-

tained the short-range matrix elements R „„bynumericP;Pf
integration of Eq. (16), in which the functions V(~lip)
were generated by numerically integrating the Coulomb
differential equation [12].

I1+1/2

Q~ —2(l, + 1)[ I P)3 (1) + —,', B)I'
J=1/2

+
l
f'„(l,+ —,', B)l'],

I1

g Qi l. ( p1/2 2p3/2)
I,. =0 If

11+1/2

Q~ —2( l, + 1 )[ l T24 ( I, + —,', 3 ) l

J=1/2

(32)

A. Sum rule for dipole transitions ( A, =1)

Because of conditions (i) and (ii) from Sec. II we can
use the CBe approximation to determine the transmission
matrix elements. Thus for J )J1, the scaled transmission
matrix elements are given by

I,.J,.L,.
4iA/ z

—
L (1,J)B(n;L;,n/L& , l)I(~;1;,~&i'/', 1),f f f

(38)

where

Qz(2p &/2-2$1/2 )

+IT (l +-,', ~)l'], (33)

=(2J+1)[lTi2(J,A)l +lTi2(J, B)l ], (34)

Qq(2s i /2-2p 3/2 )

where B (2s, 2p) = —33/3.
The scaled partial collision strength QI I reduces tof i

Q( ( =432II(~;i;,~pig, 1)I'y (2J+1)IA('~ L (1,J)I' .f i f f f

(39)

and

=(2J+1)[lT»(J, g) l2+
l T„(J,W) l'

+lT,3(JB)l +lT,4(JB)l ], (35) l) (2J) +1)
g (2J+1)lA(' '

L (1,J)l =
J

(40)

Using the orthogonality relations of the 6j symbols [17]
the summation in (39) gives us

QJ(2p&/2-2p3/2 )

=(2J+1)[lT23(J,~)l'+lT24(J, ~)l'

+
l T23(J,B)l2+

l T24(J, B)l2] . (36)

where l& =max(l, , l&) and J& =max(J;, J&).
We use Eqs. (39) and (40) to express the high-angular-

momentum contribution to the total collision strength
0&, for both dipole transitions, as
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Q 0, , =48(2J) +1)
I,. =I

&
+1 lf

g l) lI(x, l, , K/l/ , 1).
l

. (41)
li 11+1 1~

Using Burgess's sum rule [14],

I""(x,l,.~21+ 1; 1)

(g,g, )' '
2

4g1g2

, -2~ill (ni+n2)'

l'
( PI ~ &

+ RI et@11[T/
~
/( I + 1 ) ] ) g 1 92XIm e

I+1

(45)

g l lI (!r;l;,!!;/1/, 1) l2

Ij I
&
+ 1 Iy

=[I (~, l, +1,!~/l), 1)—I (~, l„~/I, +1;1)]
(1+(l,+1) !~; )

(l, +1)(!~;—a/)

we have

(42)

where

m =1

g (l+p+ig ) g (I+p+i 17, )

p =2 p=1
m

Q (p —ilail) m!
p=l

lg l2m
—1

X [ —(l + 1)g+iqzg 2m—g2](ni+n2)'

(46)

g 0, , =48(2J, +1)(l, +1)
I,. = I) +1 l~

X [I (~;1,+1,!~/l, ;1)

I (a;l„!~—~l, +.1;1)]
2

X [g;+(l, +1) ] .
n;+nf

(43)

The Coulomb integral I (!r,l, ~21+ 1; 1) is given by

I(!r,l, ~2l+1 1)=e ~I""(!r,l, !r21+1;1), (44)

where g=riz ri, and q—=1/!~ and I""(x,l, !r21+1;1) is
the radial integral for electron impact [11];

with + 2 ( . ) to be taken to be 1 and

1(1+ilail)
1"(l+1+i', )I (l +1+i' )

(47)

The top sign corresponds to ~, & ~2 and the bottom sign
tO K1&V2.

For the range of the parameter E, that we are consid-
ering we have g «1(g, , g&~g). We have been careful to
remove large masking quantities when the crucial infor-
mation is carried by small numbers. If g « 1 and
gl, /ri; « 1 there is cancellation between
I (~;l, +1,~&i, ;1) and I (~;l„!~/l&+1;1), which re-
moves the eff'ect of the g term in the denominator of Eq.
(43). We substitute Eqs. (44) and (45) into Eq. (43) and
for l, (&E;/F. ,/ (i.e., l, g/rl; « 1 and therefore g/g; (& 1);
we get

g 0&!——24(2J +1) 1n
!=ii+1 1~

'
s =Ii+ 1 S [g +S ]

( l, + 1 )

2[g +(l, +1) ]

—1S

l1 « 1g«1,
Yl

f (s) = —,
' f (l, +1)+f, ,f (s)ds;

s =I)+1 1

therefore

1+—ln 1+
,=! ~) s(71 +s ) 2 (1, +1)[g +(l, +1) ] 2 (l, +1)

The high-angular-momentum contribution is then given by

This equation is valid for colliding particles of arbitrary charge and mass.
For any monotonically decreasing function f (s) we may approximate the sum g, ! + & f (s) by [16]

1

(48)

(49)

(50)
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g Qi i
—-24(2J & + 1) ln

I,. =13+1 If

If l& ))g then

1—g s ——ln 1+2(ii+1), i 2

2

«1,
(1, +1)

Pi «1. (51)

+0& i
——24(2J&+1) ln

gli
2(l, + 1 ) , , 2 (1, + 1 )' «1, «1.

1

(52)

Notice that Eq. (48) may be rewritten using [18]
00

1Re/(ii) ) =g(1)+ ii
, =i s(s +g )

where g is the logarithmic derivative of the I function. Expression (48) is then reduced to

(53)

g Qi i ——24(2J& +1) ln +P(1)—Ref(iq) —g +2q . ' (1+1)
i=o I

n'+(1+ I)']

Using I(xl, al +1;1)= —,'v[1+(1+1) a. ]
' we also have

(1,+ 1 )

2[ii + (1i + 1) ]
(54)

oo Ii

Q Qi i
——48(2J& +1) —g(g, , gf) —2 g (1+1)I (xl, ~1+1;1)+(I,+1)I (~l„al, +1;1)

g«l, l, «1,
7l

where

&3 2gg(rl;, qf ) = ln +g(1)—Ref(ig)
7T

0« 1 (56)

I

sociated with it. The geometric-series method has the
disadvantage of only starting to become useful for
1, ))E;/E,f (i.e. , l, g/il; ))1), which makes the method
impractical at the high energies considered here.

1. Born approximation

+ [g(3)—1]g1+g
—[g(5)—1]il'+. . . , q «1

Ref(ill�

) =g(1)+1—

and for q)) 1, it has the asymptotic formula

is the free-free Gaunt factor [13,14,19].
For g « 1, Ref(ii)) has the series expansion [18]

(57)

For 1, , lf ))1, and 1; ))7); we have [13]

I(K l, Kflf 1) e . Io(K 1' Kflf A) (60)

where Io is the radial integral for the neutral case Z& =0,
in which the functions 9'(slap) are expressed in terms of
spherical Bessel functions. The integral Io is given by
[11]

Ref(ill)=in'+ + +, il))11 1

12' 120'
(58) Io(~, I, Kpl +1;1)

where g(2n + 1), n = 1,2, . . . is the Riemann zeta func-
tion.

We should stress that, in the case of electron impact
excitation, Burgess, Hummer, and Tully [11] used Eq.
(55) to evaluate the high-angular-momentum contribution
to Qf with

where

2
1 3XF l +1,p ——;l+—+p,'
2 2 K&

(61)

v'3
g(v];, gf )= ln 2' g«1, g«1, (59) 0 1f Ki (K2

1 1f K1) K2

i.e., for projectiles with large K = 0/(Zi+ 1)Z2. If g « 1

then Re/(ig) —g(1)=g(3)q [g(3)= 1.20205. . . ] and
Eqs. (56) and (59) are equivalent to first order in g .

B. Geometric-series method

For the sake of completeness we should like to review
the geometric-series method and two approximations as-

and v& =max(zi, zz) and v& =min(vi, v2).
Using [18]

F(a,b;c;z) =(1 z) "F b, c —a;c;—'z —1

and

(62)
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, 1(n+~)
lim n

n-m I (n +b) (63) I (v l v l +1'1)— )/22 (2P+(/2)e —(lgl/g)((+() lgl
0 K1,K2

7l

and considering the asymptotic behavior [20] of
F(b, c —a;c;z/(z —1)) for l )&~&/(~& —x & ) =E//E, /,
we have

1/2
Io(~(l, x~1 + 1; 1)=

2 K)

I + 1/2+p

—p+ 1/2
K) K(x (l + I )

-(~+(")
2K)

2K(I»
K) K&

(64)

Then the contribution from l; = l & l, [Eq. (41)] to the to-
tal collision strength II,/ is, for 1)&~;/(K; KI) and
l»1,

(Ic(. K/ ) KIg 0( (
—12(2J& + 1)~e

I = I ) lf

where

0 1f Ki (K2
1 1f Ki &K2 ~

—(p + 1/2)

x (i+I
'9

1/2

q+ l+—
2

l+ l+—
2

(69)

a =+ I, and q = ( 7)(+gz ) /2.
Notice that if l )&1 and l &)g then gE))1 implies

gl/g»1 (or l )&2)~ /lx. ,
—)~2l), where )(=()~(+~2)/2

and contributions of order (g/q) are neglected.
Replacing Eqs. (68) and (60) into Eq. (41) we also end

up with operations involving geometric series. In this
case the ratio of the geometric series is e ~ ", which al-
lows us to write

I
oo Kfx. g, +

I = I
1
+1 Kl

Kf
Kl

(65)
I~ +1 (e ~/" —1)

(66)

If g/r); «1 then ~I/~; =(1+ply; ) '=1 —g/g; =1 and
we have

The sum is a geometric series of ratio )(//)~;. After
performing this simple operation we obtain

21 I + 1

g 0( )
—12(2J& + 1 )vre

I II + 1 If l

2K
li »

Kl Kf
(70)

g 0( (
——12(2J& + 1)m.e ~e

I:Il+ 1 lf

If 2(/g « 1, i.e., EI/E « 1, where E =(E, +E/)/2, we
have

211 2K
(71)

g 0( (
—12(2J& + 1 )ere

I = I I +1 lf l

K
(|1 »

Kl. Kf

2. JS'KB approximation

(67)

Equation (71) is equivalent to Eq. (67) to first order in
( g/q ).

V. THE NONRELATIVISTIC
HIGH-ENERGY LIMIT E; ~ 00

In this approximation the integrals Ip are expressed in
terms of modified Hankel functions [11,13] and for
Eg)) 1, l ))1, and l ))g one obtains [18]

The Born approximation for the scaled collision
strength 0 f, in the particular case of one electron outside
closed shells, is given by

2

0 =(Z, +1)' g C, (J, ,JI)f f P(n, L, lu)P(nIL/l~) j~ d& q dq
( &1)

'
qmln 0 (

(72)

where q;„=k;—kf, q,„=k,-+kf, j& is the spherical
Bessel function of order A, , and

I

For dipole-allowed transitions, the collision strength
reduces to

Cg(J;, J/) =8(2k+ 1)(2L, + 1)(2LI+1)(2J;+1)

X(2J/+ 1) p p p J. f f
(73)

&max f(q)n ~f= dq,Elf q min q

where

(74)
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Ci (Zi+1)
f(q)=

CO;g

X f P(n, L, ~u)P(nIL&~u)j, du
and

E /E.
(E//E I+C)

Q„d=Q,

(83)

(84)

(75) where

Burgess and Tully [21] have shown that the high-energy
limiting behavior of n,f, deduced from the Bethe approx-
imation, is given by

4';f 4E;
'

E,. E,f E,f
(76)

and upon making the substitutions C& =8(2J & + 1 ) and

f 0 Pz, Pz j& [qu/(Z&+ l)]du = —q3/3/(Z&+1) we ob-

tain the expression

4E;
Q,&-12(2J& + 1)ln

if
(77)

VI. INTERPOLATION OF DATA

We interpolate the data, using the interactive graphics
computer program oMEUps. Burgess and Tully [22] have
developed this new method to assess and compact col-
lision strength data for electron-impact excitation of posi-'
tive ions. The procedure has not been previously used for
proton-impact excitation of positive ions. The originality
of the method hinges on the use of scaling techniques
which (i) remove the main energy dependence from the
data and (ii) map the entire range of E onto the interval
[0,1]. We denote the reduced variables by E„d,Q„d. For
optically allowed transitions

E«d =1— lnC

ln +C
(79)

where J& =max( J, ,J&) and E,I is the transition energy.
For the quadrupole transition 2p&/2-2p3/2 we per-

form the integration in Eq. (72), with Cz =32,
q;„=0, q,„=oo, P2 (u)=24 '~ u e ", and j2(t)
=(3lt 1/t)sint —(3—/t )cost, and we obtain the result

A,$2p&n-2p3/2) = —",

Q„d(0)=Q(0), (85)

and for the transition 2p &/2-2p3/2

( 1 )
—fl Born 64

red 7

The parameter C depends on the transition; its value can
be adjusted in order to optimize the plot of A„d prior to
making a spline fit. This fitting procedure has been
designed for electron-impact excitation of ionized species,
for which A(0)%0, but Q(0) =0 for proton-impact excita-
tion. The application of the method to proton-impact ex-
citation may give poor accuracy near the excitation
threshold. We are concerned, however, with the higher-
energy data points which have deviations from the fit less
than l%%uo. After inputting the data in the oMEGA branch
and providing an initial estimate for C, the collision
strength is scaled and displayed as a function of E«d. By
modifying the value of C one can change the distribution
of data points on the plot. We positioned the data so that
we got a reasonable fit (rms error less than 1%) for higher
energies and we also determined the lower limit of validi-
ty of our fit. The program then uses a five-point least-
squares spline to fit the scaled data and draws the corre-
sponding curve on the screen. The spline function y, (x)
for A„d is tabulated at the five equidistant reduced energy
knots x —=E«d =0.0,0.25,0.5,0.75, 1.0. The knots specify
completely the cubic spline over the given interval. The
original data can in this way be readily interpolated or
extrapolated. The spline function y, (x), which allows
one to interpolate y(x):—A„d, using the values y, (0),
y, (0.25), y, (0.75), y, (1), and C, is given in Appendix C of
Ref. [22] in the convenient form of a short computer pro-
gram. The advantage of using this fitting technique is
that it allows an extrapolation beyond the range in which
the original data are calculated based on the constraint of
a correct asymptotic energy behavior. Other fitting tech-
niques have often been based on simple global analytic
expression of the type

—N
max E,0= g C~ +Din

N=0 E~f
(87)

Ef
ln +eE.

where C& 1, e =2.718. . . , and

Q„d(0)=Q(0),
and for the transitions 2p i/2-2s, /2 and 2s»2-2p3/2

Q„d(1)=12(2J& +1) .

For an optically forbidden transition,

(80)

(82)

with the parameters CN and D determined by a method
of least squares. These fitting techniques are not ap-
propriate for extrapolation in the case of electric dipole
allowed transitions since they do not give an adequate
constrain on the logarithmic term which is the leading
term at high energies.

VII. RESULTS

We give in Table I the transition energies E,& (Ry) be-
tween the n=2 states of hydrogenlike ions and the re-
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Ion

He+
C5+

Mg" +
S15+

A 17+

2p & /2-2S1/2

4.27 x 10-'
2.38 X 10
2.84 x 10-'
7.87 X 10
1.2 X 10

Ef (Ry)
2s

& /z-2p 3/2

4.898 X 10
4.082x10 '
6.676x10 '
2.126x 10-'
3.42 X 10

2p & /2-2p 3/

5.325 X 10
4.32 x 10-'
6.96 x 10-'
2.2044 X 10
3.54 x10-'

1466.9
1694.0
1762.1

1780.1
1791.0

TABLE I. Hydrogenlike ions energy splittings among the
n=2 and reduced mass M of proton and ion in electron-mass
units.
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duced mass M of proton and ion in electron mass units
[23]. In Tables II and III we present a sample of the col-
lision parameters g, g/g, , gl, /q, ., g, /l„and x =Ef/E,
for the dipole transitions 2p, /2-2s, /2 in He+ and 2s»2-
2p3/2 in Ar' +, respectively. The total scaled collision
strengths Q,f are given in Tables IV —IX for proton-
impact excitation of the dipole 2p, /2-2s, /2 and 2s, /2-

2p3/2 transitions and the quadrupole 2p&/2-2p3/2 transi-
tion in He+, C +, Mg"+, S' +, Ar' +, and Z& = ~. In
the limiting case Z, = ~ we have used the same transi-
tions energies as in Ar' +. We present in the same tables
Jp the value of total angular momentum at which the
short-range interaction becomes negligible, and the value
li of the proton orbital angular momentum at which the
approximations discussed in Sec. IV A become valid,
namely TcBeII TcBeI

2& R cBe w jth jn 1 %%uo error. We
observe that, for a particular ion, Jp increases as K, in-
creases and, for K; fixed, Jp increases with the nuclear
charge. This is expected since E, =M(Z, +1) ZzK; (Ry)
and for larger impact energies, the incident proton
penetrates further into the electron cloud of the ion. As a
result, a larger angular momentum Jp is needed to
prevent close encounters. We also notice that l, de-
creases as the nuclear charge increases. Since l, is the
value at which the I approximation (weak coupling) to
the T matrix is valid, it measures the strength of the cou-

Ered

FIG. 2. Reduced collision strength Q„d for the 2p, /2-2p3/2
transition in Mg"+, plotted against reduced energy E„d. ~, re-
duced data;, spline At to the reduced data; A, close cou-
pling (Ref. [10]);,Born limit.

pling in the channels. Therefore as the nuclear charge in-
creases, the coupling between channels decreases. In the
limiting case Z, = ~, T "=T ' and l~ =Jp 2. We
also present the high-angular-momentum contribution
QP+, ——gP, +, g, Q. . . calcula«d using Eq. (51).

1 i 1 f f i

For the dipole-allowed transition 2p»2-2s, /2 the contri-
bution 0 I +, ranges approximately, for all the ions, from

1

60% of the total A,f at K; =8.0X10 to 77 Jo at
K; =1.7X10 . For the transition 2s, /z-2p3/2 the con-
tribution 0

& + &
varies more strongly as a function of K;,

1

owing to the larger transition energy E,f. For He+, it
varies from 46% at the lowest value of the parameter K;
to 69/o at the largest value of the parameter K;, and for
Ar' it varies from 1% to 61%.

In Figs. 1 —3 we present examples of the reduced data
for He+, Mg"+, and Ar' +. Table X contains the spline
fit parameters for He+, C +, Mg"+, S' +, and Ar' +.
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FIG. 1. Reduced collision strength Q„d for the 2@I/2-2s&/2
transition in He+, plotted against reduced energy E„d. ~, re-
duced data;, spline fit to the reduced data; 5, close cou-
pling (Ref. [10]);,Born limit.

FIG. 3. Reduced collision strength Q«d for the 2s&/2-2p3/2
transition in Ar"+, plotted against reduced energy E„d. ~, re-
duced data;, spline fit to the reduced data; 6, close cou-
pling (Ref. [10]);,Born limit.
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TABLE II. Collision parameters for the dipole-allowed transition 2p&/&-2s&/2 in He+. The parame-
ters are defined by Eqs. (22) —(24) and I, = 32 837. K; is numerically equal to the magnitude of the initial
scaled velocity of relative motion U;/(Z& + 1)Z2 in Hartree's atomic units (2.187 69 X 10' cm s ').

x =E,f!E;
8.0X 10
1.0x10-'
1.2x10-'
1.4X 10
1.6x10-'
1.8X 10
1.7x10-'

8.04 X 10
5.7S X 10
4.38 x 10-'
3.41x 10-'
2.84 X 10
2.38 x 10-'
8.21x 10-'

4.55 X 10
3.64 X 10
3.03 x 10-'
2.60 X 10
2.27 x 10-'
2.02 x 10-'
2.14X 10

1.49 x 10-'
1.19x 10-'
9.96 X 10
8.53 X 10
7.47 x 10-'
6.64 x 10-'
7.03 x 10-'

5.38 x 10-'
4.81 x 10-'
4.40 x 10-'
4.07 x 10-'
3.81 x 10-'
3.59 X 10
1.17X 10

17.68
15.81
14.43
13.36
12.50
11.78
3.83

9.1x10-'
7.3 x10-'
6.1 X 10
5.2x10-'
4.5 x10-'
4.0X 10
4.3 X 10

TABLE III. Collision parameters for the dipole-allowed transition 2si/2-2p3/2 in Ar' +. The param-
eters are defined by Eqs. (22) —(24) and l& =4455. K; is numerically equal to the magnitude of the initial
scaled velocity of relative motion U;/(Z, + 1)Z2 in Hartree's atomic units (2.187 69 X 10' cm s ').

x =E,f/E;

8.0x10-'
1.0x10-'
1.2 x10-'
1.4x10-'
1.6X 10
1.8 x10-'
1.7 x10-'

1.23 X 10
8.8 X 10
67 X10
5.31 X 10
4.35 X 10
3.64 X 10
1.25 X 10

3.68 X 10
2.95 X 10
2.46 x 10-'
2. 1 X 10
1.84 x 10-'
1.64 x 10-'
1.73 x 10-'

1.64
1.31
1.10
0.93
0.82
0.73

7.7 x10-'

7.49 X 10
6.70 x 10-'
6.12 x 10-'
5.67 X 10
5.30 X 10
5.0 x10-'
1.62 X 10

33.4
29.9
27.3
25.2
23.6
22.3
7.2

7.4X 10
5.9 X 10
4.9 X 10
4.2X 10
3.7 X 10
3 ~ 3X10
3.5 X 10

TABLE IV. Total scaled collision strength 0 and high-angular-momentum contribution 0 t +& for
1

proton-impact excitation of He . Short-range contribution becomes negligible for J )Jo. K; is numer-
ically equal to the magnitude of the initial scaled velocity of relative motion U;/(Z& + 1)Z2 in Hartree s

atomic units (2.187 69 X 10' cm s ').

&I +i
1

2p i /2-2s 1 /2

A.

2p & /2-2p3/2

Q

2S
& /2-2p 3/2

&( +,
1

0

8.0X 10
1.0X 10
1.2X 10
1.4x10-'
1.6X 10
1.8X 10
1.7X 10

526.5
590.5
648.5
701.5
749.5
794.5

2499.5

32 837
32 837
32 837
32 837
32 837
32 837
32 838

207.3
218.1

226.8
234.2
240.6
246.8
354.1

313.3
324. 1

332.7
340.1

346.6
352.8
460.6

0.049
0.048
0.047
0.046
0.044
0.043
0.011

15.95
15.95
15.96
15.97
15.98
15.98
16.40

180.5
201.9
219.4
234.2
247.0
258.3
473.9

392.4
413.8
431.3
446. 1

458.9
470.3
686.6

~ ~

TABLE V. Total scaled collision strength 0 and high-angular-momentum contribution A I +& for
1

proton-impact excitation of C'+. Short-range contribution becomes negligible for J )Jo. K; is numeri-

cally equal to the magnitude of the initial scaled velocity of relative motion U;/(Z&+ 1)Z& in Hartree s

atomic units (2.187 69 X 10 cm s ').

2p., /~ -2s, /2

+l +1
1

Q

2p & /p -2p 2s, /~ -2p 3/2

+ I +1
1

0

8.0X 10
1.0X 10
1.2 X 10
1.4X 10
1.6x 10-'
1.8 X 10
1.7X 10

573.5
666.5
749.5
824.5
894.5
958.5

2499.5

12 640
12 640
12 640
12 640
12 640
12 640
12 644

172.6
178.2
192.0
199.4
205.8
211.5
319.2

278.6
289.4
298.1

305.6
312.1
317.9
424.6

0.069
0.057
0.047
0.040
0.034
0.030
0.003

16.08
16.17
16.24
16.31
16.37
16.41
14.3

72.3
93.7

111.2
126.0
138.8
150.1
365.7

284.2
305.7
323.2
338.1

351.1
362.5
575.0
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TABLE VI. Total scaled collision strength 0 and high-angular-momentum contribution 0 f" +1 for
1

proton-impact excitation of Mg"+. Short-range contribution becomes negligible for J )Jp. K; is nu-
merically equal to the magnitude of the initial scaled velocity of relative motion U;/(Z1+1)Zz in
Hartree's atomic units (2.187 69 X 10' cm s ').

Jp

2p1/z-2s

Q 00

1

2p1/z -2p 3/z 2S1/2 2p 3/2

&f +1
1

8.0X 10
1.0X 10
1.2 x10-'
1.4x10-'
1.6x10-'
1.8 x10-'
1.7 x10-'

676.5
774.5
862.5
943.5
1018.5
1089.5
2499.5

6574
6574
6574
6574
6575
6575
6582

153.4
164.1

172.8
180.2
186.6
192.3
300.0

259.8
270.7
279.6
287. 1

293.6
299.4
394.4

0.028
0.019
0.014
0.011
0.009
0.007
0.001

16.49
16.59
16.60
16.54
16.44
16.31
11.6

3.6
25.0
42.5
57.3
70.1

81.5
297.0

216.0
237.7
255.4
270.4
283.4
294.8
483.5

TABLE VII. Total scaled collision strength 0, and high-angular-momentum contribution 0 f +1 for
1

proton-impact excitation of S" . Short-range contribution becomes negligible for J )Jp. K; is numer-
ically equal to the magnitude of the initial scaled velocity of relative motion U; /(Z1+ 1)Zz in Hartree's
atomic units (2.187 69 X 10' cm s ').

2p1/z -2s1/z

+f +1
1

2p 1/z -2p 3/z

&f +1
1

2s1/z -2p 3

&f +1
1

8.0x10-'
1.0x10-'
1.2 x10-'
1.4x10-'
1.6x10-'
1.8 x 10
1.7 x10-'

705.5
805.5
895.5
978.5

1055.5
1127.5
2499.5

4981
4981
4981
4981
4982
4982
4991

145.9
156.6
165.3
172.7
179.1
184.8
292.5

252.5
263.4
272.3
279.6
285.9
291.4
379.7

0.015
0.01
0.007
0.006
0.005
0.004
0.001

16.62
16.56
16.38
16.14
15.88
15.62
10.8

14.2
29.0
41.8
53.1

268.5

227.2
241.8
254.3
265.2
439.7

TABLE VIII. Total scaled collision strength 0 and high-angular-momentum contribution 0 f" +1 for
1

proton-impact excitation of Ar' +. Short-range contribution becomes negligible for J )Jp. K; is nu-
merically equal to the magnitude of the initial scaled velocity of relative motion U;/(Z1+1)Zz in
Hartree's atomic units (2.187 69 X 10' cm s ').

Jp

2p1/z -2s1/z

f +1
1

2p1/z -2p 3/z

&f +1
1

2$1/2 2p3/z

+ f1+1

8.0x 10
1.0X 10
1.2x 10-'
1.4x10-'
1.6x10-'
1.8 X 10
1.7 x10-'

717.5
819.5
910.5
993.5

1071.5
1144.4
2499.5

4455
4455
4455
4455
4455
4455
4466

142.6
1S3.3
162.0
169.4
175.8
181~ 5
289.2

249.3
260.2
268.8
276. 1

282.2
287.7
373.0

0.011
0.008
0.006
0.004
0.003
0.003
0.001

16.60
16.44
16.16
15.84
15.52
j.5.21
10.5

2.4
17.3
30.1

41.4
256.7

215
229.5
241.6
252.3
420.8



4256 M. C. CHIDICHIMO, D. W. SCHRANZ, AND B.ZYGELMAN 48

TABLE IX. Total scaled collision strength 0 and high-angular-momentum contribution 0 ( +1 for
1

proton-impact excitation of Z1= ~. Transition energies E,f correspond to Ar' +. Short-range contri-
bution becomes negligible for J )Jo. K; is numerically equal to the magnitude of the initial scaled ve-

locity of relative motion v;/(Z, + 1)Z2 in Hartree's atomic units (2.187 69 X 10 cm s ').

&( +1
1

2p1/2-2$1/2

0,

2p 1 /2-2p 3/2

0
2$ 1/2 2p 3/2

&( +1
1

8.0x 10
1.0X 10
1.2x10-'
1.4X 10
1.6x10-'
1.8x 10
1.7 x10-'

805.5
908.5

1000.5
1085.5
1164.5
1237.5
2499.5

805
908

1000
1085
1164
1237
2499

224.6
229.6
233.7
237.2
240.2
244.4
317.0

319.2
324.9
329.6
333.6
337.2
341.8
407.6

0.74
0.74
0.74
0.74
0.74
0.74
1.75

8.37
8.27
8.27
8.31
8.36
8.41
9.08

127.6
137.5
145.8
152.8
158.9
164.3
181.1

316.9
328.2
337.6
345.7
352.8
359.1

493.6

Also shown are the close-coupling (CC) results of Zygel-
man and Dalgarno [10]. For the dipole transitions in the
He+-Ar' + ions the agreement is excellent. The largest
differences are 5% for the transition 2s, i2-2p3/2 in Ar' +

at E; =480 Ry and 3% at E; =800 Ry.
In the case of the 2p, i2-2p3/2 transition the discrepan-

cies between their results and ours are larger for ions of
low Z&. The discrepancies range from 35% in He+ to
9% in Ar' +. This discrepancy is presumably due to

close coupling effects included in the calculations of Zy-
gelman and Dalgarno. Zygelman and Dalgarno [24]
selected an angular momentum, which they denoted JcB,
and used the CC approximation for —,

' (J(JcB and a un-

itarized Coulomb-Born (CB) approximation for j) jcB.
In their CB approximation the integrals I(~, l, , ~flf 1)
and I(a,.l, , vflf, 2) were evaluated using the WKB ap-
proximation. Our unitarized CB approximation uses the
Coulomb-Born approximation [Eqs. (25)—(27)] to calcu-

TABLE X. Values of the spline function y, (x) for A„d at the five reduced energy knots. E;„is the
lower limit of validity of the spline fit. The parameter C is chosen to minimize the rms error of each fit.

Spline function

Transition E;„(Ry) y, (0) y (
1

) y, ( —, ) y, (4) y, (1) rms error

2p1/2-2s1/2
2s1/2-2p 3/2

2p1/2-2p 3/2

4.694
4.694
4.694

3X10
3 x10'
6 x10'

He+
63.09

3.208
15.94

21.53
29.22
15.98

25.97
51.94
16.41

31.74
68 ~ 55
16.48

23.93
47.87
9.143

(%)
0.03
0.01
0.01

2p, /2 "2$1/2
2s1/2-2p 3/

2p1/2-2p 3/2

48.787
48.783
48.783

2 x10'
3X10
5 x10'

23.55
2.448

15.53

18.72
15.57
16.24

27.67
41.94
16.63

31.64
59.86
15.61

24.02
47.90
9.143

0.01
0.01
0.01

2p1/2-2$1/2
2$1 /2 -2p

2p1/2 2p3/2

2p1/2-2s1/2
2s1/2-2p 3/2

2p, /2-2p 3/2

202.991
202.924
202.924

364.6
546.6
364.3

5 x10'
10

9 x10'

3 x10'
80

3 x 10'

11+

119.3 27.55
91.39 16.65
13.60 16.51

S15+

230.9 41.68
46.46 10.82
11.57 16.51

A 17+

27.75
35.79
15.86

24.92
35 ~ 32
15.17

28.39
50.95
13.47

27.80
47.25
12.43

24.01
48.07
9.143

24.01
47.99
9.143

0.01
0.01
0.02

0.01
0.01
0.01

2p1/2-2s1/2
2s1/2-2p 3/2

2p1/2-2p3/2

464.215
695.986
463.873

3X10
50

3X10

129.4
486.0

11.57

28.15
63.47
16.51

25.29
29.77
15.17

27.10
46.58
12.43

24.29
47.99
9.143

0.02
0.02
0.01
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TABLE XI. Extrapolated total scaled collision strength for proton-impact excitation of fine-
structure transitions in He+ and Ar"+. Scaled collision strength for electron-impact excitation of He+
and Z', = oo (Ref. [11]).K; is numerically equal to the magnitude of the initial scaled velocity of relative
motion v;/(Z&+ 1)Z2 in Hartree's atomic units (2.187 69X 10' cm s ').

He+

2p &
/2-2s

A 17+

Electrons
Ref. [11]

He+ Z, =~ He+

2s
& /2-2p 3/2

A 17+

Electrons
Ref. [11]

OO

0.05
0.15
0.25
0.75
1.25
2.25
3.25

509
557
578
623
643
666
681

407
439
453
482
496
511
520

557
586
598
621
632
646
654

584
613
624
642
649
657
663

786
886
931

1026
1069
1117
1147

487
553
582
643
671
703
722

880
938
961

1009
1031
1057
1074

934
993

1014
1050
1064
1080
1092

late I (v, l, , a/l&' , I ) and I (ir;l;, Ic&l/, 2) for g « 1,
g/q, « I, and l, g/rj, & 1.

We find that the short-range interaction [Eqs. (16) and
(17)], describing electron-cloud penetration [25], becomes
important for the 2p, /2-2p3/2 quadrupole transition at
K, —1.0X10 . If short-range effects are not included,
the 2p, /2-2p3/2 scaled collision strength Q,I increases by
30% at K; =1.4X10 for S' + and Ar' +. The dipole
transitions, dominated, on the other hand, by the long-
range coupling, are not too sensitive to the effect of the
short-range interaction terms, at the values of the param-
eter K; considered in this paper. The largest variation, if
short-range effects are not included, is 1.5%%uo for the tran-
sition 2sj/2-2p3/p in He+ at I|;—1.2X10

We present in Tables XI and XII, as an example, the
extrapolated scaled total collision strength for He+ and
Ar' +. We also include the electron impact excitation re-
sults of Burgess, Hummer, and Tully [11] for He+ and
Z, = ~. The scaled total collision strengths of Burgess,
Hummer, and Tully for Z

&

= ~ are slightly larger
( —3%) than the collision strengths for He+.

TABLE XII. Extrapolated total scaled collision strength for
proton-impact excitation of fine-structure transitions 2p &/&-

2p3/2 in He+ and Ar"+. Scaled collision strength for electron
impact excitation of He+ and Z, = oo (Ref. [11]). K; is numeri-
cally equal to the magnitude of the initial scaled velocity of rela-
tive motion v;/(Z&+1)Z2 in Hartree's atomic units
(2.18769X10 cms ').

Electrons
Ref. [11]

VIII. CONCLUSIONS

We have developed a scaling technique that applies to
the excitation of positive ions by particles of arbitrary
charge and mass. To illustrate our approach we have
used a unitarized Coulomb-Born approximation to con-
sider collisions involving high-energy incident protons on
hydrogenlike ions. We have carried out the calculations,
for the excitation of transitions between fine-structure
levels involving the n=2 principal quantum number, un-
der the assumption that (see Tables I and II) g«1,
g/g «1, and gl&/g& 1. For a nonrelativistic energy
E, —+ ao, we ha. ve used the Born approximation to obtain
the scaled total collision strength Q,&for dipole and quad-
rupole transitions and these limiting values confirm the
correct high-energy behavior of our data. We show that,
for dipole-allowed transitions, the dominant part of the
scaled total collision strength 0,& comes from large angu-
lar momenta l ~2000. These calculations also confirm
the significance of electron-cloud penetration for the
quadrupole transition 2p»2-2p3/2 since the strength of
short-range effects increases with the nuclear charge and
K, [E, =M(Zt+ I) ZzK, (Ry)]. For the values of the
parameter K; considered in this paper, the present CB
approximation gives results in good agreement with pre-
vious close-coupling calculations [10].

We intend to extend the calculations of ion-impact col-
lisional transitions amongst fine-structure levels of hydro-
genic ions to alkali-metal-like positive ions and ions of
the cosmically abundant elements (Al, Si,S,Ba) and to bo-
ronlike and Auorinelike systems and other ions likely to
occur as impurities in fusion plasmas.

0.05
0.15
0.25
0.75
1.25
2.25
3.25

He+

13.13
10.73
10.13
9.48
9.35
9.26
9.22

A 17+

9.65
9.32
9.25
9.18
9.16
9.15
9.15

He+

12.50
11.82
11.29
10.21
9.84
9.46
9.35

Z 1
—00

12.76
11.93
11.49
10.57
10.17
9.74
9.56
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