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Using an expansion of the electromagnetic field in terms of quantized Fresnel modes, we calculate
the retarded Casimir interaction, in the asymptotic domain, of a polarizable system and a dielectric
permeable wall, that is, a wall characterized by a dielectric constant e2 and a magnetic permeability
p2. We obtain explicit analytic results for the atom-wall and for the electron-wall interactions.
When magnetic eFects are ignored, the results reduce to those obtained by I ifshitz [Sov. Phys. 2,
73 (1956)] for the atom-wall interaction and by the present authors for the electron-wall interaction.
The results simplify greatly for an ideal metallic wall and for a wall made of material such as liquid
helium, for which the dielectric constant and the permeability are very close to unity. Other than
in the determination of the amplitudes of the Fresnel modes, the calculations are entirely classical.

PACS nuinber(s): 31.30.3v, 12.20.Ds, 77.90.+k, 41.20.—q

I. INTRODUCTION AND NOTATION

In a recent work [1] we employed Fresnel modes [2],
quantized [3], to calculate the retarded Casimir interac-
tion of a polarizable system and a dielectric wall in the
asymptotic domain. In that work the known results for
the atom-wall interaction [4] were reproduced and appar-
ently previously unrealized results were derived for the
electron-wall interaction. However, in order to concen-
trate on matters of principle, we neglected the efkcts of
the magnetic field and assumed p2 ——1 for the magnetic
permeability of the wall. Here, apart from the neglect
of the spin of the electron, the full electric and magnetic
Casimir interaction (in the asymptotic domain) will be
treated. We shall employ the same notation as in Ref. [1]
and draw heavily on the discussions in that work. In par-
ticular, it has been argued on physical grounds that only
modes with frequencies u 0 are important. This leads
to an enormous simplification of the discussion compared
to that given by I ifshitz [4] and in Ref. [1], but it is lim-
ited to the asymptotic domain. Thus, only the case of
walls with real refractive index satisfying

very close to unity, and even for this case Eq. (1) will
almost always be satisfied. ]

Consider two semi-infinite and homogeneous media
with a plane interface, characterized by the permittivities
and permeabilities ei, p, i and E2, p2. A Fresnel mode of
class I consists of an incident plane wave (from medium 1
onto medium 2), a reflected plane wave, and a transmit-
ted plane wave, all with a given frequency a and a given
linear polarization A. We assume that

n2(~) = ['2(~) p2(~o)] ) ['i(~o) &(~)] = "i(~) .

There are two independent linear polarizations, namely
E perpendicular (A = 1) and E parallel (A = 2) to the
plane of scattering, where E denotes the electric field.
(The A = 2 case is depicted in Fig. 1 of Ref. [1].) The
corresponding magnetic fields are

B = (~up/k)k x E .

The mode q—:(k', A), where k* denotes the incident
wave vector and z = 0 the plane interface, is defined by

nzp ——(ezopzo) ) 1i/2 ~(Eieik*.r + Ev elk r) z(0
z &0. (1.2)

need be considered. Here E'zp = ez (M = 0) and pzp = p2
(io = 0) are, respectively, the dielectric constant and the
magnetic permeability of the wall at zero frequency. We
always have ezp ) 1. The restriction iinposed by Eq. (1)
is clearly satisfied for ferromagnetic materials, which have
p20 pp 1 and are the only materials for which p2O plays
a significant role. [It is also satisfied for paramagnetic
materials, for which @20 is very close to, but greater than,
unity. Diamagnetic materials have @20 ( I, but p, 2O is

Here the superscripts i, r, and t refer to incident, re-
Hected, and transmitted waves and N is a normalization
constant. It can be shown by an analysis similar to that
given in Appendix A of Ref. [1] that the choice

N iE'i = (2vr) e, ]

leads to the orthonormality relation
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f r(r) fq(r) ~ f*,(r) dr = 8qq

= 8(k* —k' ) Hag~

(1.4)

k' —= k = (k, k„, k ),
k" = (k, ky, —k, ), k' = (k, ky, k, ),

(1.5)

with k, given by Eq. (1.14) below, and to Fresnel's for-
mulae [3] for the reflection and transmission coefficients
R = E"/E' and T = E /E'. For E' perpendicular to
the plane of scattering these coefficients are given by

P2kz —Pgkz

P2kz + Pgkz
(1.6)

provided ~ and p are independent of the frequency ~.
(They may depend, even continuously, on the location
r.) If the permittivities and permeabilities are frequency
dependent, the diQ'erent modes are no longer orthogonal
but still form a basis for unique expansions of the fields
[1]. The boundary conditions imposed on the compo-
nents of the electromagnetic Gelds at the interface z = 0
lead to Snell's law

k' = k = (k, ky, —k, ),
k = (k, k„,+k, ), k' = (k, k„, —iK, ),

(1.15)

where the signs have been chosen to make k and K
nonnegative. These wave vectors satisfy the dispersion
relations

k +k +k =n (u/c (1.16)

k +k —K =n (u/c

It can be shown that the orthogonality relation Eq. (1.4)
remains valid even for decaying modes, provided e~ is
replaced by ez in expression (1.3) for the normalization
condition.

where 0, is the critical angle for total reHection, given by
sin0, = ni jnz. (Recall that we are assuming nz ) ni. )
For 0 ( 0„ the reflected and transmitted waves are plane
waves of the same general form as those for class I. For
0 ) 0, however, the transmitted wave in the region z ( 0
is replaced by a decaying wave. Thus, for class II modes
with 0 ) 0 we have

and

2P'2 kz
)

P2kz + Pykz

II. THE INTERACTION OF A POLARIZABLE
SYSTEM AND A DIELECTRIC PERMEABLE

VILL
from which

follows. For E' parallel to the plane of scattering, one
has

pl 2 z p2nykz2 2

p, ,n2k, + p,2n, k.2 2

2p2nyn2kz
2 2 )

pgn2k, + p2n~k,
(1.10)

and hence

1 Tll(nik~/nzk~)

In both cases the intensities B and T are related by

R'+ T'(haik, /pzk, ) = 1 . (1.12)

The components of the wave vectors in Eq. (1.5) are all
real, k and k are non-negative, and, with u and n
ep denoting the frequency and index of refraction, they
satisfy the dispersion relations

k2 + k2 + k2 k2 2 2/ 2

k +kz+k —n ur /c

(1.13)

(1.14)

A second class of Fresnel modes (class II) consists of
plane waves incident from medium 2 on to medium 1.
We must here distinguish between 0 ( 0, and 0 ) 0,

Let a polarizable system be placed in medium 1, which
we now assume to be a vacuum with eq ——pq

——1, at a
distance E from a wall (medium 2) characterized by ez
and p2. We assume that in the absence of the wall, the
polarizable system placed at (0, 0, z = E) wou—ld be in a
spherically symmetric state. The introduction of the wall
changes the electric and magnetic Gelds at the location
of the system, and the system becomes polarized by the
vacuum Huctuating Gelds. The interaction energy of the
system with given components of the Gelds Kq and Bq
[deflned in Eqs. (2.3) and (2.4) below] is

(0
~ [

—-ni(cu) E —-Pi(~) B ] ~
0), (2.1)

A = ) (2qrhc /ur7) ~ (aqfq+ atf*), (2.2)

where o.i(u) and Pi(tu) are the dynamic electric and mag-
netic dipole polarizabilities of the system. Only that part
of the interaction energy which depends on the distance E

of the system from the wall need concern us —the rest,
namely the part which does not depend on E, merely
contributes to the self-'energy of the system-wall pair at
infinite separation. In writing Eq. (2.1) the dipole ap-
proximation, in which the fields are assumed to stay con-
stant over the system, has been made. For a given dis-
tance E, this approximation breaks down at sufficiently
high frequencies w. To avoid spurious divergencies, we
shall employ, whenever necessary, a cutoK factor in the
integrals over ~.

We turn now to the quantized electromagnetic Geld. In
the Coulomb gauge, in a box of volume w, the expansion
of the field in terms of Fresnel modes fq(r) is [2]
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E = —— =i ) (2~@v/7. )'~ (aqfq —atf*) =—) E~,

(2.3)

PI& —recall that k~ is non-negative—

V, (———vr) ni ((u) Rufq(0, 0, E—) f '(0, 0, E—)

B= V x A
= ) (2~he /(u~)') (aqV x f + atV' x f*)

Bq. (2.4)

[a~, a, ] = [at, at, ] = 0, [a. a, l
= ~w . (2.5)

Here aq and a are the usual destruction and creation
operators, satisfying

= —vr ) dk~ dky dk2 ni(ur)huN
—OO —OO 0

x Iz' e-*"'+z",'"'I' (2.11)

we see that only cross terms of the form E ' E" and
E' ~ E" contribute to the interaction energy V&. The
direct terms E'.E' and E" E" do not depend on E and,
hence, express self-energy. Employing polar coordinates
with k = ~/c (since ni ——1) and k, = k cos 0 = (~/c)p—we use 0; = 0 and p = cos 0 —the contribution of
class I modes to V is

With IO) denoting the vacuum state for the photons, use
of the commutation relations (2.5), the normalization
condition (1.3), and the relation

—(V x f~) . (V x f*)dr =1 (d'
e—f~ . f * dr (2.6)

0 + — 0 dr

+(4 4)
= ) . (2.7)

This is, indeed, the desired result for the expectation
value of the ground-state energy of the electromagnetic
field; each mode of frequency u carries, at it shouM, the
energy her/2. Since

[which follows from the definition (1.2) of Presnel's
modes] yields

VI VI + VI

4~25 1) d~ Re dp ~2 e 2i~EP/c
e3

A=1,2

x [~'~i(~) (Z' E')
+c (u pi((u)(k x E' ) (k" x E )]. (2.12)

z' z" = Iz'I'R~ (2.13)

and

(k x K' ) . (k" x E") = Iz'I k R (1 —2cos 0) (2.14)

As argued before [1], the range of contributing w's in
these integrals is 0 & w & u where c3 « u0 and where Mp

is the smallest frequency of significance in the absorption
spectra of either the wall or the system.

To perform the sum over the polarizations A in
Eq. (2.12) we note that for E' perpendicular to the plane
of scattering

(0
~

B
~

0) =
(

0 ) E 0 = ) 2OM f~ f ' (2.8)
q

and

whereas, for E' parallel to the plane of scattering,

E* E' = Iz'I Rii(l —2cos 0)

and

(2.15)

(O~iB iO) = 0 ) B' 0)
= ) (22rhc /(u) (V x fq) (V x f*),

(2.9)

Eq. (2.1) yields for the total energy due to class I modes

(k x E' ) . (k" x K") = Iz'I k R

We use these results together with the normalization con-
dition (1.3) and express the reHection coefficients R and
R~~ [Eqs. (1.6) and (1.9)] in terms of the variables p and

V' =V,', +V
= —vr) cfi(u))ha) fq . f *

q

—2r) [Pi(u))hc2/(u] (V' x f~) . (V' x f *) .
(2.10)

s = (e2p2 —1+p )'~

instead of k = kp and k, = k8, that is, we write

P2P —8

P2P+ 8

(2.i6)

(2.17)

Here f~(r) is to be evaluated at the system's location,
r = (0, 0, E). As mentioned above—, the energy V is
given by the sum of two terms: a term depending on the
distance E, which we will denote by V, and a self-energy
term. For example, writing explicitly the expression for We thereby obtain

6'2P —8

E2P+ 8
(2.is)
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OO 0
~I

2mc 0
3 d~ ~ Re dp e2'~e"/ ~

1 (2.19)

Ik x E
I

= (cu /c )IE'I IT I
Icos0»l +sin 0»

(2.26)

where

X [Cll (M)H(p, e2, P2) + Pl (a ) H(p, P2, e2)] where 0& is, formally, the angle of the transmitted wave.
Since

H(p, x, y)—: + (1 —2p2)vp 8 —XP

8+ yP 8+XP (2.20)
sin 0&

—~&sjn 0 & ]. for 9 & 9 (2.27)

We turn now to the contribution of class II modes,
those with waves incident from z & 0. Since only modes
with low frequencies contribute, n2(cu) ) 1 and there will
be a critical angle for total reflection, given by sin0, =
1/n2. For 0 ( 0„ the transmitted wave contributes only
to the self-energy of the system-wall pair, since

is independent of S. On the other hand, for 0 & 0„ the
transmitted wave

and

Ik' x E'I' = (~'/c2)IE*I'IT I' (n', —1)
+n,'(1 —2p')' . (2.29)

From Eq. (1.7) we have

we have

I
cos0»l = ll —sin 0»l = sin 8» —1 = n2(1 —p ) —1

(2.28)

i(k ~+k„y—iK.z) K. &0 J 2 z

A: —iP2K
(2.30)

decays for z ( 0. Its absolute value squared at the sys-
tem's position z = E, namely IE—I2 e 2~*», does depend
on 8 and therefore contributes to the system-wall interac-
tion energy. Using polar coordinates with k = n2(~/c),
the contribution of class II modes is

so that, using Eqs. (2.23) and (2.24), we obtain

24@2P

p2 (e2P2 —1) —(p2 —1)e2p
(2.31)

~sr ~rr + ~rr
mam

OO P
2

0
IE'I' = IE'I'IT' I'

I
cosa»l'+»n'0»

—IE*I ITlll (n', —1) + n', (1 —2p') (2.32)

In the second case, that is, for E' parallel to the scatter-
ing plane, we have

x
I

—,n, (~)IE'I'+ —& (~)lk' «'I' I,
(2.21)

aIld

Ik' x E'I' = (cu'/c')IE'I'IT' I' . (2.33)

where By Eq. (1.10)

P, = (1 —sin 0,) ~ = (n2 —1)/n2

Using Eqs. (1.17), (1.18), and

k, = n2(~ /c )P

to express K in terms of P, we find

(2.22)

(2.23)

Tll 2n2 z
2P2k —in2K,

which leads, using Eqs. (2.23) and (2.24), to

2

IT II I2
ez (e2 p2 —1) —(e2 —1)p2p

(2.34)

(2.35)

K, = ((u /c ) [n2(1 —P ) —1] . (2.24)

In performing the sum over the polarizations A in
Eq. (2.21), two points must be kept in mind. First, since
the incident waves in class II modes fall from medium 2
onto medium 1 (the vacuum), the roles of the two me-
dia in the expressions given for the reflection and trans-
mission coefFicients must be interchanged. Second, if a
is a vector with complex component, we of course have
Ial = la I

+ la„l2+ la, l
. We then find, for E' perpen-

dicular to the scattering plane,

Inserting these results in Eq. (2.21) for V~~ and using the
normalization condition (1.3) with eq -+ e2 leads to

OO P
d»3 n3 dp e-2~-'

4mC3 0

x (a~(a') [G(p, e2, p2)
+F(p& P2 ) e2) G(p& P2 ) e2)] + Pl (M) [e2 ++ p2] ) .

(2.36)

In Eq. (2.36), we have

aIld

IE'I' = IE'I'IT I' (2.25) F(p e2 p2) = P(p~ p2 e2)

= (n22—1) + n22(1 —2p2),
(2.37)
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results expressions (2.19) and (2.40) can be combined to
give

and G(p, pz, ez) is given by Eq. (2.38) with ez and pz
interchanged. Note that

h
d~ ~ [ni (~) J,l(C1,0,;~,~)3

2xc
+pi(~o) J g(C1 0,;,cu)]

(2.52)

(2.39)

27t c
dM (d [o!1(Cd) Q l((d) + pi(M) Q (M)],

(2.40)

Changing the variable of integration from p to P
(c/w)K we obtain, using Eq. (2.24),

where the contour Cq p; runs from 1 to zero along the
real p axis and then from zero to ioo along the imaginary
p axis. In Secs. III and IV, the general expression (2.52)
for the interaction of a polarizable system and a wall
will be specialized to the atom —dielectric-wall case and
to the electron —dielectric-wall case, whereby considerable
simplifications can be achieved.

where III. THE ATOM-WALL INTERACTION

Q l(~) = dP 2P(nz 1 Pz)1/2 e
—2 &&/

x h(pz, ez, P) + (1 + 2P ) h(ez, pz, P)

(2.41)

Qrn~g(&) Qel(&) ez M nz)

h(ez, pz, P) = ez/[(nz —1) + (ez —1)P ], (2.43)

and

(
2 1)1/2 (2.44)

Q.l(~) = dP e 2 / Re[iH(P, e„pz)], (2.45)

Now, employing the definitions (2.20) and (2.16), the
functions Q, l(w) and Q g(u) can be written as

lim
p —+p

t'cl'
e ~ ez' '"/'~sd~ = 6

I

l,2Ip)
(3 1)

Inserting this result in Eq. (2.52) and denoting the atom-
wall interaction by the subscript Ato, we find

As mentioned above, only low frequencies 0 & u & a
contribute significantly to the integral in Eq. (2.52). We
can, therefore, replace ez(cu) and pz (u) appearing in the
definitions (2.47) and (2.48) of J,l and J g by ezp = ez

(cu = 0) and pzp = pz (w = 0), thereby reducing the cu

dependence of the J's to the exponential e2' "/ . Sim-
ilarly, the polarizabilities ni(w) and Pi(w) in Eq. (2.52)
will be replaced by their static values aip = ni(cu = 0)
and pip = pi (u = 0). Having done that, we can ex-
tend the upper limit of the integral over u to oo. We
now change the order of integration in Eq. (2.52). In-
troducing a cuto8' factor e ~ to take care of spurious
divergencies arising from the dipole approximation, we
find

Defining

J,l(C, cu)
—= Re dp e ' "/ H(p, ez, pz)

Qmag(~) = Qel(&I ez ++ nz) (2.46)

(2.47)

VAtD =—3hc (
Re

I
dp+ dp

I167rl4 ( 1 0 )
olpH (p) ezp & pzp) + plpH(p) p20 s ezp)

X
p4

(3.2)

Now consider the integrals

J~~g (Cl ld) = Jel(C, (d; ez ++ 'lL2) (2.48)

where C is an arbitrary contour in the complex p plane,
we have

dP H(P, ezo, V 20) /P',

dp H(p, pzp, ezp) /p

Q.i(~) = J.i(C0„-~,~) (2.49)

and

(2.50)

where the contour Cp,.~ runs from zero to iA along the
imaginary p axis. Since, by Eqs. (2.20) and (2.16),

Re [iH(p, ez, pz)] = 0 for p )4, (2.51)

the contour t p,.~ can be extended to Cp, , which runs
along the imaginary p axis from 0 to ioo. Using these

where Cp is a closed contour running along the real axis
from P ) 0 (eventually we will let P l oo) to 0, then
along the imaginary axis to i P, and then, along the quar-
ter circle with radius P, back to P. We now assume that
p2p —1 ) 0; since E'2p —1 ) 0, it is easy to check that
neither H(P, ezp, Pzp) nor H(P, Pzp, ezp) can have Poles in
the upper right quadrant of the complex p plane. As
pointed out by Lifshitz [4], the singularity of the inte-
grands at p = 0 need not concern us; the contribution
from p = 0 to VAt~ is independent of Z and therefore
adds to the self-energies of each of the two bodies but
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not to their interaction energy. We therefore conclude,
by Cauchy's theorem, that both integrals in (3.3) vanish.
Since H(P, &20, @20) is proportional to P for P i oo, the
integration along the arc i P to P contributes nothing, as
P + oo, and we are led to

H(p, e20, @20) ~ —2p',
H(p, @20,e20) ~ 2p

and, with the subscript E denoting a ferromagnet,

3hc
VAtS' —

4 (o'10 Pip)8~14

(3.7')

(3.s')

= Re dp.
1

(gp, (3.4)

where the last step follows from the fact that the in-
tegrand in Eq. (3.2) is real along the real p axis. We
thus derive the following simplified result for the atom—
dielectric-wall interaction in the asymptotic domain

3hc
V~~a =

~4

dp [ctlp H(pi e201 V20) + P10H(p) p201e20]
4

(3.5)

Setting Pip ——0 and p20 = 1 in the last equation we re-
cover I.ifshitz's result [4]. Since Eq. (3.5) involves only
one-dimensional integration, it is easy to calculate the
interaction V~&D numerically as a function of the two pa-
rameters involved, namely E'20 and p20. It is also possible
to evaluate the integrals analytically. Using Eq. (2.20)
and the Appendix, we find

VAtD = 4 1oio ——2@201~ l(1, @20)
—2e201"'(1,e20)
+4 0eI2l (1& e20)] +Pip [e20 ++ @20]). (3.6)

Setting Pip = 0 aild @20 = 1 Eq. (3.6) reduces, as it
should, to the result derived by Dzyaloshinskii, Lifshitz,
and Pitaevskii et al [5].

As a further check, we could use the analytic proper-
ties of the functions I& (1), defined in the Appendix, to
derive from Eq. (3.6) some known special results (e.g. ,
the atom —ideal-wall interaction). It turns out to be sim-
pler to derive these special results directly from Eq. (3.5).
Thus, using 620 M oo for the case of the ideal conducting
wall, we find from Eqs. (2.16) and (2.20) that as e20 -+ oo

As can be checked, Eqs. (3.8) and (3.8)' follow also from
the general expression (3.6) by use of the asymptotic ex-
pressions (A19)—(A23).

The case e20 1 and @20 1 is also of interest. From
Eq. (2.16) we obtain

2
80 —620@ %20 1 E20 —1
80 + ~20' 4@2

2
80 p 20@ 2p @20 1
80 + P20P 4p2 2

(3.9)

As a special case, consider a wall made up of a dilute gas
of atoms. We then have

620 —1 = 4aN2~t0. 20 (( 1)
@20 —1 = 47r%2AtP20 « 1, (3.11)

where N2At is the number density of atoms in the wall.
Furthermore, the atom-wall interaction in this case is
given by the sum of the interactions of the atom in the
vacuum with all the atoms of the wall. Assuming the
atom-atom interaction at a distance r to be given by a
power law

VAtAt(r) = -&,/r', (3.12)

we find by integration [8]

VAtD(e20 = 1) V20 ~ 1)
= -2~~2«&, /[(q —2)(~-3)~' '] (3»)

Inserting this approximation into Eq. (2.20) and perform-
ing the integration in Eq. (3.5), we find

VAtD(f20 1, @20 = 1)"', (~ip -,'(n20 —1) —5(.» —1) + (p20 —1)

+Pip s (~20 1) 5(@20 —1) + (e20 1) )
(3.10)

H(p, &20) p20) ~ 2p

H(p~ P20i e20) ~ 2p

and, hence, by Eq. (3.5),

(3.7)

Comparing Eq. (3.10) with (3.13) and using (1.1) and
(3.].].), we obtain q = 7 for the atom-atom power law
and

hc
+7 [23(etio~20 + P10P20) 7(o'loP20 + n20P10)]

4m

—3'
VAtM 4 (o'10 Pl 0)8~84 (3.s)

where the subscript M indicates that the wall is an ideal
(metallic) wall. This result was derived by Boyer [6].
The original derivation, with Pip ——0, is due to Casimir
[7]. For an ideal ferromagnet we let @20 ~ oo. The
signs in Eqs. (3.7) and (3.8) are then reversed, that is, as
@20 ~ OO)

(3.14)

for the coefficient in Eq. (3.12). These results have been
known for a long time [9,6].

IV. THE ELECTRON-WALL INTERACTION

Our analysis of VE~D will differ from that of V~t~ in two
respects. First, we will neglect the magnetic properties
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of the electron, that is, we ignore the spin and set Pi ——0.
(We do not ignore the permittivity of the wall. ) Second,
while the static limit nip of the polarizability ni (u) exists
for an atom, it does not for a &ee electron, for which

H(p, E20 = OO, @20) = 2p

H(p, e20 ——oo, @20) = 2p —2p = 0 )
(4 9)

For the electron —ideal wall interaction (&20 ——oo) we use

0!] M = —e mba (4.1) to obtain from (4.7)

lim e ' e"'» ~d~= —
I

( c l'
2&p)

(4.2)

Using the low-&equency limit 62p and p, 20 for the wall
and inserting expression (4.1) for cti(w) into Eq. (2.52),
we could try (as in the atomic case) to integrate first over
~, that is, to employ

he
ElM —

4 E2 ) (4.10)

a known result [10,11].
A similar procedure, starting from Eq. (4.7), does

not work for the electron-ferromagnetic wall (@20 ~
oo). The failure can be traced to the lack of commuta-
tivity of some limiting processes. Thus, we have

to obtain

re' tOO

VEiD = —
2 «

I
dP+ dP

I8vr mcus o )
H(p) 620) @20)X

p

(4.3) but

620 —1 2lim lim H(p, e20) @20) ~ 2 p,
P, 2O ~OO P~OO ~20 + 1

lim lim H(p, 620) @20) - —2p
P~OO P,2p ~OO

While it is still true that H(p, 620 /l20) has no poles in
the upper right quadrant of the complex p plane, it is no
longer true that the integral along the quarter circle from
iP to P vanishes. On the contrary, since

H(P) e20) 1) 2 P—:BP
E2p + 1

(4.4)

as P oo, this integral diverges. We must, therefore,
extract from H its asymptotic part given by Eq. (4.4),
before the procedure leading to Eq. (3.5) can be applied.
Writing H(p, e20, @20) in the form

H(P e20 )tt20) = BP + H(P e20) 020) ) (4.5)

we can calculate explicitly the contribution V~ from the
asymptotic part, namely

he2
22

62p —1
87t fAcf 62p + 1

(4 6)

where Eqs. (4.4) and (4.3) have been employed. [The
second integral in Eq. (4.3) does not contribute, since the
integrand there is purely imaginary. ] Since H(p, &20) @20)
defined by Eq. (4.5) behaves as a constant for p ~ oo,
the procedures which lead to Eq. (3.5) can be applied «
H and one obtains

[The problem did not arise in the electron —metallic-wall
case since H(p, f20) /l20) approaches 2p foi' E20 ~ oo and

p oo, for either order of the limiting processes. ] One
has to fall back upon Eq. (4.3) from which one easily
obtains both Eq. (4.10), in the limit e20 ~ oo, and

he2
VElS =—

4~ mcE2
(4.10')

in the limit p2p ~ oo. Incidentally, the same diKculty
arises when one tries to apply the asymptotic behavior
(A19)—(A23) to the general expression (4.8). It works for
the electron —metallic-wall case but fails for the electron—
ferromagnetic-wall case due to the divergence noted in
Eq. (A24).

For F20 1 aild )tt20 1 we have by Eqs. (2.20), (3.9),
(4.4), and (4.5)

H(p) e20 = 1, )tt20 = 1)
= )('M )) + (P» ))) (2' )) (4.11)

Inserting this result into Eq. (4.7), we obtain

VE)D(&20 = 1) 020 = 1)
he

[11(f20 —1) + 5()tt20 —1)] . (4.12)
48vr mcE2

VElD—
he2

2
2

e2p —1

8' mcE2 e2p + 1
dp—

2
H (p) &20 ) @20)

(4 7)
l ElAt(&) +gr (4.13)

In particular, for a wall made up of a dilute gas of atoms,
assuming a power law for the electron-atom interaction,

Finally, using the definitions (4.4), (4.5), and (2.20), we
obtain

we obtain, using (3.11), (3.13), and (4.12),

he2
q = 5, cs —— (llct20 + 5p20)4' mc

(4.14)

VE1D —4 —2p20I (1 @20)
8m mcE—2620I~ l (1, e20) + 4&20I (1, &20)I

(4.8)

where the I's are given in the Appendix.
We now evaluate VElD for some known particular cases.

The n and p terms were obtained previously for the in-
teraction of a charged point particle and a neutral sys-
tem [12], while the n term was obtained previously for
the interaction of a charged point particle and a charged
system [11].
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V. DISCUSSION

For the very limited case of asymptotic separations,
the results obtained encompass essentially all of the re-
sults obtained previously for the interaction of an elec-
tron or of an atom with a dielectric permeable wall, of
two atoms, and of an electron and an ion or atom, and are
somewhat more general than those results. The asymp-
totic domain is a relatively simple one, by virtue of the
fact that the various frequency-dependent polarizabili-
ties reduce to their zero- or very-low frequency values.
A manifestation of that simplicity is that apart from the
determination of the amplitudes of the Fresnel modes,
the calculation is entirely classical.

where

s+P —a
A(P) =

and

Similarly we find

and

b

( 2 )1/2 lnB(P)

B P s+ P —[(6 —1)/(6+ 1)j / a=
+P+i(6 —1)/(6+1)i/-

(A6)

(A7)

(As)
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APPENDIX: EVALUATION OF SOME
INTEGRAL S

2(b+ 1) 6 —l. s+ P(o) 1 P b+ 1 a

111B P
(6 —1)(b' —1)'/'

For further reference we note that

I( )(P, 6) m 0, I( )(P, 6) -+ 0,
I(')(P, b) - P/(6+1)

as P + oo. Using

2 2= ~2opao —1 = neo —1,
we find

(A9)

(A10)

(A11)

where

P
dp s —bp

p~ s+ bp
(A1)

Only definite integrals are required for our purposes,
but it will be useful to begin by considering some associ-
ated inde'. nite integrals. We introduce

2b' —1 lnC
2(n 1)

(A12)

where

I( (P = 1,6)=
2(n'o —1)

6(62 1)1/2
lnD,

(-,.—1)

(
2 + 2)1/2

a =neo 1)0 b:ego OI @go,2 — 2

and q = 4, 2, or 0. We rewrite Eq. (Al) as and

t."= n.o + (n', , —1)" (A1S)

J(a)(P 6)

where

I(a)(P 6)

The transformation

P

q ]Pp—i, —26 I(~) (P, 6),

dp
q =4, 2, 0.

p&
—i s+bp '

(
2 + 2)1/2

(A2)

(A3)

(A4)

D = (n2o + 6) / (bn2o + 1) + (6 —1) / (n2o —1)

Similarly, we find

I(2) (P 1 6)
1 b

2 1/2 + 2 1/2 ln D
(n —1) (6 —1)

and

(A14)

brings the integrand in Eq. (A3) to a rational form suit-
able for quadrature. One obtains

I(')(P = 1, 6) =, (6 —n2o)
b —1

I( )(P, b)

2s+P+ 2 P+ 2 in+(P)1 1 2b —1 1 2b —1

a3 (A5)

6(n2o 1) /

(62 1)1/2
(A16)

To facilitate comparison with other works, we will need
the values of I( )(P = l, b = 1) for q = 4 and 2. These
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are given by

I()(P = l, b= 1)

1 1
(A17)

bI( )(l, b) -+ —1,

bI( P)(l, b) m 1 .

(A19)

(A20)

(A21)
and, using Eq. (A15) and 1'Hospital's rule,

I( ) (P = 1, b = 1)
The limits, as n20 —+ oo, are much easier to find. We
obtain

(
2 I)1/2

1/2

(A18)
(nzp + I) o

ngp ~OO
(A22)

Finally, it is useful to have expressions for the asymp-
totic behavior of the functions I( )(I, b) in the limit
b ~ oo or n20 ~ oo. For 6 ~ oo we expand in powers
of the parameter (n2p jb) [recall that (nzp/b) is propor-

-X/2tional to either e2p or pzp ]. Keeping powers up to
and including third order, we 6nd, as 6 ~ oo,

Note, however, that

I( )(1,b)

(A23)

(A24)
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