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A number of diferent approaches have been used to determine the interactions between a variety
of pairs of polarizable systems asymptotically far apart; these are examples of retardation or Casimir
interactions. The pairs include two dielectric walls, and an atom and a dielectric wall, but not an
electron and a dielectric wall. (The asymptotic value of the interaction between an electron and
an ideal conducting wall has been evaluated. ) We here apply a method not previously used in
the evaluation of retardation potentials, quantized Fresnel modes, to determine the interaction in
the asymptotic domain of a polarizable system and a dielectric wall. We thereby reproduce the
known result for an atom and a dielectric wall and obtain a previously unobtained result, that for
an electron and a dielectric wall. The result simplifies greatly for an ideal metallic wall and for a
wall made from a material such as liquid helium for which the dielectric constant is very close to
unity. We also discuss the question of a connection between the electron —dielectric-wall interaction
and Lifshitz's force per unit area between two dielectric walls. The determination of the amplitudes
of the Fresnel modes, by quantization, is the only nonclassical element in the calculation.

PACS number(s): 31.30.Jv, 12.20.Ds, 77.90.+k, 41.20.—q

I. INTRODUCTION

There are a number of pairs of systems for which the
asymptotic value of the interaction is known. These in-
teractions represent retardation or Casimir interactions.
The pairs include two ideal walls [1] with a vacuum be-
tween them, and, more generally, two dielectric walls
with a vacuum [2] or a dielectric medium [3,4] between
them. The walls are semi-infinite, plane, and parallel;
ideal walls have infinite conductivity. The pairs also in-
clude an atom and an ideal wall [5] and, more generally,
an atom and a dielectric wall 2], two atoms [6], an elec-
tron and a neutral system [7, an electron and an ion
[8—10], and an electron and an ideal wall [11,9,12]. In
many of these cases more is known than just the leading
asymptotic form.

A pair for which the asymptotic form of the interac-
tion does not seem to have been determined is an elec-
tron and a dielectric wall. We will use a method not
previously applied to the study of Casimir interactions,
namely that of quantized Fresnel modes. The method is
of interest in its own right and, as discussed in Sec. VI,
the electron —dielectric-wall interaction may possibly offer
an alternative approach for confirming a Casimir effect.

We turn now to the important; question of how to
describe a wall. A useful description is given by its
frequency-dependent dielectric "constant. " In Lifshitz's
approach [2], the electromagnetic modes are calculated
by means of the fIuctuation-dissipation theorem and,
as indicated by the word dissipation, retention of the
frequency-dependent imaginary (absorptive) component

of the electric permittivity often referred to as the di-
electric "constant" is essential. In our approach, the
quantized electromagnetic Fresnel modes are introduced
by hand, so to speak, and, rather surprisingly, the imag-
inary parts must be excluded; ey = ey(cd) and e2 ——e2(w)
will refer to the real parts of the electric permittivities
of the two walls. In the present context in which only
asymptotically large values of the separation E are con-
sidered, a crude physical justification for using the real
parts can be based on the fact that only very low fre-
quencies are relevant a point to be much discussed
below and that e(w) becomes real as w approaches
zero. For some justification for using the real parts for
arbitrary values of w, see Ginzburg [13],especially p. 338,
and references therein. See also Milonni and Shih [14].
They give a much more formal but rather wide-ranging
discussion of the subject, showing why various seemingly
disparate approaches lead to the same result. They too
give references to earlier papers on the question of the
retention or elimination of the imaginary parts.

We will make contact between our results for the
electron —dielectric-wall interaction and results deduced
from the expression derived by Lifshitz for the force per
unit area between dielectric walls. Indeed, we will show,
with perhaps some ambiguity, how one can derive the
electron-wall interaction from Lifshitz s expression.

Lifshitz ignored all magnetic effects he set the mag-
netic permeability equal to unity and he ignored mag-
netic fields generated by oscillating electric multipole mo-
ments and in the present article we will do the same.

We emphasize the fact that all of our considerations
are limited to separations Z which are asymptotically
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large. Nevertheless, we use the equal sign when 8 is
the only parameter which is asymptotically large. This
enables us to make clear, by the use of the asymptotic
symbol, when some other parameter is asymptotically
large.

Preliminary remarks on the electron-+rail
interaction

Our primary goal will be to obtain the interaction VElD
of an electron and a dielectric wall, where the electron is
at a distance E from the wall. (We use the subscripts
El, At, D, and M to refer to electron, atom, dielectric
wall, and metallic wall, respectively. ) Our determination
of VElD will involve a fair amount of notation, formal-
ism, and algebra, and one can arrive at the final result
with little physical understanding. It is therefore use-
ful to note that a wealth of information concerning VElD
follows on general grounds [15], so much so that one can
readily derive a simple useful approximation to VFlD. We
give a brief review of the argument. We begin by deter-
mining the dependence of VEl~ on dimensional quantities
e, m, c, h, and E. To do so we use a slight adaptation
of a method discussed previously [10] in the determina-
tion of some Casimir interactions which did not involve
dielectric walls. We extract some of the essential physics
and then use dimensional analysis. Dimensional analysis
alone does not always su%ce. We then go on to obtain
the approximate dependence of VElD on the electric per-
mittivity e2(w) of the wall.

The essential physics includes the recognition that the
wall is completely characterized by its electric permittiv-
ity e2(ur), and the electron, which can be treated as free
for present purposes, is completely characterized by its
dynamic electric dipole polarizability ni(cu) = —e2/mu2.
At the asymptotically large values of E under considera-
tion, only low-frequency components of the vacuum fIuc-
tuation electric field are significant, and e2(w) can be
replaced by the real number e2(QJ = 0) = E20. Further-
more, VElD is the integral over all electric field modes
of —(I/2)cii(u)E (cu), where E(w) is one such mode
a more precise definition of E(w) will be given later
so that VF1D is proportional to e2/m. Since E2(cu) is
proportional to the energy density of a particular mode,
E (w), and therefore VF1D, are proportional to h. The
only other relevant ingredients are 8 and c, and dimen-
sional analysis leads to

e~h
VE1D 2 gElD (e20)mcE2

so that

~2p = 1+ 47r ~2Ato'2o & (1 4)

where N2~q is the number of atoms per cubic centime-
ter and 0.2p is the zero-frequency electric dipole polariz-
ability of one of those atoms. (We note that t20 ) 1.)
VE1D(E20 1) is the additive sum of the retarded inter-
actions of the electron with the (independent) atoms in
the wall. That retarded interaction, for a separation r,
is [7,8]

ll n20e25
E1At ~

4vr mess (1.5)

The sum (really an integral) is

11 e2h
VElD(e20 = 1) = — ~2Atci20

12 mcE2

11 e26
(e'20 —1)

48vr mc/2

(1.6)

so that

11
gE1D (&20 1) = (&20 1)

48m
(1.7)

[Since for our purposes walls are completely characterized
by e20 Eq. (1.6) is valid not only for dilute walls but for
walls, such as liquid-helium walls, for which e20 1.]

Perhaps the simplest form for gF1D(e20) which satisfies
Eqs. (1.3) and (1.7) is the approximation (denoted by a
prime)

1 E'gp —1
gElD (F20) 4 + (1/11)

(1.8)

which is roughly reliable over the entire range 1 ( E2p

oo, and which leads to the approximation [15]

(1.9)

Analogous arguments [15] provide approximations to
VAt, D»d VDa.

1
gE1D(oo) = 4'

Second, we (formally) consider a wall consisting of a di-
lute gas of atoms. We then have e2p = 1, or, more pre-
cisely,

1 e~h
VElM-

4vr mc/2 (1.2)

This difI'ers from the form arrived at in the analysis of
VE1M in Ref. [10] in the multiple of (e 5/mcus ) is not an
arbitrary real constant but gE1D(620), which at this stage
is an arbitrary real function. We can impose two condi-
tions on gE1D(E20). First, the interaction of an atom and
an ideal (metallic) conducting wall (t20 —oo) is known
to be

II. NOTATION AND QUANTIZED FRESNEL
MODES

Two semi-infinite materials, characterized by dielectric
constants ei (r) and e2 (r), respectively, have a plane inter-
face. A plane electromagnetic wave is incident at an angle
0, to the normal to the wall from medium 1. See Fig. 1.
The superscripts i, r, and t refer to incident, reOected,
and transmitted waves. The re8ection and transmission
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z ~II(Ei eik r + Er eik" r) z ) pf (r& = ~IIK t &ik r~ t (2.5)

To avoid a very cumbersome notation we have used the
same notation as for class I modes, but note that some of
the symbols have different meanings for the two classes;
~, however, is the same. The components of the different
class II wave vectors for 0 ) 0 are given by

k'—:k= (k, kv, —k, ), k" = (k, ky, +k,),
( )k' = (k, ky, —iK, ),

where k, k„,k„and K are real and k, and K are non-
negative. The dispersion relations are now

k + k„+k, = e2(u2/c,
k2 + k2 ~2 E id2/C2

(2.7)

(2.8)

FIG. 1. Presnel mode, class I. The polarization depicted is
that for E parallel to the plane of scattering.

coefficients are denoted by R = E"/E' and T = E /E'.
In particular, we use B and T for E' perpendicular to
the scattering plane and R~~ and T~~ for E' parallel to (in)
the scattering plane. The symbol q:—(k, A) for a mode
represents the wave vector k and the index of polariza-
tion A. If eI(r) = cI and e2(r) = E2, whe're eI and e2 are
constants and e2 ) eq, the Fresnel modes for waves inci-
dent from the half-space z & 0, defined as class I modes,
are given by [16]

(dV' x [V' x fq(r)] = —fq(r) (2.9)

Since we are here concerned with total internal re8ection—frustrated refraction is the more appropriate termi-
nology —the fq's are decaying functions in the region
z ( 0, the reason the third component of k was taken
to be —iE, . The normalization constant N will be de-
fined below.

In the above analysis it was assumed that eq and e2
were different from one another, but independent of r; it
was not necessary to assume that they were independent
of frequency. Let us now consider the opposite situation,
in which eq and e2 can depend upon r but are indepen-
dent of ~ [16).

The fz(r) then obey the eigenmode equation

f (r) ~I(Ei eik. r + Er eik".r)
~IEt &ik r

z&0
z) 0. (2.1)

and the transversality condition

(2.1O)

The q dependence of the fields will generally be sup-
pressed. % is a normalization constant, de6ned be-
low, and the components of the different wave vectors
are given by

k*—:k = (k, kv, k, ), k = (k, k„,—k, ),
( )k' = (k, kv, k, ) .

this condition demands that the z component of e(r) f~(r)
be continuous at z = 0. In addition, there are the usual
continuity conditions on components of the electric and
magnetic fields.

Since the operator in the eigenmode equation,
Eq. (2.9), is not Hermitian, the f~(r) are not orthogo-
nal. However, the vector functions

All of the components are real, and k, and k are non-
negative. With u the frequency, the wave vectors satisfy
the dispersion relations satisfy

g (r) =—[e(r)]' 'f (r) (2.11)

k2 + k2 + k2 = k2 = er(u2/c2

k2 + k2 + k2 e Ld2/c2

(2.3)

(2.4)

1 gq(r) )
sr &r

(2.12)

A second set of Fresnel modes (class II) represents
waves incident ft. om z ) 0. For an angle of incidence 0
less than the critical angle H„defined by sin 8, = nI/n2
where nq and n2 are the indices of refraction, the class II
modes are obtained from the class I modes by interchang-
ing the constants eq and e2 and replacing z by —z. These
modes are given by

that is, the gz(r) are eigenvectors of a Hermitian opera-
tor, and it follows [16],with the appropriate choice of N,
that

f g~(r) g*, (r) dr = f e(r) f~(r) f*,(r) dr
= b~~ = b(k —k )bye

(2.13)

Equation (2.13) is valid whether or not each of the two
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IE'I'(~')' = [(2~)"~1 ' (2.14a)

and

media is uniform, but in the problems we will consider
they will be uniform. As shown in Appendix A, the
proper choice for that case is

with the limits on k given by 0 and oo for class I and —oo
to 0 for class II modes; there is no factor of 1/(2a), it
having been absorbed in the (%) . With ~0) representing
the vacuum state for the photons, use of the normaliza-
tion condition given by Eq. (2.14) leads to the desired
result,

~E'~'(~")' = [(2~)" ]
'. (2.14b)

A = ) (2vrhc /wq ) ~ (aqfq + atf *)i, (2.i5)

E = —— = i ) (2qrhcu/q. )'~ (aqfq —atf *)

Eq ) (2.i6)

B = V x A = ) ~ ~ (aqua x fq + at% x f *) .
. (2qrhc')

(dr )
(2.17)

The aq and a~ are the usual destruction and creation
operators, satisfying

[aq, aq~] = [at, a, ] = 0, [aq, a, ] = bqq (2.18)

In going from discrete to continuous eigenvalues, P is
to be replaced by

) dk dkv dk
—OO

[As a partial check on Eqs. (2.14), note that they are cor-
rect for eq

——e2, for which f(r) is a plane wave through-
out space. ] For eq and e2 functions of r but not of w,
Glauber and Lewenstein prove not only that the gq's are
orthogonal but demonstrate explicitly that the gq's are
complete [16]. They do not, however, consider the case
for which e~ and e2 are frequency dependent, and allow-
ing for u dependence is essential for our purposes. If we
do so, however, the operator in the eigenvalue equation,
Eq. (2.12), is w dependent, that is, depends upon the
eigenvalue, and the gq's need not be orthogonal. Indeed,
using the explicit forms of the gq's, one can check that
they are not ~ Fortunately, all that will be needed for our
purposes is for the gq's to be complete and for the ex-
pansion of an arbitrary function in the gq's to be unique,
and that is the case. (Between them, class I and class II
modes are represented by six waves all plane waves, or
five plane waves and one decaying mode. The saving fea-
ture is that between them they are represented by only
one plane wave moving toward the interface in the region
z ) 0 and one in the region z ( 0 )

In the Coulomb gauge, normalizing in a box of volume
7, the quantized electromagnetic field is given in terms
of the fq's by

0 + 0 dr= +e(r) E 2(r) B2(r) .(M
8' 8~ q4 4y

q

(2.19)

the energy of a mode of frequency u is, as it should be,
Ru/2.

III. THE INTERACTION OF A POLARIZABLE
SYSTEM AND A WALL

In this section we will derive explicit, if formal, ex-
pressions for the interaction V of a polarizable system
and a wall. (We have used the subscripts El, At, D, and
M to denote electron, atom, dielectric wall, and metal-
lic wall, respectively. It will sufIice for this section to use
the simple notation V for the polarizable-system —wall in-
teraction for it is the only interaction considered in this
section; it will be useful to do so since we will have to
append subscripts and superscripts on V specifying
the class, and the domain of w, under consideration
in the course of its derivation. )

In Secs. IV and V these expressions will be specialized
to the interaction of an atom with a wall and an electron
with a wall, whereby considerable simplification can be
achieved. We assume that eq ——1 and that, in the ab-
sence of the wall, the polarizable system would be in a
spherically symmetric state. With the system placed at
a distance E from the wall, we consider its interaction 7
(to be distinguished from V see later) with the vac-
uum fluctuations of the electric Geld; the wall manifests
itself by its influence on the electric field. We will make
the dipole approximation, in which the electric field is
assumed to be constant over the system. This approx-
imation is better the greater the value of E. (As will
be shown below, contributions to the interaction from
modes with u + c/E tend to cancel, and for w + c/I and
8 large, the variation of Eq the Fourier component of
the Geld at the location of the system will be small
over the dimension of the system. It is essential, however,
to recognize that the dipole approximation, for E fixed,
is incorrect for u sufIiciently large and often leads to in-
Gnities in the estimation of interaction energies. We will,
whenever necessary, compensate for the incorrect treat-
ment of high frequencies by introducing a high-frequency
cutofF factor. ) The interaction of the system with the
component Eq, which is independent of A for the spheri-
cally symmetric system under consideration, can then be
taken to be

(0
I

——,'~, (~) E,' I
0
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Using Eq. (2.16), the total interaction is then

0 ) —n, ((u)E, 0
1 2

= —) [irwin, (~)/r]f~(r) . f*(r), (3.1)

and henceforth we will use 0 for the angle of incidence 0, .
In Eqs. (3.2) and (3.4) it is understood that the only w's
which contribute are those for which e2(w) & 1; this is
made explicit in Eq. (3.5) by the presence of the subscript) on the integral sign.

To perform the sum over the polarizations A, we note
that for E' perpendicular to the scattering plane,

to be evaluated at the location r of the system. Here
ni(cu) is the (real part of) the dynamic electric dipole
polarizability of the system. In determining the modes
in Sec. II, we assumed that e2 ) el or, in the present
context, that e2(w) & 1. There are ranges of values of
u for which this is true, but there are also ranges for
which e2(w) & 1, and it will be necessary to evaluate the
contributions from e2(w) ) 1 and e2(w) & 1 separately.

where

A=1,2

dky

= c (k + k„+ k, ) .

dk, n, (~) E ((u),

(3.2)

A. e2(cg) ) 1

We use the subscripts ) and ( to denote contribu-
tions associated with e2(cu) ) 1 and e2(w) & 1, re-
spectively. Summing over all modes, the contribution
of class I modes to P, with ~'s restricted to those for
which e2((d) ) 1) is

E' E," = ~E'~2R~

where [17]

k —k

k +k
P —82

P+82 (3.6)

k~ =kp, k, =ks2, s2 ——(e2 —1+p )
( )= (n —sin 0) ~

E' = ( E*cos0—, 0, E' sin 0),
E ' = (E'R cos 0, 0 E'R sin 0)—

( @iTII cos0, 0, E'TII sino) .
(3.8)

We then And

E* E" = —iE'i RI'cos(20) = iE'i R" (1 —2p ),
where

n2(w) is the frequency-dependent index of refraction of
the wall. For E' parallel to the scattering plane, we have
(see Fig. 1),

With (0, 0, I) repres—enting the cartesian coordinates of
the system, this becomes

E2 kz kz E2P 82

+ k 62P + 82
(3.9)

V) ———vr ) ni(~)Ru fq(0, 0, —E) f*(0,0, E)— (For later purposes, we note that for e2 —1 & 0 and for 0 )
0, where 0 is the critical angle for total reflection, both
B and B~~ become complex, with absolute value equal
to 1.) We then find, using the normalization Eq. (2.14a),

A=1,2

x ~E' —'k, E + E 'k, lI2
dCd M ni (M)

Note that E does not contribute, since it does not exist
in the region in which the system resides. The contribu-
tions of the terms E '.E ' and E".E" can be neglected.
They are independent of E and therefore add to the self-
energy of the pair consisting of a free system at infinity
and a wall, but not to the system-wall interaction. Only
the cross terms E' E" and E' . E" contribute to the
interaction. Denoting the part of the interaction which
depends on 8 by V&, not V&, and using polar coordinates,
we arrive at

xRe dp e ' "~' H(p, e2),

where

Defining

J(C, ~) —= Re e ' "~' H(p, e2) dp,

H(p, e2) = + (1 —2p2)
s2+P s2+ ~2@

(3.1o)

(3.11)

(3.12)

A=1,2

d(d Cd ni(&) where C is an arbitrary contour in the complex. p plane,
and

X Re (~I) Ei"2E v 2i~lP/c (3.5) M& (C)—:—
276c

d~ ~sn, (u)) J(C, cu), (3.13)

where k, = k cos 8—:kp and, since ei ——1, k = w/c. Here we can write
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V&
——M& (1 to 0) = M& (t i,p), (3.14)

where Cq 0 is the contour &om 1 to 0 along the real p
axis.

We turn now to the contribution of class II modes,
those with waves incident from z ) 0. Since we are here
considering e2(w) & 1, there will be a critical angle 0 for
total re8ection, given by sin0, = 1/n2. For 0 & 0„the
transmitted wave contributes only to the self-energy of
the pair system-wall, since

IE t i(k x+k„y—k z) I2

and

Tll is given by

(3.21)

Since

sin Ot ——e2sin 0 & 1 for 0 & 0, ,

we have

I
cos8iI = I1 —sin OiI = sin Oi —1 = e2(1 —p ) —1

is independent of Z. On the other hand, for angles of
incidence 0 & 61„the transmitted wave

Et i(k ++kacy) K z ~ ~ 0 + p) z )
so that

2i/e2 kz

k. -'.,K. (3.22)

decays with z. Its absolute value squared at the system's
position z = —/, namely IE I

exp( —2K, E), does depend
on E and therefore contributes to the system-wall interac-
tion energy. Using polar coordiiiates with k = ~e2(w/c),
the contribution &om class II modes is

4e2 p'
e2 —1 e2 —(e2 + 1)p'

Inserting these results in Eq. (3.15) for V&, and using the
normalization condition Eq. (2.14b), we have

IIV)

where

2vr2h 3) did (d Cki (Ca))

Pe
dp(~(ii) ) (3.15)

2' h
d(d Cd Cki(Cd)e2

1 4e2
X dp p

8m3e2 e2 —1

X 1+ e
1 + e2(1 —2p ) 21' g

e2 —(e2 + 1)p

p, = (1 —sin 0,) = [(e2 —1)/e2]

Using Eqs. (2.7), (2.8), and

(3.16) Changing the variable of integration from p to P
(c/~) K„with K, as a function of p given by Eq. (3.18),
and introducing

we 6nd

k = e2((d /c )p (3.17)

the interaction takes the form

(3.24)

K,' = (~'/c') [e2(1 —p') —1] . (3.18) V&~ = — d(rJ ld A i ((d ) Q (ld )27r c
(3.25)

We now sum over the polarizations. For E' perpendicu-
lar to the plane of scattering

IECI2 IEiI2ITJ I2

where

where

Q(cu) —= 2Q~g/~ 2P c2 1 PdPe
2

—1

2k,
k. -'K. (3.19) X 1+ e2(1+ 2P )

1+ (~g + 1)P' ) (3.26)

so that, using Eqs. (3.17) and (3.18), we find

4k2IT~I'= z =4k2+ ~2 g 1
(3.20)

Since 0 & P & b. in Eq. (3.26), it follows from Eq. (3.11)
that

dP e ~' Re [iH(iP, e2)]

For E in the scattering plane, IE I
is not equal to

IE'I IT~~
I

. Rather, we have

IE'I' = (I&.'I'+ I&,'I') + IE.'I'
= IE;I2IT~~ I2 (I cos OiI2 + sin Hi) Q(cu) = J(cp;, ur), (3.27)

By Eq. (3.11), we can allow P to range from 0 to oo, the
contribution from 6 to oo vanishing since P & 6 there.
Comparison with Eq. (3.12) then gives

where Ot is, formally, the angle of the transmitted wave. where Co; is the contour along the imaginary p axis
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V&
——M&(0 to ioo) = M&(Cp; ), (3.28)

and therefore

V& ——V& + V&' ——M& (Cg p, ) (3.29)

the contour | q 0; runs along the real p axis from 1 to
0 and then along the imaginary p axis from 0 to ioo.

running from 0 to ioo. Equations (3.13), (3.25), and
(3.27) give

e2 = 00. For e2 g oo, it is inconvenient for numerical
integration, since it is oscillatory for 0 & p & 1, and com-
plex. We will show, using a modification of a method
used by Lifshitz, that V can be reduced to a very much
simpler form for V~c~ (a form obtained by Lifshitz [2])
and for VE)~. We will return to Eq. (3.32) in Secs. IV
and V and rederive the simpler forms for VAto and VE~~
by using a low-frequency approximation which bypasses
many of the analytic difhculties encountered in the Lif-
shitz approach (but is applicable only in the asymptotic
domain).

B. B. e~(cd) & 1
IV. THE ATOM-WALL INTERACTION

6
V& =

271 C

1
dtete ee, (te)IRe dpe" e~'H)p, ee)

2i cuEp/c

'Lo —p 'LO —E'2p
x . +(1 —2p').

zo +p 'LO + E'2p
(3.30)

where

o- = (1 —e2) —p

s2 and H(p, e2) are defined by Eqs. (3.7) and (3.11), re-
spectively. By adding and subtracting

dp e ' "~' H(p, e2)

Our description in Sec. II of class I and II modes is not
applicable for ez(Cd) & 1. Thus, for e2 & 1, there is no to-
tal reBection of class II modes and hence no contribution
to V& of the type V& . On the other hand, for angles of
incidence 0 ) O„where cos 0, =—(1 —e2) ~—:h, there is
total reBection of class I modes, leading to a new type of
contribution to V&. The contributions of class I modes
from the two regions 0 ( 0 and 0 ) 0 add up to

We seek alternative forms for V of Eq. (3.32) which
are neither oscillatory nor complex. (We will find such
forms; further, the double integral will be reduced to a
single integral. ) To obtain such forms, it will be nec-
essary to treat the atom-wall interaction VAtD and the
electron-wall interaction VE~D separately, the reason be-
ing the different behavior of nq(cd). VAc~ is well known
and we are interested in obtaining VE~D, but we will nev-
ertheless begin by considering VAtD. We do so because an
understanding of V~tD provides a guide in the procedure
to be used in obtaining VEiD.

VAcz& is given by Eq. (3.32), with nq (cd) taken to be that
of an atom. Note that the p and u integrations are cou-
pled through the exponential factor and through e2(cd)
in H(p, e2). We now use a result obtained by Lifshitz in
his determination of the force per unit area between two
homogeneous walls at a separation X, where the walls are
characterized by e) (cd) and e2(cd). We use e(cd) to repre-
sent the complex electric permittivity, e(cd) having been
preempted in our notation by the real component of the
electric permittivity. Lifshitz showed that

ao ( 0

cd dcd o.'y(cd)
~

dp +

x G(p, e, (cd), e, (cd), E)

to the integrand of Eq. (3.30), it follows after some alge-
bra that V& can be written as o.g(i()( d( dp G(p, e) (i(), e2(i(), l) .

V& ———
27t C

dcd cd o'. ) (cd) J(C) p i~, cd) (3.31)

V=V)+V&

27Kc 0
0

xRe
~

dCd Cd CXy (Cd)

coo

dp
~

e'*-' ~ H(p. ..(~)),

Thus, V& is identical in form to V& of Eq. (3.29). We
arrive Anally at

(4.1)

[We need not use a bar on the real function e(i(). The
fact that the result can be written in a form which de-
pends only upon eq(i() and e2(i() strongly suggests, in
line with comments by Ginzburg in Ref. [13], that one
can use the study of transparent media to obtain infor-
mation on absorptive media. ] The function G is rather
complicated. The point of present interest arises on al-
lowing wall number 1 to consist of a dilute gas of atoms,
that is, setting

(3.32)
ey(cd) —1 = 47c&y~tct'y(cd) (4.2)

where the integral over w is now over the full range.
Equation (3.32) can be used as it is for certain limiting

cases. In particular, it is simple to apply it directly to
the case of a system and an ideal metallic wall, for which

The force per unit area can then be taken to originate
in the forces of atoms in wall 1 treated independently of
one another with wall 2, from which one readily derives
V~cL). (A similar approach was used in the discussion
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in Sec. I.) VAiD is then found to be identical in form to
the VAtri of Eq. (3.32), but with e2((d) replaced by e2((d).
By Eq. (4.1), in which u -+ i( but the range of ( is the
same as that of w and the range of p has been changed,
it follows that VAiri of Eq. (3.32) can also be written as
(the real quantity)

d(( err(i()

dp e ~ "~' H[p, e2(i()], (4.3)

q
4

(2Ip)
(4.4)

where H(p, e2) is defined by Eq. (3.11). We conclude
from the exponential factor that the only significant val-
ues of ( are those for which ( + c/(2')or, since p ) 1,
( + c/2E. With wp the smallest frequency of significance
in the absorption spectrum of either the wall or the atom,
it follows since c/2E « urp that ( « imp. We can therefore
replace nr(i() by err(0) = rr. rp arid e2(r() by e2(0): e2p.
We can now interchange the order of integration anaL use

sume arbitrarily small values. We can, though, exclude
small values of p on physical grounds. Thus, the interac-
tion of two atoms at large distances is the Casimir-Polder
1/r potential. The atoms in the wall do not act inde-
pendently of one another, but one nevertheless expects
that the atoms in the wall which contribute significantly
are those near the surface and close to the line which
passes through the atom in free space and is perpendicu-
lar to the surface. Now an electromagnetic wave traveling
at an angle 0 to the normal to the surface generates an
interaction between the free atom and atoms very near
the surface, at a distance E/ cos 0 = E/p from the free
atom. We therefore have every reason to believe that the
significant contribution comes from the smaller distances
associated with p —1, and therefore from w + c/2I. .

Having concluded from Eq. (3.32) nnthout depend-
ing upon Eq. (4.5) that the relevant domain of cu is

c/2E, we can replace e2 by e2p and err by nrp in
Eq. (3.32). The derivation of Eq. (4.5) is then an order
of magnitude simpler than that presented above, since it
relies on the theory of functions not of two complex vari-
ables but of one complex variable. Thus, with H(p, e2p)
independent of w, we use

to find the relatively simple known form lim
p —+0

( c l'
2v~tp/c 3 d (4.6)

3hc
VAto —

4 ~10
&6~14

H(p, e2p)
p ~

p
(4.5)

Analytic results for VAiri are given in Ref. [3]. With
gA„ri(e2p) defined by a comparison of Eq. (4.5) and the
analog of (1.1), we find, using the properties of H(p, e2p)
listed in Eqs. (B9), (B10), and (B12), that gAtri(e2p) sat-
isfies equations [15] which are the analogs of Eqs. (1.3)
and (1.7) for gE,r~(e2o).

By virtue of the rather arbitrary and complicated
forms which er(cu) and e2(cu) can assume, the change in
the contours in w and p space cannot be performed se-
queritially; one cannot show in Eq. (4.1), and thereby
in going from Eq. (3.32) applied to the atomic case to
Eq. (4.3), that, for all ur, the change in the contour in p
space will not cross a pole. Lifshitz, using the theory of
functions of two complex variables, found a way of simul-
taneously displacing both paths, that in ~ space and that
in p space, without passing through a pole of the inte-
grand. If all one were interested in were VAtD, one could
use his technique to proceed directly from Eq. (3.32) ap-
phed to the atomic case to Eq. (4.3); the analysis of
the pole structure would be much simpler because the
integrand defined by Eq. (3.32) is much simpler than
G [p, ei (Ld ), e2 ((d ) l] .

We note that VAtri of Eq. (4.5) does not depend upon
the functions e2(tu) and nr (u) but only upon e2p and nro.
Ex post facto, therefore, we recognize that VAtri depends
only upon asymptotically low frequencies. In fact, this
is intuitively more or less clear; one would expect the
significant frequencies to satisfy w + c/2E. One can go
somewhat beyond intuition. Returning to Eq. (3.32), we
recogruze that the exponential leads to u + c/(2/p). In
Eq. (3.32), however, as opposed to Eq. (4.5), p can as-

the same value as that obtained in Eq. (4.4). [In line with
our remarks in Sec. III on the dipole approximation, we
have introduced a convergence factor. We could, alter-
natively, have used the fact that nr (w) is proportional to
1/io2 for w oo to obtain the same result. ] We now have

c 4
VAtL7 = — X 6 — O'10

2' c3 28

0

x Re~ dp+ H(p, e2o)

) 4

H(p, e2o)
p 4 7

(closed) p

where the closed contour runs from 1 to 0 to iP to P to
1, where the real number P is later made to approach
infinity, and where the contour from iP to P is a quarter
circle of radius P. Since H(p, ezp) has no poles within C
(closed) see Appendix B the integral vanishes; since
further H(P, e2p) is proportional to P for ~P~ —+ oo, the
integral along the arc from iP to P vanishes as P ~ oo,
and we conclude that we can replace the integral from
1 to 0 and 0 to ioo as in Eq. (4.7) by the (real) inte-
gral from 1 to oo. We have thereby rederived Eq. (4.5).
This gives us confidence in the result for VElo derived in

(4.7)

[As pointed out by I ifshitz [2] in his analysis of VDri, the
singularity of the integrand at p = 0 need not concern
us. By Eq. (3.32), the contribution to V from p = 0 is
independent of X and thus adds to the self-energy of each
of the two bodies but not to their interaction energy. ]
Now consider the integral
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the following section by a similar but slightly simplified
approach.

Note that once one assumes that only low frequencies
are relevant, the derivation of Eq. (3.32) is greatly sim-
plified. Taking the relevant frequencies to be 0 & ~ & ~,
where u « ao, one has e2(w) —1 & 0; one need never
consider e2(w) —1 & 0. It follows that V is given by V&,
but with the range not that for which e2(u) —1 & 0, but
0 & u & u. Since only low frequencies are relevant, we
can in fact extend the range to 0 & w & oo and arrive
again at Eq. (3.32) for V.

V. THE ELECTRON-WALL INTERACTION

The analysis of VF1D requires a somewhat more delicate
treatment than that for VAtD. The difFerence in the two
treatments originates in the difference in ni(w). While
o.'yp exists for an atom, it does not for a free electron, for
which

= —e mw (5.1)

(In determining the retarded interaction VE~D to leading
order, we can neglect the interaction e /4E of—the elec-
tron with its image, and treat the electron as free. ) From
Eq. (3.32), we then have

VE1D = he2

27t mc
d~ ~Re

LOCO e"."~.H(p. .2(~) ) .

he2
VE1D-

27l mc d» H(», e2o) d( ( e
—2t'eP/

2' m, c3 2Z

H(p e20)
dp 2p

However, H(p, e2p) is proportional to p for p —+ oo, and
the last integral diverges. (In the atomic case, the de-
nominator was p, not p, and the integral converged. )

Having recognized that the diKculty arises because of
the asymptotic form of H(p, e2) as p i oo, it would be
natural to attempt to extract the asymptotic form and
integrate it out in the form of Eq. (5.2) for VE~ei. It seems
difFicult to do so, however, because of the complicated
behavior of H(p, e2), for a general e2(cu), as p i oo. The
problem can be avoided by using the argument presented
in Sec. IV that only asymptotically low frequencies are
relevant. e2 can then be replaced by e2o in Eq. (5.2) and,
as opposed to H(p, e2), H(p, e2p) has a simple asymptotic
form for !p! ~ oo, namely

(5.2)

If one could obtain VE~~ in a simplified form by using
Eq. (4.3) for VAtD with ni(i() set equal to +e /m(,
obtained from Eq. (5.1), and (as we did in the atomic
case) with e2(i() replace by e2p, we mould have

We write

H(pi e2o) = &p + H(pi e2o); (5.4)

H(p, e2p), defined by this equation, behaves as a constant
as!p! -+ oo. The integral over w in VEiei of Eq. (5.2) is

S(p) = lim
p —+0

2i ~lp/c c )'
!2')

!The introduction of a convergence factor can in this case
be justified by the fact that the dipole approximation
was used, or by recognizing, before setting e2 ——e20, that
e2(w) —1 —w &/cu for cu oo, where up~ is the plasma
frequency. The value of ~P1 is known but irrelevant; what
is relevant is that the 1/w factor, at large m, generates
convergence. ] We therefore have the one-dimensional in-
tegral

he2
VEyLi = —

! 2 I
ReI

g 87I' mcE

l Rp2 + H(p, e2p)+ dp p' (5.5)

Denote the term which contains B by V~. The integral
from 0 to ioo is imaginary and therefore makes no con-
tribution, and with B defined by Eq. (5.3),

~op —1 he
2

620 + 1 87t mCZ
(5.6)

[Note that the ratio of V~ to VE~D, for an ideal conduc-
tor, is (e2p —1)/(e2p + 1). This result also follows on
noting that by Eqs. (B13) and (B10), H(p i oo, e2p)
and H(p, e2p ——oo) have the same ratio. ]

We turn now to the H term in Eq. (5.5). H(p, e2o)
has the same analytic structure, for finite values of p,
as H(p, e2p), and H(p, e2o)/p has the same asymptotic
form as H(p, e2o)/p . The analysis which allowed us to
replace the range 1 to 0 to ioo by 1 to oo in the simplified
treatment of VAtD can therefore be applied here, and we
arrive at our final result,

VE1D—
ne' ( e2o —1!2

8vr mcE I e2o + 1 ( 7)p2 )

Does VH, i~ follovv from VD~Y

The integral in Eq. (5.7) can be evaluated analytically,
but we will not give the result. First, it is a function of
only the one variable e20, so that numerical integration
for a fixed value of c20 is trivial; second, we will in the
following paper give the analytic result for the more gen-
eral case of two parameters (e2 and p, 2) where we do not
assume the magnetic permeability p2 to be unity.

A comparison of Eq. (5.7) with Eq. (1.1) gives
gEi~(e2p). One can readily check that the conditions im-
posed on gE~ei(E'2p) by Eqs. (1.3) and (1.7) are satisfied.

20 1
H(p, e2p) 2p = Rp

e20 + 1 !p! -+ oo . (5.3) With ni(~) interpreted as an atomic polarizability,
Eq. (3.32) gives VAi~, the result is identical to that de-
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duced by starting with the force per unit area (E/A) DD
between two walls and taking one of the walls to consist of
a dilute gas of atoms. Formally, one can then obtain VE~D

by reinterpreting aq (w) as the polarizability of a free elec-
tron. There may well be a justification for doing so, but
we do not know how to provide it. Thus, in our deriva-
tion of Eq. (3.32), the starting point was the integral over
all of the electromagnetic modes of —(1/2)nq(w)E (w),
where nq(w) was the polarizability of a system, which
could be an atom or an electron. The Lifshitz result [2]
for (F/A)~D characterizes a wall by its e(w). One can
conceive of one wall as a dilute gas of atoms and thereby
derive VAtD. One cannot readily conceive of a wall as
a dilute gas of electrons. [It may be possible to obtain
VE]g7 from (F/A) ~z& by conceiving of the wall as having
an enormously high density of electrons and nuclei, since
in the high-density limit the electrons become free. ]

To understand our misgivings about a derivation of
VE~~ through a reinterpretation of the a.q(w), starting
with (J"/A)D~, we recall that Lifshitz begins with a
derivation of the electromagnetic Beld at the surface of
the walls. (As a side comment, we note that his deriva-
tion is based on fluctuation theory. One could also obtain
the Beld by using quantized Fresnel modes appropriate to
three regions, in analogy to the quantized Fresnel modes
we used in our two-region analysis of the interaction of
a polarizable system and a wall. An analysis along these
lines of the interaction of two finite or semi-infinite one-
dimensional "walls" has been given [18].) Lifshitz then
used the Maxwell stress tensor to determine (E/A)~~. .

Let us write the VAqD derived from this in the schematic
form

VAtD = Q (~, E)n g (cu) d~ .

VAt D— (5.8)

where

(5 9)

A reinterpretation of nq(cu) in the V~t~ of Eq. (5.8) as

(—e /mw ) would then give an incorrect result for UE~~.
[One could, of course, use the Lifshitz approach to eval-

uate the field at any point between the walls, and then,
starting with —(1/2)n(cu)E (w), as we did, be guaran-
teed that the result would be valid for an atom or an
electron. ]

We can give a much more concrete example in which
one cannot take an expression for VAqD which is a func-
tion of the atomic nq (w) and derive VE~~ by replacing the
atomic aq(w) by the electronic nq(w). Equation (3.32),
valid for V~t~ with the proper interpretation of aq(cu),
does lead to VE~~ with a reinterpretation of aq (w), but, as

Lifshitz's form of Q(w, E) is identical to the result that
we obtain and it suggests that one can obtain V,~(E) by
setting nq(ur) = —e /mw, but we know of no a priori
reason why one might not have obtained VAtD in the form

we have seen, Eq. (4.3) does not lead to VE~~ on reinter-
pretation of aq(w). [Indeed, as noted above, with aq(w)
reinterpreted the integral in Eq. (4.3) is not even finite. ]

VI. DISCUSSION

There have been many experimental efforts designed to
confirm a Casimir interaction. Perhaps the most promis-
ing are those of Hessels et aL [19] on energy-level shifts
of Rydberg helium atoms, with one electron in a 18 state
and one in an nE with n and / much greater than one.
This system has the advantage that, being rather sim-
ple, theoretical estimates of the shifts can be made with
great precision. It has the disadvantage that one must
very accurately estimate the many corrections which are
much larger than the Casimir correction.

Another approach, that of Sukenik et al. [20], consists
of the deflection of a neutral atom initially moving paral-
lel to a surface. This approach has the disadvantage, the-
oretically, of involving rather complicated properties of
matter, but at distances of the order of 100 A. the atom-
wall Casimir interaction is dominated by low-frequency
components, and the interaction of a surface with such
components is reasonably well understood. The advan-
tage of the system is that the measurement, the deflec-
tion, is, in its entirety, at large separation, a Casimir
effect; one does not have any number of other effects to
contend with.

The present analysis suggests that one might consider
the possibility of studying the deflection of electrons mov-
ing roughly parallel to a surface. Relative to studies of
energy-level shifts in Rydberg helium atoms, it has about
the same advantages and disadvantages as studies of the
deflection of atoms. Relative to atom-deflection studies,
electron-deflection studies have the advantages that an
electron is simpler than an atom, and that, for a Bxed sep-
aration, low frequencies play a more dominant role. [One
replaces nq(0) for the deflection of an atom by —e2/mw2
for the deflection of an electron. ] Finally, the deflecting
potential falls off less rapidly with separation, varying
as 1/E rather than as 1// . Electron-deflection studies,
however, have the disadvantage that the dominant effect
is not the retardation 1/g2 interaction but the Coulombic
1/E interaction.

Other studies which involve retardation interactions
include the (elastic and inelastic) scattering of atoms by
surfaces [21] and the reflection of light by a surface in the
presence of a gas [22].

We note in passing that the atom-wall retarded inter-
action for an atom which is not spherically symmetric
but which has axial symmetry and which has equal like-
lihood of having any given orientation can be obtained
[23,24] from the results for spherically symmetric atoms

by replacing aq(0) by [2nz (0) + nz(0)] /3, where az (0)
and n~(0) are the static electric dipole polarizabilities
for an electric field perpendicular to and parallel to the
symmetry axis of the atom.

The quantized Fresnel modes could be used to study
the change in half-life of an excited atom near a dielectric
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wall and of an electron in an excited bound state near a
dielectric wall. The change in half-life of an atom in an
excited state embedded in a uniform dielectric has been
determined [16].

The various interactions which have been obtained in
which walls are involved, with magnetic eKects neglected,
have been extended to include magnetic effects [25].

Note added in proof. Extensions of many of the above
results have been obtained. They include interactions
with one wall (V~tLi and VEiD) for sma/t I,, and inter-
actions of an atom or an electron placed between two
dielectric walls for arbitrary separations of the walls and
an arbitrary location of the atom or electron [F. Zhou
and L. Spruch (unpublished)].
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Q~(r)@*(r)dr = h(c1 —p) .

% (e'q'+ R e 'q'), z —oo
qg / N g ~2Qz z

We first consider the simple case, with V(—oo)
V(oo) = 0, for which Q = q. We multiply the
Schrodinger equation for vq by v„*,the equation for v„*
by vq, subtract, and integrate from —Z to +Z. With a
prime integrate denoting a derivat;ive with respect to z,
and with

I(q, p, Z) —= vqv dz )

we find, for V(+oo) = 0,

or

(q —p )I(q, p, Z) =—
2m vpvq vp vq z

—= (q+ p) &(q p)

I(q, p, z) = s(q, p)/(q- p) .

Our problem, witll ep(z = oo):—E'ip, ep(z = —oo)—:E'2p,

and eip g E2p, corresponds to a potential which does not
vanish at infinity. That t;hat is not relevant with regard to
normalization can be made clear by considering quantum
one-dimensional scattering by a potential V(z). We then
have

APPENDIX A: ORTHONORMALITY OF THE
FRESNEL MODES

As noted by Glauber and Lewenstein [16], the or
thogonality of the modes fq) with frequency-independent
weight factor e(r), follows from the fact that the

(r)fq(r)'s are eigenmodes of a Hermitian operator.
However, the expression for the normalization constant
N, for the mode q, given by these authors in their
Eqs. (7.26a) and (7.26b), seems to contain typographi-
cal errors. Moreover, since no derivation of N is given
and since a simpler form of N than that given is in fact
obtained, we will sketch the determination of N. In
the course of that process one checks that the di8'erent
e /' fq's are indeed orthogonal.

That the normalization of the modes is determined
solely by the region in which the incident wave exists-
see Eq. (2.14) —is hardly surprising. Thus it is a stan-
dard result in scattering t;heory that the normalization
is independent of the absence or presence of a potential
which vanishes sufBciently rapidly; if

@~(r) = (2~) ~ exp(ig r)

or if

v)~(r) = (2vr) s~ [exp(ic1. r) + iv~(r)]

with tv~(r) the scattered wave, one has

V(z) does not appear explicitly. I" (q, p) contains terms
exp[+i(q+ p)]Z, with coefBcients Rq and R*, and terms
exp[+i(q —p) Z], with coeKcients unity, RqR*, and TqT*.
For q different from p, all the terms wash out on integrat-
ing over q and letting Z +oo, and we have the expected
orthogonality of vq and v*. The terms in Bq and R„*wash
out for Z +oo even for q p, but the other terms
peak there. In that neighborhood we can replace RqB„*
by lRql and TqT* by lTql . Using lRql + lTql = 1, one

finds that the choice Nq = (2w) i~2 leads to

vq(z) v„'(z)dz = b(q —p),

independent of V(z). The integral for one wave incident
from z = —oo and one from z = +oo vanishes identically,
so that the result just given is valid for all situations.

Now assume that V(z = +oo) = Vp g 0 and V(z =
—oo) = 0, and consider a wave incident from z = —oo
with an energy E = q h /2m ) Vp. The argument is
much the same; one need merely replace lRql + lTql
1 by the flux conservation condition now appropriate,
namely

qlR. I'+ &IT.I' = 1

where Q252/2m = E —Vp. For E ( Vp vq 0 as
z +oo and Tq plays no role, but now lRql2 = 1 and the
normalization condition again remains the same.

For our problem a fact or b (k —k' ) h (k„—k„')arises
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since k~ and k' must be the same, as must be k„and k„'.
Since Auw is conserved for either polarization, for either
class, and for any values of bio and E2o, the factor 6(k, —
k') also arises, and one finds that the normalizations are
indeed given by Eq. (2.14).

APPENDIX B: PROPERTIES OF H (E', e(cg))

Re[iH(iy, e)] = 0, A&y&oo.
In particular, we therefore have that

(0 for ~)1, y)A
H(zy, e) )0 for e(1, y) A.

( y) = [y' —( —1)l"
is imaginary, so that H(iy, e) is real, and

(B6)

(B7)

It will be useful to collect a few properties of
H(p, e(w)). By Eqs. (3.11) and (3.7), we have We now record the forms assumed by H(p, e) for vari-

ous values of p and c:
H(» e) = + (1 —2&')8+P 8+ CP

(e real), (Bl)
H(p, 1) =0, (Bo)

(B2)

[For simplicity, in this appendix but not elsewhere, we
drop the subscript 2. Thus Ez (Ld): E2 M f (M)

so I s2 M s aild szo ~ so] We begin by noting
that H(p, e) can be rewritten as

H(p, oo) = 2p',

H(0, e) = 2,

H(p 7 0, e = 1) - , 1 + (1 —2p')'

(B10)

(B11)

(B12)

(B3)
(s —ep)'

l
(s —p) +(1 —2& )e —1 1 —(e+ 1)p'

Let p ~ zy, where y is real and positive. Then

(B4)

For y & 4, with E defined by Eq. (3.24), s(iy) is real
and Im H(iy, e) comes only from cross terms in (s —iy)
and (s —icy) . We therefore have

Re [iH(iy, e)] = —Im H(iy, e)

The asymptotic form of H(p, e) as p oo is a bit com-
plicated, since e(cu) can assume very large positive and
negative values for values of w near a resonance. Special-
izing to e = ep, we have

cp —1
H(p eo) 2p, p oo .

op+ 1
(B13)

We turn now to the question of poles of H(p, eo) in the
upper right quadrant. Specializing Eqs. (Bl) and (B2)
to the case E = cp and noting that cp ) 1 we readily
find that H(p, eo) cannot have poles in the upper right
quadrant of the p plane. Indeed, the denominator (so+p)
can vanish only if fp = 1, and Sp + E'pp = 0 implies

1 = (eo + 1)p = (so + 1)(p~ —pI + 2zpRpI)

Fory) A,

0&y& a. (B5)

which, for real cp, demands that p~pI ——0. But p~ ——0
implies 1 = —(so + 1)pI while pr = 0 implies, reverting
to the form so + sop = 0, that (Eo —1+p~): —&op~.
Neither of these conditions can be met for p in the upper
right quadrant.

Permanent address: Racah Institute of Physics, The He-
brew University of Jerusalem, Jerusalem 91904, Israel.

~ Permanent address: Physics Department, New York Uni-
versity, New York, NY 10003.

[1] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 60, 793
(1948).

[2] E. M. Lifshitz, J. Exp. Theor. Phys. USSR 29, 94 (1955)
[Sov. Phys. 2, 73 (1956)]. See also L. D. Landau and E.
M. Lifshitz, Electrodynamics of Continuous Media, Vol. 8
of Course of Theoretical Physics (Pergamon, New York,
London, 1960), Chap. 13.

[3] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. Pitaevskii,
Adv. Phys. 10, 165 (1961).

[4] K. A. Milton, L. L. DeRaad, and J. Schwinger, Ann.
Phys. (N.Y.) 115, 388 (1978).

[5] H. B. G. Casimir, J. Chim. Phys. 46, 407 (1949).
[6] H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360

(1948).
[7] J. Bernabou and R. Tarrach, Ann. Phys. (N.Y.) 102, 323

(1976).
[8] E. J. Kelsey and L. Spruch, Phys. Rev. A 18, 1055 (1978).
[9] L. Spruch and E. J. Kelsey, Phys. Rev. A 18, 845 (1978).

[10] L. Spruch, Phys. Today 39 (11), 37 (1986); in Long
Range Casimir Forces: Theory and Recent Experiment
in Multiparticle Dynamics, edited by Frank S. Levin and
David A. Micha (Plenum, New York, 1993), Chap. 1.

[11] G. Barton, J. Phys. A 10, 601 (1977).
[12] R. Shakeshaft and L. Spruch, Phys. Rev. A 22, 811

(1980).
[13] V. L. Ginzburg, Applr'cations of Electrodynamics in The



RETARDED CASIMIR INTERACTION IN THE ASYMPTOTIC. . . 4235

[14]

[15]

[16]

[»1

[18]

oretical Physics and Astrophysics (Gordon and Breach,
New York, 1989), Chap. 14. Ginzburg also discussess a
method involving "surface modes, " with references to
earlier papers, which is much simpler for the wall-wall
problem than the Lifshitz approach and which may be
applicable to the electron-wall problem.
P. W. Milonni and M. L. Shih, Phys. Rev. A 45, 4241
(1992).
L. Spruch and Y. Tikochinsky, preceding paper, Phys.
Rev. A 48, 4213 (1993).
With some minor alterations, we are using the notation
of R. 3. Glauber and M. Lewenstein, Phys. Rev. A 43,
467 (1991).
J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley,
New York, 1975).
D. Kupiszewska and 3. Mostowski, Phys. Rev. A 41, 4636

[19]

[20]

[22]

[23]

[24]

[251

(1990).
E. A. Hessels, F. j. Deck, P. W. Arcuni, and S. R. Lun-
deen, Phys. Rev. Lett. 65, 2765 (1990); 66, 2544 (1991).
C. I. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar,
and E. A. Hinds, Phys. Rev. Lett. 70, 560 (1993).
C. Carraro and M. W. Cole, Phys. Rev. B 45, 12390
(1992).
M. Orlia, M. Chevrollier, D. Bloch, M. Fichet, and M.
Ducloy, Europhys. Lett. 14, 527 (1991); M. Chevrollier,
D. Bloch, G. Rahmat, and M. Ducloy, Opt. I ett. 16,
1879 (1991).
D. P. Craig and E. A. Power, Int. J. Quantum Chem. 3,
903 (1969).
L. Spruch and J. F. Babb (unpublished).
Y. Tikochinsky and L. Spruch, following paper, Phys.
Rev. A 48, 4236 (1993).


