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Elementary approximate derivations of some retarded Casimir interactions
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The original derivation by Lifshitz [Sov. Phys. 2, 73 (1956)] of PDz&, the force per unit area
between two plane parallel dielectric walls, is extremely complicated; the later derivations are simpler
but still di%cult. The standard derivation of the interaction VAt~ of an atom and a dielectric
wall uses the expression for P~D as its starting point. The results are valid for all values of the
separation Z. For E oo, where the interactions are retarded, we obtain reasonably accurate
approximate expressions for PD~ and for V«~—and also for VEiD, the retarded interaction of an
electron and a dielectric wall —by the elementary procedure of assuming simple forms with one or
two open parameters, adjusted to give the known results for retarded interactions which do not
include dielectric walls. These include P~M (the force per unit area between two parallel plate
metallic walls), V~q~ (the atom-metal) interaction, VAN@, q (the atom-atom interaction), and VE~M

(the electron-metal interaction). We also consider the possibility of obtaining an improved estimate
of P~~ by using known properties of V«D. The explicit results obtained by Lifshitz for the various
interactions are also very complicated. The simple approximate forms of the interactions can be
particularly useful for the wall-wall interaction, since P&D is a double integral with a complicated
integrand which depends upon two parameters, the zero-frequency dielectric constants of each of
the walls.

PACS number(s): 31.30.3v, 12.20.Ds, 77.90.+k, 41.20.—q

I. IN TROD U CTION

The force per unit area between two plane parallel
metallic walls at a separation E was found by Casimir
[1], as long ago as 1948, to be
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between an atom and a metallic wall at an asymptoti-
cally large separation 8; o.zp is the static electric dipole
polarizability of the atom, here taken to be system 1.
Casimir and Polder found the interaction of two atoms
at an asymptotically large separation r to be [5]
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The three derivations are relatively simple. (See, for ex-

[We use the subscripts D, M, At, and El to denote dielec-
tric walls, metallic (perfectly conducting) walls, atoms,
and electrons, respectively. A metallic wall is of course a
special case of a dielectric wall. Subscripts 1 and 2 will
refer to the two interacting systems. Primes on pressures
and potentials indicate approximations. We use P for
the force per unit area, or pressure, rather than the I",
which is often used [2,3]. We consider a static potential
in Sec. III. All other potentials, and all pressures, are re-
tarded. ] Equation (1.1) is valid for all E. Casimir also
obtained the interaction [4]

ample, the book by Power [6].) Interactions involving
dielectric walls, on the other hand, are, as might be ex-
pected, extremely complicated. In particular, the orig-
inal derivation by Lifshitz [2] of P~~ is so complicated
that Landau and Lifshitz [2] give the result without giv-
ing the complete derivation; they simply cite the Lifshitz
paper. As pointed out by Ginzburg [7], it is one of the
very few results given in the entire series of books by
Landau and Lifshitz in which they do that. The deriva-
tion of the interaction VA&~(E) between an atom and a
dielectric wall, at a separation E, is usually obtained by
considering one of the two walls to be a dilute gas of
atoms ViiLi(E. ) is then a superposition of atom-dielectric
wall interactions VA&Li(r) and one demands that VAtD(r)
be such that the sum of V~tii's reproduces xiii(E). Sub-
sequent derivations [3,7,8] of VDD are rather less difficult
than the original Lifshitz derivation, but still difFicult.

A wall is characterized by its "dielectric constant" or
electric permittivity e. One of the complicating features
in the determination of VLiLi(E) is that one is normally
interested in its value for all E, and that demands that
one know both the real and imaginary parts of e, for all
frequencies. If one restricts one's attention to asymp-
totically large values of E, one need know only the real
zero-frequency component e(tv = 0)—:eo. Rather than
proceeding by finding VLi~(E) for all / and taking the
limit as 1 oo, one recognizes at the outset that for
asymptotically large E only ep enters; the evaluation of
VLiLi(E) for 8 oo could thereby be greatly simplified [9].

Even this latter calculation is suKciently tortuous that
one can easily lose sight of the "physics. " We therefore
believe it to be useful to have derivations of VDD and of
VA&D which, if only approximate, if only partially "phys-
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and the retarded interaction of an electron and an atom

ical, " and if valid only for E oo, are at least elementary.
We will also obtain an approximation for the interaction
VF1D(E) of an electron and a dielectric wall, at an asymp-
totically large separation E. (The exact result for this
case was derived only recently [9]. This derivation too is
somewhat tortuous. ) The derivation of VE1L1(E) for E oo
will rely on a knowledge of the retarded interaction of an
electron and a metallic wall [10—12]

After the physics has been extracted and dimensional
analysis has been performed, the problem reduces to the
determination of one real function for each of the three
interactions, a function of 62p for VAtD and for VE~D,
and of ~ip an«2p for PDa. We impose some obvi-
ous restrictions on these functions. Thus, a wall with
~p ——1 is really a vacuum and does not interact. This
suggests that we introduce a factor ep —1 for each wall.
The fact that the various interactions remain finite as
cp M oo again suggests we are not here attempting to
prove anything that each factor of ~p —1 appear with a
denominator of the form ep + B; thus, for each wall we
insert a factor

11 o.'2pe
E1At 4' mcr5 (1.5)

This last result is also applicable to an electron and an
ion [14].

There is only one instance, in Sec. VII, in which an in-
teraction involving a dielectric wall is used as input data;
we there include information on VAt~ as input data in
obtaining an improved estimate of PDD. Section VIII is
the only section in which we consider, though only very
briefj. y, values of the separation E of the interacting sys-
tems which are not in the asymptotic domain. Asymp-
totic values of E are values which are larger than any
wavelength for which either of the two systems under-
goes significant absorption.

II. THE PROCEI3URE TO BE FOLLOWED

For each interaction we will begin by obtaining the
dependence of the interaction upon the (not all indepen-
dent) dimensional quantities e, m, c, h, ctp, and I.. The
procedure for doing so is analogous to that used in the
past [15] for obtaiinng the interaction for systems involv-
ing atoms, electrons, and metallic walls; the argument
is much the same if one replaces a metallic wall by a
dielectric wall since Ep is dimensionless. One extracts
some of the physics and one then uses dimensional anal-
ysis; dimensional analysis alone is not always sufFicient.
To extract the physics we note that for E oo a wall
is completely characerized by Ep, an atom by np, and an
electron by n(vr) = —e /mar, its dynamic electric dipole
polarizability. (The validity of the last statement is not
restricted to asymptotically large values of I..) Further-
more, we recognize that the asymptotic interaction for
the cases under consideration is completely dominated by
contributions associated with two photon exchanges, and
that the normalization of each of the associated electric
fields contains a factor 6 /; each of the Casimir inter-
actions is therefore proportional to h. The 6 factor also
follows for most Casimir efI'ects by noting that they can
normally be written as the diflerence between sums over
all frequencies of perturbed and unperturbed energies,
namely as

(ep —1) /(ep+ R),
with B an as yet unspecified dimensionless constant
whose value will depend upon whether the wall is inter-
acting with another wall, an atom, or an electron. We will
then use the known expression for P or for V (whichever
is appropriate) as eip and/or e2p —+ oo, the fact that for

1 the wall can be thought of as consisting of in-
dependent atoms, and the known metallic-wall —metallic-
wall, atom —metallic-wall, atom-atom. , and electron-atom
interactions to determine the various B s. (The condi-
tion imposed for ep = 1 encompasses the condition used
above that the interaction vanishes for ep ——1.)

III. A TRIVIAL EXAMPLE: THE CLASSICAL
STATIC INTERACTION OF AN ELECTRON

AND A DIELECTRIC YVALL

As an illustrative example of the procedure to be used
in obtaining approximations of (quantum relativistic)
Casi.mir interactions involving dielectric walls, we use the
procedure to estimate the classical static interaction v(E)
of an electron at a distance E from a dielectric wall. [v(E)
is of course well known. ] To do so, we use static interac-
tions which do not involve dielectric walls. In particular,
the static interaction of an electron at a distance E from
a metallic wall (dielectric constant infinite) is assumed to
be known to be (

—e2/4l), and the static potential energy
of an electron at a distance r from an atom with a static
electric dipole polarizability o.2p is assumed to be known
to be

—(1/2) o.2p e'/r

The wall is completely characterized by its real zero-
frequency dielectric constant e2(cv = 0) = 62p and the
(stationary) electron by its charge e. Dimensional anal-
ysis gives

e
v = v(e, E, e,p) = —f (e2p),

where f(e2p) is an as yet arbitrary real function. Since
f(1) = 0 and f(oo) = —1/4, a reasonable choice for our
approximation to v is

6) (tv„' —tv„) . e 62p —12

v
4E E'2p + ~
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To fix 6', we formally consider the case for which the wall
consists of a dilute gas of atoms. For this rarified medium
situation we have

62p —1 ~ 471 N2A&o'2p (3 2)

where %~Aq is the number of atoms per cubic centimeter
in the wall and o.2p is the static electric dipole polariz-
ability of an atom in the wall, and Eq. (3.1) becomes

e 47' K2«n 20
2

V t2p 1
4E 1+ b' (3.3)

Now v(e20 = 1) can be obtained by summing the (inde-
pendent) interactions of the electron and the atoms of
which the wall is composed. This approach gives

e'( 2
v(e20) ——

l
1.—,e20

e20
(3.8)

while

surprising. Not only is v" exact at both end points, e2p ——

1 and e2p ——oo, but v" was also adjusted to be exact
for ezp in the immediate neighborhood of unity more
precisely, the first derivative of v" (e20) is exact at e20 ——

1—and there is nothing in the physics to suggest any
rapid variation of v with 62o.

For later reference see Sec. VII we consider the be-
havior of v and v" as e2o oo. While v" is exact at
62o = oo, it does not have the correct form for 62p oo,
since

v(e2p --1) = N2At dz2
( n, oe')

d/, I—2" r'
v (e20) ~ —— 1—,E'20 ~ 00

4E (

with the origin chosen to be the point on the surface
of the wall closest to the electron (at a distance I. from
the wall), z2 and p2 (both non-negative) are cylindrical
coordinates of a point within the wall, and

" = [(z2 + &) + &2 (3.4)

The integrations are trivial and lead to

2

v(e20 1) ~ ——27' N2«n20
4g

(3.5)

e 6 —1
v'(~) = ——" [= v(~)1.4f e2o+ 1

(3 6)

This result is unusual in that it is exact, that is, v = v,
a possibility which arose because the approximate form,
Eq. (3.1), encompasses the exact result. It should not be
thought, however, that the procedure is useful only if one
can choose a form which encompasses the exact result.
Thus, consider an alternative approximate form

A comparison of Eqs. (3.3) and (3.5) gives b' = 1 and
therefore

Suppose that in some fashion one determines the correct
asymptotic form. [In the present context, one might be
able to determine it by starting with metallic walls and
using perturbation theory with 1/e20 as the perturbation
parameter. In our analysis of PDD(eip, e20), in Sec. VII,
we will obtain some information on PDD(eip, t20 oo)
foi' e] p 1 by assuming a knowledge of V«D(e20). ] The
question is the extent to which a knowledge of the asymp-
totic behavior can help to improve our estimate of v. I.et
us then choose an approximation v"' which cannot re-
duce to v and which gives corrections of order 1/e20 for
e2p » 1, for example,

2 3
2pv

4E e2p + nE'20 + P

v (e2p = oo) is exact. The demand that v"'(e20 1)
v(e20 1), with the latter given by Eq. (3.5), leads to
1 + n + P = 6. The new requirement, that v"' have
the asymptotic form given by Eq. (3.8), leads to n = 2,
which then gives P = 3. v'", with n = 2 and P = 3, is a
considerable improvement over v", especially, as is to be
expected, for 62p » 1.

1/2e E2p —1
v (&)=-——

4/ 1/'2 + gr(
20

e2
~2o —1

4g (e / + brr)( / + ])
with b" determined by the requirement that v" (/) give
the exact result for the dilute case. The ego-dependent
factors in the denominator in the expression on the far
right reduce for the dilute case to 2(l + b"), as opposed
to the 1 + 6' factor which arose when studying v' for the
dilute case. Since both v" and v' must reduce to v for
the dilute case, b" must satisfy 2(1 + b") = 1 + b' = 2,
that is, b" = 0, so that

IV. AN ATOM AND A DIELECTRIC %TALL

We begin our concrete considerations of Casimir inter-
actions involving one or two dielectric walls with the case
of an atom and a dielectric wall. In line with the discus-
sion above on the extraction of the physics, we recognize
that

+AtD(&) = &AtD(e, rrt, c, &, nio e20 ~)

must have the particular form

1/2
I] e ~2o

v
4g 1/2

~2o
(3 7)

which difFers from v by at most about 15%%uo over the entire
range 1 & e2p & oo. This good agreement is hardly

+AtD(&) = nip&f«D (I~ Ci &ap) r

with f«D an arbitrary real function; the only dependence
upon the charge e and mass m of an electron is that
contained in n1p and e2o. Dimensional analysis then leads
to
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with gAtD an arbitrary real function. We choose to satisfy
two of the restrictions that must be satisfie by gAtD by
writing

6p 16

TABLE I. Ratios of estimates to exact values for the
atom-wall and wall-wall interactions. Each ratio is equal to
unity for 6p = 1 and Ep = oo, and the derivative of each ratio
is equal to unity at ep ——1.

3 Aco!lp 62p —1
VA'tD(&) =

8
—

/4 AtD
(4.1)

where the numerical coefEcient was chosen so that VAtD
reduces to VAtM of Eq. (1.2) for E20 = 00. To fix BAtD,
we assume that E'20 1 so that 620 —1 is then given by
Eq. (3.2), and

pAtD(~o), Eq (4.7)
pAtD(~o) Eq (4.10)
PD=D(~o), Eq. (6.7)
PDM(EO), Eq. (6.14)
pD= D ( ot), Eq. (7 15)

1.14
0.93
0.80
1.4
0.70

1.16
0.93
0.94
1.4
0.86

1.10
0.88
1.0
1.1
0.94

But we can also write

UAtD(E; e20 = 1)

3 hco. lp 4' %2Ato. 20

8' E 1+ BAtD
(4.2)

VAtD(E) =—

3 Aco!jp

s~ 84

l/2
20

1/2 /)
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( 20 + AtD)( 20 + )
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= ~2At dZ2 2~ p2 dp2 VAtAt(r), (4.3)

~2At o'10 o'20 ~c
VAtDt, 8 e20 = lj = ——

4p
(4.4)

Comparison with Eq. (4.2) gives

B„',D = 37/23,

and our approximation is

where r is given by Eq. (3.4) and VAtAt(r) is given by
Eq. (1.3). The integrations are trivial and Eq. (4.3) be-
comes

(The motivation for introducing ezp is its appearance
in a recent derivation [9] of VAtD based on quantized
Fresnel modes [17]. One considers quantized electromag-
netic waves incident on the dielectric-vacuum interface,
from both directions, and for the quantized modes, as
for the classical modes, the reflection and transmission
coe%cients are functions of the zero-frequency index of
refraction n, that is, e20 .)

l/2

To agree with VAtD (and thereby with VAtD) for 620 =
1, we must have

2(1+ BAtD) = 1+ BAtD ——60/23,

that is,

BAtD = 7/23

3 Aco!yo 620 —1
~ ()--8. / „.+(37/23)

(4.5) and therefore

3 &CO!lp
VAtD(~) = —

8
620 —1

e20 + (30/23)e2',
' + (7/23)

(4 9)

Values of the ratio

yg /l
/i "AtD

P«D(e20) =
VAtD3 Acti yp 62p —l.

VAtD(/) = —
4 WAtD(e20)8~ E4 ~20+ 1

(4.6) e20 + 1 1

e20 + (30/23) e20 + (7/23) ~«D(e20)

(4.10)
and plot pA D(tt0). 2We tabulate the value of the ratio

A special case of interest is that of an atom interacting
with a liquid-helium wall [16].

VAtD(E) can be obtained analytically and has been
evaluated numerically. Dzyaloshinskii, Lifshitz, and
Pitaevskii [3] write it in the form

( )
VA, D(e20) e20 + 1 1

( 7)
VAtD(e20) &20 + (37/23) QAtD(620)

for a few values of &20 in Table i. One sees that the agree-
ment is rough but meaningful.

To check that the agreement is not merely accidental,
we consider a second form of the approximation,

are given in Table I for a few values of e20.
Since we have been concerned with E oo and there-

fore with E2p, there is no reason to expect any rapid varia-
tion of VAtD with t'2p, the reasonable agreement obtained
with both VA't~ and VA'tD is then to be expected, for
the same reasons it was expected for the classical static
electron-wall interaction studied in Sec. III.

The form for VAtD chosen by Dzyalashinskii, Lifshitz,
and Pitaevskii [3] is arbitrary, though of course the nu-
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merical value of V~q~ as a function of E'2o is not. If one
wanted an accurate if still approximate analytic expres-
sion for V~tD, there would be some slight advantage in
using the form

Reck yo E'2o —1

87r I4 e20 + (37/23)

suggested by Eq. (4.5) [or the form suggested by
Eq. (4.8)]. PAtD, related to PAtD by

VE1D (E) = VE1D (e, m, c, h e20& ~)

2

m
h fE1D(E c, e2o)

Dimensional analysis leads to

e2h
VE1D (~) — gElD (e20)me/2

We elect to satisfy two of the restrictions by choosing as
our approximation to VE~D

20 + (37/23)
AtD = AtD

&2o + 1
1 e A 62o —1

ElD( ) 4 g2 +BI20 ElD

varies less than PAtD and could therefore be parametrized
more easily.

An alternative procedure [18] is to use the Clausius-
Mosotti approximation (which should more properly be
called the Mosotti-Clausius approximation) in the ex-
pression for VAtD(620 '1) obtained by starting with
Eq. (4.3), namely Eq. (4.4). Thus, replacing Eq. (3.2)
by

with the numerical coeKcient chosen so that the result
for the dielectric wall reduces to that of the metallic wall,
given by Eq. (1.4), for e20 = oo. We then have

1 e2h 4~ N2At n20
47' 7TtcE 1 + BE

and also

62p —1
4~ ~2A~2o = 3

&2p + 2
(4.11)

VE1D(&' &20 = 1) = N2At

11 ~2A~~2oe
12 mc/2

2~ P2 dP2 VE1At (&)

(5.1)

and using this in Eq. (4.4), we have the approximation where we have used Eq. (1.5) for VE1At. Comparison of
the two forms gives

69 n ~o hc @2o —1

160m E4 ~2o + 2
(4.12) BE,D ——1/11

The advantages of this approach are that it is simple and
that one knows precisely what approximation has been
made. It has the further slight advantage of having built
in a rather good approximation for 62o close to unity,
but the approximation in Eq. (4.11) is really good only
for 62o quite close to unity. The disadvantage of V&tD
relative to VAtD of Eq. (4.5) is that no provision was
made to account for the behavior of V~t D as Eg p oo
and VA'tD(e20 = oo) = (23/20)VAtD. The ratio of VA'tD
to VAtD ranges from 1 at E20 = 1 t'o 23/20 at e20 = oo.
In summary, V&'~D is slightly better for E2o quite close
to unity, but both approximations are quite accurate in
that domain. (They each have the correct value and the
correct first derivative at e2p ——1.) Further, VA'tD ) VAtD
for all 62o, and since V&tD & V~to for larger values of 62p,
as seen from Table I, V&t D is the better approximation
at those larger values.

so that our approximation is

1 e A 62p —1

4vr mcP e20 + (1/11)
(5 2)

(A special case of interest is that of an electron and a
liquid-helium wall. Some slight analysis of this case has
been given [12]. Very interesting experimental results
were obtained for this problem [19],but the data are not
good enough to go beyond verifying the classical static
interaction. )

For the same reasons as for V&~D versus V~q D, we ex-
pect VE&D to be a reasonable approximation to VE~D . An
explicit expression for VE~D, in the form of an integral,
was recently obtained, [9), but no numerical results were
given. We have now evaluated VE1D(e20) for a number of
values of 62o . We write

V. AN ELECTRON AND A DIELECTRIC WALL

1 e A 62p —1
VEID(e20) =

2 (".)4' mc/2 ~2o + 1
(5.3)

An electron at a distance 8 from a dielectric wall has
an interaction v with its image, where v is given by
Eq. (3.6). This classical static interaction persists at ar-
bitrarily large E. The retarded interaction VE~D to be
considered now is in addition to v(E).

We here have

and give some values of PE1D (e20) in Table II. [Some addi-
tional values of QE1D(f20) are the following: 1.930, 1.677,
and 1.3844 for ep ——4.0, 49, and 400, respectively. ] We
introduce

( )
E1D ( 20) 20 +

(5 4)
VF1D(e20) e20 + (1/11) &j5E1D( 0e)2
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TABLE II. Numerical values of P@)D(e20); values of
VE|D(e20) follow from Eq. (5.3). pE|r)(e20) is the ratio of the
approximate and exact values of the interaction energy.

trated asymptotically far from the dielectric wall, VE&D
and VEi~ dier only by the factor

620

1
1.1
1.44
9
16
100
10000

/El o(e20)
11/6
1.848
1.878
1.891
1.832
1.569
1.129
1

Eq. (5.4)
1
0.954
0.849
0.582
0.577
0.643
0.886
1

&2P

e20 + (1/11)

(The use of the exact form [9] for VE~D provides the exact
ratio of the two potentials. ) It follows that one can easily
obtain the ratio of AE„E)D and AE„E(~.

VI. T~O VFALLS: SOME SPECIAL CASKS

and give some values of pE]D(e20) in Table II. By con-
struction, pE~D(1) = 1 and pE~D(oo) = 1, and the deriva-
tive of pE~D at 62p = 1 is also equal to 1, but the con-
vergence at large values of e2p is very slow. To obtain
better results for ~2p large, one would have to build into
an approximation to VE]D(e20) a form which built in
the asymptotic dependence on e2p. Since expressions for
V«D(e20) are available, in integral form [9] and in inte-
grated form [15], this can be done easily, but since that
would be somewhat contrary to our approach of studying
complicated cases by using results for simpler cases we
would here be using exact results for VE]D( e)20to help
parametrize VE~D(e20) we have not bothered to do so.

The use of the approximation Eq. (4.11) in Eq. (5.1)
gives

The form of the force per unit area between two di-
electric walls follows from dimensional analysis alone; we
need not "extract" the physics other than to recognize
that the only dependence of PDD on e and m is that
contained in Ejp and E'2p. It is given by

PDD = PDD(e rn c ~ ~ elo &20)

hc
4 PDD(&10) &20) .

We will consider two cases, eqp ——r2p = ep, where ep is
arbitrary, and 62p = oo, cases for which PDD has been
evaluated numerically.

A. Identical zero-frequency dielectric constants

FOI Cj p = c2p = 6p, we choose the aPProximate form

PDD(e10: e20 = eo) = PD D(eo)

11 C A E2p —1
ElD 16~ mcE2 62p+ 2

(5.5)
~2 ac&
240 I (eo + BD

(6.1)

This is very much in error, by a factor 11/4, at e20 = 00.
The shift in energy LE EiD of the nth bound state of

an electron and a dielectric wall, generated by VE~D, is
given in first-order perturbation theory by

&&-«D = 8- I
VE»(& "0) I &-)

with the subscript D = D indicating that the zero-
frequency dielectric constants are the same. The numeri-
cal coeKcient was chosen so that PD D reduces to PMM
of Eq. (1.1) for eio ——e20 ——oo. BD D can be deter-
mined by considering ep 1. With Q. ip = A2p = o.p and
%1At ——N2At = %At) Eq. (6.1) becomes

is the normalized bound state for the nonrelativistic
electron-wall interaction VNR(E, e20). EE @~M has been
estimated for the case of a metallic wall, with VNR(E, oo)
taken to be e /4E for the electro—n outside the wall and
the wall assumed to be impenetrable [12]; 1/) (e20 ——oo)
is trivially related to the three-dimensional Coulomb 8-
state wave function. For e2p finite and the nonrelativistic
electron impenetrable-wall interaction given by v(E) of
Eq. (3.6), one can again readily obtain the wave func-
tion, now denoted by @ (ezo). The ratio of 1/) (e20) and
@„(e20 = oo) is thus known. Furthermore, for n large
enough for both 1/) (e20) and @ (e20 ——oo) to be concen-

At~p
240 I. (I + BD

(6.2)

In cylindrical coordinates, with zi and z2 (both non-
negative) defined by a line perpendicular to each of the
two walls, each measured by the distance from the sur-
face of the wall in which it lies, and with pq and p2 the
distances from the line, the force per unit area exerted
by wall 2 on a semi-infinite cylinder in wall 1 centered
on the zq axis and extending from zi ——0 to zq ——oo, for
Ep~l, is

dzy
OO

PD=D (&0 1) (~At )W
23 hc(&Atno)
40 E4

dz2 27r p2 dp2 VAtAt(r)

(6.3)
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4' '
PD D

—— —1 = 2.36,
138 I~2 (6.4)

and our approximate expression becomes

2
~c ( ., —1

240 C ~~., + 2.36 lp = Cgp = Cp

(6.5)

The exact value PD D(eo) was evaluated numerically [3],
with the results expressed in the form

nc &..—1&'
(6.6)

where we used Eq. (1.3) for VAtAt. Comparison of the
two expressions gives

oo) =—PDM(eo) F. or ep 1, we have

l9
CXO

PDM(eo ~ 1) ~ KIAt

3 Ng Ag o.g p hc

8~ E4

dzl V~tM (r)

(6.10)

2' 4
BDM —— —1 = 3.33

45

and our approximate expression becomes

(6.11)

7l Ac E'p —12

240 E4 cp + 3.33
(6.12)

PDM (ep) has been evaluated numerically [3] and ex-
pressed in the form

where we used Eq. (1.2) for VAtM(r), with r given by
r = E + zi. Equating Eqs. (6.9) and (6.10) gives

QDD(ep) was plotted; its value cannot be read very ac-
curately from the plot given. [The choice of the factor
(ep + 1) for the denominator is arbitrary. ] Values of the
ratio

PD D(ep) ~f' ep + 1 l 1

PD=D(&0) (&0 + 2 36) yDD(&0)

(6.7)

7t- Ac Ep —12

DM (eo) = —
~4 ArD(eo) .

240 X4 ep + 1
(6.13)

PDM (eo)
sDM(eo) =

PDM (eo)
(6.14)

eo + 3.33 4MD(eo)

(The choice of the form ep+ 1 in the denominator is again
arbitrary. ) We define the ratio pDM(ep) as

207 6c t'ep —1

640vr2 /4 (eo + 2

which is off by about 20%% at Ep = Oo.

B. A metallic wall and a dielectric wall

We turn now to the case of a metallic wall and a di-
electric wall. We choose as our approximate form

PDD(elo = eo) e20 = OO) = PDM(to)
7i Ac Gyp —12

240 E ~~p + BDM
(6.8)

We then have

vr hc 47r KIAtctio
240 E4 1 + BDM

(6.9)

PDD for this case is given by PDD(eip = ep, 620

are given in Table I for a few values of ~p. We once again
expect at least rough agreement since, by construction,
PD D(ep) and PD (DEO) agree exactly at the end points
(eo ——1 and eo ——oo), have the same first derivative at

1 it vanishes there and have the same second
derivative at ep ——1, and since there is nothing in the
problem to suggest any rapid variation of PDD(ep) with
ep. In fact, PD D(EO) is monotonic in the range 1 to oo
and the two expressions are in meaningful if very rough
agreement .

The use of Eq. (4.11) in Eq. (6.3) gives [18]

Values of pDM (ep) for various values of ep are listed in Ta-
ble I. Once again the agreement is meaningful but rough,
somewhat rougher than for the previous case of 6] p = 62p.
The use of Eq. (4.11) in Eq. (6.10) gives

i( 9 Ac tp —1
DM 32~2 ~4 ~p + 2

which is off by about 30% at ep ——oo.

VII. TWO WALLS: COMMENTS ON THE
GENERAL CASE

A thoroughgoing analysis of the force per unit area
PDD(eip e20) between walls characterized by eip and e20
is very much hampered by the paucity of numerical values
of PD D available, values being known only for 6] p = 62p

and for 62p = oo. We intend to determine additional
numerical values and then to undertake such an analysis,
but we have here largely limited our considerations to
some general comments on the forms that might be used
in constructing an estimate PD~ of PDD for arbitrary
values of 6yp and 62p ', we do give one relatively simple if
crude approximation to PD D .

A. Restrictions on the form of the approximation
Pnn(eio~ &20)

In this subsection we take as our objective the determi-
nation of some possible forms of P~~ which encompass
all of the relevant information which does not involve di-
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electric walls. That information is the following:

PDD(eI0) E20): PDD(e20) eIp) (7 1)

r l
11IIl [e20F(e20)] !

= 1
62O ~OO

PDD(1 &20) = 0, (7.2) F'(1) =

7r hc
PDD(~~ ~) — = PMM

240 Z4

23 ~IAI, ~2AIcIIocI20IIc
PDD eI0 1~ e20

40 g4

~iA~O-ip~c
PDD(f10 ~ 1, e20 —oo) ~—

8~ 84

(7.3)

(7 4)

(7.5)

45
F(l) lim [e20F(e20)] =

620 ~OO 2vr4

Squaring the last equation and using the first two leads
to a contradiction.

Many simple approximate forms for R(EIp, e20) are pos-
sible. One possibility is

1
R (&Io, &20) =

(elo + P) (e20 + ~) 0 alp + e20 )
(7.12)

Equation (7.4) is a slight extension of Eq. (6.3), and Eq.
(7.5) is just Eq. (6.1O).

We implement the conditions imposed by Eqs. (7.1)
and (7.2) by choosing the form

PDD (eI0, e20) = PMM (eI0 —1) (E20 —1) R(eI0, e20)

(7.6)

where

R(F101e20) R(e20, tI0) (7.7)

We will now show that, as opposed to the two special
cases considered in Sec. VI, we cannot, if Eqs. (7.1)
through (7.5) are to be satisfied, choose R(E'Ip e20) to
have the product form

Note that, as is necessary, p, whose presence makes it
impossible to write R(eI0 e20) as F(EIp) F'(E' 02)& plays no
role as Eip oo and E'2p oo. A second possible form is

R (EIo, E20) ='F(eIp) F(620) + G(CIp) G(E20) . (7.13)

Let us consider the force per unit area, defined by
Eqs. (7.6) and (7.12), to be denoted by PDD(EIo e2'0).—I
On setting e2p ——oo and letting eqp 1, PDD assumes
the same form as does PDM of Eq. (6.8) for e20 ——oo and
eI0 1, namely Eq. (6.9), with P replacing BDM We.
must therefore have

P=BDM =333.
We then also have

R(EIp, 620) = F(EIp) F(E20) . (7.8)
—I (4~~A, ~0) t
PDD (EIp = E2p = ep ~ 1) ~ PMM 1+—

(1 + BDM) i 2)

[The difference between the general case and the two spe-
cial cases is that not all of the equations (7.1)—(7.5) are
applicable for the special cases. Equation (7.5) is not
applicable if EI0 = e20 and Eq. (7.4) is not applicable if
E2p = oo.] That Eq. (7.8) is not allowable follows from
the conditions on R(EI0 E20) imposed by Eqs. (7.3)—(7.5),
namely

A comparison with Eq. (6.2) for PD D(ep 1) gives

(,
(1 + BDM) ( ) ( + D=D)

where BD D 2.36, so that p = 1.32 and

11111 111I1 EIoe20 R(EI0, 620) = 1
61O~OO 620~OO

(7.9)

(eIp —l)(e20 —1)

x 1+
Elp + e20 )

(7 14)

R(1, 1) = 69
(7.1o)

and

45
11I11 e20 R(l, e20)

62O ~OO 2vr4
(7.11)

independently of the order in which the limits are taken,

—I
PDD(eIp = e20 :ep)

pD=D(~pf =
PDD (~10 = e20 = eo)

1+( co+1 )'& O

(ep+ 3.33j
.661
Cp DD Cp

—I
PDD(EIp, e20) reduces to PDM of Eq. (6.12) foI' e20 = ocl.
We introduce the ratio

The assumption made in Eq. (7.8) then gives where we used Eqs. (6.6), (7.3), and (7.14). Some values
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—I
of pD D are given in Table I; we see that PDD(EI0, e20)
is not as good an estimate, for c]0 = E'20, as PD ~. We
will seek a better estimate of PDD in the near future.

B. Use of the atom-dielectric wall interaction

PDD (eI0 1, e20)
3—Ng~g —hco. go8'

62O —1 1
4AtD(e20) ~, .

e2O + 1
(7.16)

Equation (7.16), which differs from Eq. (7.5) by the pres-
ence of the factor

62O —1
WAtD (e20)

c2O + 1

The words "elementary derivation" in the title were
meant to imply that the analysis in this paper of Casimir
eKects involving dielectric walls is elementary; our analy-
sis does rely, however, on not particularly elementary pre-
vious determinations of a number of Casimir efFects which
are much simpler than those involving dielectric walls,
but namely those which do not involve dielectric walls.
From a logical point of view we can, in the same spirit,
Use VAtD (e20) in a determination of PDD (eI0, e20) since
the former is certainly simpler than the latter. Thus, as
noted above, the direct determination [9] of V«D(e20) is
much simpler than its derivation from PDD(EI0, e20) by
letting ego 1, and the derivation of V«~ might have
and logically should have preceded that of PDD.

With VAtD assumed to be known given by Eq. (4.6),
with analytic approximations and with numerical values
of QAtD both available we seek an improved estimate
of PDD(EI0, E20). To do so we replace Eq. (7.5), which
considers E]0 1 and 620 = oo, by the more restrictive
equation which considers ego 1 and all ~2O, namely

VIII. DISCUSSION

The approximations obtained above for VA&~, VE~D,
and PDD are a bit crude, but their determinations are
some orders of magnitude simpler than the exact deter-
minations and, as opposed to the exact determinations,
they make at least some of the "physics" more or less un-
derstandable. Furthermore, the general procedure should
make it possible to obtain a simple approximation PDD,
for arbitrary values of Cyo and 620. This would be quite
useful sin~~, as opposed to VA&D and VE~D, PDD is a dou-
ble (not single) integral which contains not one parameter
but 'two (CI0 and t20); the integrand is quite complicated
and the double integral must, be evaluated numerically.
It would also be useful to have siInple approximations
for V~qD and VEjD, even though they can be evaluated
analytically, because the analytic expressions are very
complicated.

Our primary interest has been in the exploration of
relations between difFerent retardation efI'ects, one par-
ticular aspect being the examination of the accuracy at-
tainable in going from the simple to the complex from
VAqD to PD~, for example rather than, as often is done,
in going from the complex to the simple [2,3,20].

It would be straightforward to extend the present anal-
ysis to other situations. These include the interactions
of atoms or of electrons with walls with magnetic as well
as electric properties; exact results for these cases, in
the form of complicated integrals, have been obtained
recently [21]. They also include the case of the force per
unit area P(eto, E20, iso) between two walls when the re-
gion between them is not a vacuum but a medium with a
dielectric constant e30. Given a good approximation PD~
to P~D, the extension in this case would be immediate,
since it has been shown [3] that

is obtained by using Eq. (4.6) for VAtD(t20) rather than
Eq. (1.2) for VA, M = VA, D(oo).

Of the many possible uses of Eq. (7.16), we will concen-
trate on its value in helping to choose a PDD for ego 1
aIld 620 oo; we have used our knowledge of the value
of PDD and therefore of PDD for Eyp 1 alld 620 equal
to oo, but we have not built in any information on the
asymptotic form of PD~ for Cyo 1 and E'2O oc, and
that is the region where PDD can be expected to (and
does) change most rapidly (The beh. avior for t20 1
can be expected to be, and is, simply linear in E20 —1.)
To utilize Eq. (7.16) for e20 oo we note that

(
VAtD(e20) VAtM 1 ) &20 ~ oo (7.17)

4e20 )
(See the Appendix. ) From Eq. (7.16) we conclude that,
ignoring terms of O(1/E20),

3 hc&IAtnI0 ~ 5
PDD(& o, &2o) ——— 1

87r I4 ( 4eI &2 )

eto ~ 1, e20 ~ oo . (7.18)

1 EyO 62O
P(~10 1 e20& e30) PDD

630 eso iso)

where the PDD on the right refers to the two-wall case.
A weakness of our approach is that it does not have a

solid theoretical basis the forms chosen are somewhat
arbitrary even if reasonable. That weakness can be a
strength in that it allows one to use experimental data.
Assume, for example, that one did not know how to cal-
culate VAtD and wanted to go beyond VAtD of Eq. (4.5)
and that one had n1easured VAqD for an atom of known
o.~o interacting with a wall of known e2O. One could then
replace e20 + 37/23 in the denominator of Eq. (4.5) by

620 + ( E'20 + b, with the two parameters p and b deter-X/2

mined by one piece of theoretical information, the be-
havior of VAqD for 620 1, and one piece of experimental
information.

The most interesting possible extension would be to
the very dificult case of arbitrary E. To simplify the dis-
cussion we consider the specific case of two walls. The
E dependence cannot then be extracted and PDD is a
very comlicated double integral containing one parame-
ter / and two complex functions eI(w) and e2(cu). The
l dependence can be extracted for E small [2,3], and one
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should be able to obtain approximations for that case
by methods similar to those used above for E large, and
one would then try to use interpolation to obtain esti-
mates for intermediate values of X. Since the fluctuations
in eq(~) and e2(w) will induce fluctuations in P~D, the
estimates would at best be averages over domains of in-
termediate values of E. The flucutations of P~~ (/) with /
may well be very much less than the fluctuations of eq(w)
and e2((rf) with et/ since P~~ contains an integral over w.

We note in passing that the transition of the atom-
surface interaction from I/E to I// v;as very recently
measured for the erst time [22].

AC KNO%VLED G MENT

This research was partially supported by the NSF un-
der Grant No. PHY 90—19745.

APPENDIX: THE ATOM-WALL INTERACTION
FOR ego ~ oo

The interaction of an atom and a dielectric wall is given
by Eq. (4.6), where PAt~(e2p) is given in integrated form
by Eq. (4.38) of Ref. [3]. For determining V~tD(E2p) for
e2p oo, it is much simpler to start with Eq. (4.3) of
Ref. [9],

ho. io
VAta(e2o) =—

where H(p, E2p) is defined by Eq. (3.11) of Ref. [9]. One
readily finds that

2 —6p
H(p, e2p) - 2p +, e2p - oo .

20

Equation (7.15) follows immediately.
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