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The original derivation by Lifshitz [Sov. Phys. 2, 73 (1956)] of Ppp, the force per unit area
between two plane parallel dielectric walls, is eztremely complicated; the later derivations are simpler
but still difficult. The standard derivation of the interaction Vayp of an atom and a dielectric
wall uses the expression for Ppp as its starting point. The results are valid for all values of the
separation £. For £ ~ oo, where the interactions are retarded, we obtain reasonably accurate
approximate expressions for Ppp and for Vatp—and also for Vgip, the retarded interaction of an
electron and a dielectric wall—by the elementary procedure of assuming simple forms with one or
two open parameters, adjusted to give the known results for retarded interactions which do not
include dielectric walls. These include Paras (the force per unit area between two parallel plate
metallic walls), Vatar (the atom-metal) interaction, Vatat (the atom-atom interaction), and Veinm
(the electron-metal interaction). We also consider the possibility of obtaining an improved estimate
of Ppp by using known properties of Vatp. The explicit results obtained by Lifshitz for the various
interactions are also very complicated. The simple approximate forms of the interactions can be
particularly useful for the wall-wall interaction, since Ppp is a double integral with a complicated
integrand which depends upon two parameters, the zero-frequency dielectric constants of each of

the walls.

PACS number(s): 31.30.Jv, 12.20.Ds, 77.90.+k, 41.20.—q

I. INTRODUCTION

The force per unit area between two plane parallel
metallic walls at a separation £ was found by Casimir
[1], as long ago as 1948, to be

w2 ke

Pyy =

[We use the subscripts D, M, At, and El to denote dielec-
tric walls, metallic (perfectly conducting) walls, atoms,
and electrons, respectively. A metallic wall is of course a
special case of a dielectric wall. Subscripts 1 and 2 will
refer to the two interacting systems. Primes on pressures
and potentials indicate approximations. We use P for
the force per unit area, or pressure, rather than the F,
which is often used [2,3]. We consider a static potential
in Sec. ITI. All other potentials, and all pressures, are re-
tarded.] Equation (1.1) is valid for all £. Casimir also
obtained the interaction [4]

3 hcam

Vaen (€) = T8r 44

(1.2)

between an atom and a metallic wall at an asymptoti-
cally large separation ¢; o is the static electric dipole
polarizability of the atom, here taken to be system 1.
Casimir and Polder found the interaction of two atoms
at an asymptotically large separation r to be [5]

23 agoaohic

VAtAt(T) ~ —471_ 7

The three derivations are relatively simple. (See, for ex-
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(13)

ample, the book by Power [6].) Interactions involving
dielectric walls, on the other hand, are, as might be ex-
pected, extremely complicated. In particular, the orig-
inal derivation by Lifshitz [2] of Ppp is so complicated
that Landau and Lifshitz [2] give the result without giv-
ing the complete derivation; they simply cite the Lifshitz
paper. As pointed out by Ginzburg [7], it is one of the
very few results given in the entire series of books by
Landau and Lifshitz in which they do that. The deriva-
tion of the interaction Vaip(¢) between an atom and a
dielectric wall, at a separation £, is usually obtained by
considering one of the two walls to be a dilute gas of
atoms. Vpp(£) is then a superposition of atom-dielectric
wall interactions Va¢p(r) and one demands that Va¢p(r)
be such that the sum of Va¢p’s reproduces Vpp(€). Sub-
sequent derivations [3,7,8] of Vpp are rather less difficult
than the original Lifshitz derivation, but still difficult.
A wall is characterized by its “dielectric constant” or
electric permittivity e. One of the complicating features
in the determination of Vpp(£€) is that one is normally
interested in its value for all ¢, and that demands that
one know both the real and imaginary parts of ¢, for all
frequencies. If one restricts one’s attention to asymp-
totically large values of £, one need know only the real
zero-frequency component e(w = 0) = ¢o. Rather than
proceeding by finding Vpp(€) for all £ and taking the
limit as £ ~ oo, one recognizes at the outset that for
asymptotically large £ only ¢y enters; the evaluation of
Vpp(£) for £ ~ co could thereby be greatly simplified [9].
Even this latter calculation is sufficiently tortuous that
one can easily lose sight of the “physics.” We therefore
believe it to be useful to have derivations of Vpp and of
Vatp which, if only approximate, if only partially “phys-
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ical,” and if valid only for £ ~ oo, are at least elementary.
We will also obtain an approximation for the interaction
VEip (£) of an electron and a dielectric wall, at an asymp-
totically large separation £. (The exact result for this
case was derived only recently [9]. This derivation too is
somewhat tortuous.) The derivation of Vgip(€) for £ ~ oo
will rely on a knowledge of the retarded interaction of an
electron and a metallic wall [10-12]

e?h

Vi (£) ~ 4mmcl?

(1.4)

and the retarded interaction of an electron and an atom
(13]

11 agoe?h
Veiae(r) ~ 4w mer®

(1.5)

This last result is also applicable to an electron and an
ion [14].

There is only one instance, in Sec. VII, in which an in-
teraction involving a dielectric wall is used as input data;
we there include information on Vaip as input data in
obtaining an improved estimate of Ppp. Section VIII is
the only section in which we consider, though only very
briefly, values of the separation £ of the interacting sys-
tems which are not in the asymptotic domain. Asymp-
totic values of ¢ are values which are larger than any
wavelength for which either of the two systems under-
goes significant absorption.

II. THE PROCEDURE TO BE FOLLOWED

For each interaction we will begin by obtaining the
dependence of the interaction upon the (not all indepen-
dent) dimensional quantities e, m, ¢, &, ag, and £. The
procedure for doing so is analogous to that used in the
past [15] for obtaining the interaction for systems involv-
ing atoms, electrons, and metallic walls; the argument
is much the same if one replaces a metallic wall by a
dielectric wall since €g is dimensionless. One extracts
some of the physics and one then uses dimensional anal-
ysis; dimensional analysis alone is not always sufficient.
To extract the physics we note that for £ ~ oo a wall
is completely characerized by €g, an atom by ag, and an
electron by a(w) = —e?/mw?, its dynamic electric dipole
polarizability. (The validity of the last statement is not
restricted to asymptotically large values of £.) Further-
more, we recognize that the asymptotic interaction for
the cases under consideration is completely dominated by
contributions associated with two photon exchanges, and
that the normalization of each of the associated electric
fields contains a factor A'/2; each of the Casimir inter-
actions is therefore proportional to A. The % factor also
follows for most Casimir effects by noting that they can
normally be written as the difference between sums over
all frequencies of perturbed and unperturbed energies,
namely as

ﬁZ(w; — wp) .
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After the physics has been extracted and dimensional
analysis has been performed, the problem reduces to the
determination of one real function for each of the three
interactions, a function of €39 for Vaip and for Vgip,
and of €10 and €39 for Ppp. We impose some obvi-
ous restrictions on these functions. Thus, a wall with
€0 = 1 is really a vacuum and does not interact. This
suggests that we introduce a factor ¢y — 1 for each wall.
The fact that the various interactions remain finite as
€9 — 00 again suggests—we are not here attempting to
prove anything—that each factor of ¢g — 1 appear with a
denominator of the form ¢y + Bj; thus, for each wall we
insert a factor

(0 =1)/(e0+ B) ,

with B an as yet unspecified dimensionless constant
whose value will depend upon whether the wall is inter-
acting with another wall, an atom, or an electron. We will
then use the known expression for P or for V' (whichever
is appropriate) as €10 and/or €39 — oo, the fact that for
€0 ~ 1 the wall can be thought of as consisting of in-
dependent atoms, and the known metallic-wall-metallic-
wall, atom—metallic-wall, atom-atom, and electron-atom
interactions to determine the various B’s. (The condi-
tion imposed for €y &~ 1 encompasses the condition used
above that the interaction vanishes for ¢ = 1.)

III. A TRIVIAL EXAMPLE: THE CLASSICAL
STATIC INTERACTION OF AN ELECTRON
AND A DIELECTRIC WALL

As an illustrative example of the procedure to be used
in obtaining approximations of (quantum relativistic)
Casimir interactions involving dielectric walls, we use the
procedure to estimate the classical static interaction v(£)
of an electron at a distance £ from a dielectric wall. [v(¢)
is of course well known.] To do so, we use static interac-
tions which do not involve dielectric walls. In particular,
the static interaction of an electron at a distance £ from
a metallic wall (dielectric constant infinite) is assumed to
be known to be (—e%/4f), and the static potential energy
of an electron at a distance r from an atom with a static
electric dipole polarizability as¢ is assumed to be known
to be

—(1/2)azee?/r* .

The wall is completely characterized by its real zero-
frequency dielectric constant ez(w = 0) = €39 and the
(stationary) electron by its charge e. Dimensional anal-
ysis gives

2
v = U(eve’ 620) = 7 f(€20) )

where f(ezo) is an as yet arbitrary real function. Since
f(1) = 0 and f(oco) = —1/4, a reasonable choice for our
approximation to v is

/ e?
U =

€20 — 1
40 €30 + b

(3.1)



48 ELEMENTARY APPROXIMATE DERIVATIONS OF SOME. ..

To fix b’, we formally consider the case for which the wall
consists of a dilute gas of atoms. For this rarified medium
situation we have

€20 — 1=4m NzAtazo ) (32)
where Njp¢ is the number of atoms per cubic centimeter

in the wall and ago is the static electric dipole polariz-
ability of an atom in the wall, and Eq. (3.1) becomes

e? 4w Naarao

! ~l)~ ——
vieo ¥ )~ -5~y

(3.3)
Now v(ezp = 1) can be obtained by summing the (inde-
pendent) interactions of the electron and the atoms of
which the wall is composed. This approach gives

e > 012062
v(€ez0 = 1) = Naat dzy 2w padpa | — ;
0 0

2r4

with the origin chosen to be the point on the surface
of the wall closest to the electron (at a distance £ from
the wall), z2 and p2 (both non-negative) are cylindrical
coordinates of a point within the wall, and

r=[(z2+0)°%+ pg]l/2 . (3.4)

The integrations are trivial and lead to

2

e
'U(Gz() ~ 1) ~ —— 27TNzAta20 .

= (3.5)

A comparison of Egs. (3.3) and (3.5) gives b’ = 1 and
therefore

2
! e’ €z — 1
v(l)=—— —— [=v()]. 3.6
O = -5 221 1= v()] (3.6)
This result is unusual in that it is exact, that is, v’ = v,
a possibility which arose because the approximate form,
Eq. (3.1), encompasses the exact result. It should not be
thought, however, that the procedure is useful only if one
can choose a form which encompasses the exact result.
Thus, consider an alternative approximate form
e2 6%2 —1 e? €20 — 1

’U”(Z) - ___ 29 -
b AL ()P ) (epp” + 1)

with b determined by the requirement that v'(£) give
the exact result for the dilute case. The ezo-dependent
factors in the denominator in the expression on the far
right reduce for the dilute case to 2(1 + "), as opposed
to the 1 + b’ factor which arose when studying v’ for the
dilute case. Since both v and v’ must reduce to v for
the dilute case, b"” must satisfy 2(1 +b") =1+ b = 2,
that is, b’ = 0, so that

" e? 6;(/)2 -1

=—— =, 3.7
4[ E;(/)Z ( )

which differs from v by at most about 15% over the entire
range 1 < €9 < oo. This good agreement is hardly
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surprising. Not only is v"' exact at both end points, €39 =
1 and €39 = o0, but v was also adjusted to be exact
for €30 in the immediate neighborhood of unity—more
precisely, the first derivative of v”(€39) is exact at ezp =
1—and there is nothing in the physics to suggest any
rapid variation of v with egq.

For later reference—see Sec. VII-—we consider the be-
havior of v and v” as €39 ~ oo. While v” is exact at
€20 = 00, it does not have the correct form for €39 ~ oo,
since

2 2
v(€0) ~ “Z—g (1 - —) ., €20 ~ 00, (3.8)

€20

while

2 1
v (e ~— 1— — €20 ~ OO .
( 20) af 6;62 ) 20

Suppose that in some fashion one determines the correct
asymptotic form. [In the present context, one might be
able to determine it by starting with metallic walls and
using perturbation theory with 1/e3¢ as the perturbation
parameter. In our analysis of Ppp(€io,€20), in Sec. VII,
we will obtain some information on Ppp(€10,€20 ~ 00)
for €10 =~ 1 by assuming a knowledge of Vayp(€20).] The
question is the extent to which a knowledge of the asymp-
totic behavior can help to improve our estimate of v. Let
us then choose an approximation v"/ which cannot re-
duce to v and which gives corrections of order 1/ezo for
€20 > 1, for example,

2 ego -1

40 €35+ aeZy + 8

e
"
v o=

v"" (€20 = 00) is exact. The demand that v'"(e30 = 1) =
v(ezo =~ 1), with the latter given by Eq. (3.5), leads to
1+ a+ 3 = 6. The new requirement, that v"’ have
the asymptotic form given by Eq. (3.8), leads to a = 2,
which then gives 8 = 3. v"", witha =2 and 8 =3, is a
considerable improvement over v”’, especially, as is to be
expected, for ezo > 1.

IV. AN ATOM AND A DIELECTRIC WALL

We begin our concrete considerations of Casimir inter-
actions involving one or two dielectric walls with the case
of an atom and a dielectric wall. In line with the discus-
sion above on the extraction of the physics, we recognize
that

Vatp(£) = Varp(e,m, ¢, ki, a0, €20, £)
must have the particular form
Vatp(€) = arohfaip (¥, ¢, €20) ,
with faip an arbitrary real function; the only dependence
upon the charge e and mass m of an electron is that

contained in a0 and €3p. Dimensional analysis then leads
to
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hcalo
— 9atp(ex0)

Vaip (£) =
with gatp an arbitrary real function. We choose to satisfy
two of the restrictions that must be satisfied by gatp by
writing

3 hcam
8r ¢4

620—1

/ —_ —
VAtD (l) - €20 + BfAtD )

(4.1)

where the numerical coefficient was chosen so that Vaip
reduces to Vasnr of Eq. (1.2) for €30 = oo. To fix By, p,
we assume that ez = 1, so that €30 — 1 is then given by
Eq. (3.2), and

3 hAcaqg 41 Nopgaag

Vit ~1)~ —— 4.2
AtD( y €20 ) 87 04 1 +B;;tD ( )
But we can also write
Vaep (45 €20 = 1)
~ Naas / dz / 2w prdps Vaems(r) ,  (43)
0 0

where r is given by Eq. (3.4) and Vaae(r) is given by
Eq. (1.3). The integrations are trivial and Eq. (4.3) be-
comes

23 Naatajoazehc

V, ¢, ~1)= 4.4
AtD( y €20 ) 40 Iz ( )
Comparison with Eq. (4.2) gives
B,IAQ:D = 37/23 )
and our approximation is
3 ﬁcam €20 — 1
Vipl) = —— . 4.5
AtD( ) 8m % ezo + (37/23) (4:5)

A special case of interest is that of an atom interacting
with a liquid-helium wall [16].

Vatp(€) can be obtained analytically and has been
evaluated numerically. Dzyaloshinskii, Lifshitz, and
Pitaevskii [3] write it in the form

3 hCO(lO €20 — 1
8 14 €20 + 1

Vatp(£) = ®atD(€20) (4.6)

and plot ¢atp(€20). We tabulate the value of the ratio

At (€20) _ €20 + 1 1
Vaen(€20) €20 + (37/23) dacp(€20)

Paep(€20) = (4.7)

for a few values of €3¢ in Table I. One sees that the agree-
ment is rough but meaningful.

To check that the agreement is not merely accidental,
we consider a second form of the approximation,

TABLE I. Ratios of estimates to exact values for the
atom-wall and wall-wall interactions. Each ratio is equal to
unity for €0 = 1 and €o = 0o, and the derivative of each ratio
is equal to unity at €o = 1.

€0 4 9 16
Ratio
Parp(€0), Eq. (4.7) 1.14 1.16 1.10
Paep(€0), Eq. (4.10) 0.93 0.93 0.88
pp=p(€), Eq. (6.7) 0.80 0.94 1.0
ppum(€n), Eq. (6.14) 1.4 1.4 1.1
pp=p(€0), Eq. (7.15) 0.70 0.86 0.94

VI () 3 hcago 6;(/)2 -1
b 8 £t %+ Bip
3 ﬁcalo €20 — 1

= . (4.8
Ry TR T R
(The motivation for introducing 6%2 is its appearance
in a recent derivation [9] of Vayp based on quantized
Fresnel modes [17]. One considers quantized electromag-
netic waves incident on the dielectric-vacuum interface,
from both directions, and for the quantized modes, as
for the classical modes, the reflection and transmission
coefficients are functions of the zero-frequency index of
. .1/2
refraction n, that is, €55°.)
To agree with V{, (and thereby with Vaip) for €39 =
1, we must have

2(1+ Bjyp) =1+ Bjp =60/23

that is,
and therefore
3 hcalo €20 — 1
VX pl) = —— .
* 8T €4 ey + (30/23)ell? + (7/23)
(4.9)
Values of the ratio
AtD
1" — t
pAtD(ezo) - VAtD
_ €20 + 1 1
€20 + (30/23)exl? + (7/23) PatD(€20)
(4.10)

are given in Table I for a few values of €.

Since we have been concerned with £ ~ oo and there-
fore with €59, there is no reason to expect any rapid varia-
tion of Vayp with €29; the reasonable agreement obtained
with both V{,, and V},, is then to be expected, for
the same reasons it was expected for the classical static
electron-wall interaction studied in Sec. III.

The form for Vayp chosen by Dzyalashinskii, Lifshitz,
and Pitaevskii [3] is arbitrary, though of course the nu-
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merical value of Vaip as a function of €3¢ is not. If one
wanted an accurate if still approximate analytic expres-
sion for Vaip, there would be some slight advantage in
using the form

3 hcalo
Vap = ——
AtD 8t (4

€20 — 1
€20 + (37/23

) &AtD,

suggested by Eq. (4.5) [or the form suggested by
Eq. (4.8)]. ¢atD, related to ¢pasp by

~ €20 =+ (37/23)

batp = P batD

varies less than ¢ a¢p and could therefore be parametrized
more easily.

An alternative procedure [18] is to use the Clausius-
Mosotti approximation (which should more properly be
called the Mosotti-Clausius approximation) in the ex-
pression for Vaip(e20 = 1) obtained by starting with
Eq. (4.3), namely Eq. (4.4). Thus, replacing Eq. (3.2)
by

620—1

47 Noprazo =~ 3
2At020 o 2

(4.11)

and using this in Eq. (4.4), we have the approximation

V,,, _ _ 69 a]_oﬁc €20 — 1 )
AtD 1607 €4 €50+ 2

(4.12)

The advantages of this approach are that it is simple and
that one knows precisely what approximation has been
made. It has the further slight advantage of having built
in a rather good approximation for €3¢ close to unity,
but the approximation in Eq. (4.11) is really good only
for €39 quite close to unity. The disadvantage of V|,
relative to V},, of Eq. (4.5) is that no provision was
made to account for the behavior of Vpaip as €39 ~ o0
and V{p(€20 = 00) = (23/20)Va¢p. The ratio of Vi,
to V{,p ranges from 1 at e3o = 1 to 23/20 at €39 = co.
In summary, V{j is slightly better for €39 quite close
to unity, but both approximations are quite accurate in
that domain. (They each have the correct value and the
correct first derivative at €30 = 1.) Further, V{, > V{,p
for all €30, and since V,, > Vasp for larger values of ez,
as seen from Table I, V,,,, is the better approximation
at those larger values.

V. AN ELECTRON AND A DIELECTRIC WALL

An electron at a distance £ from a dielectric wall has
an interaction v with its image, where v is given by
Eq. (3.6). This classical static interaction persists at ar-
bitrarily large £. The retarded interaction Vgp to be
considered now is in addition to v(¥).

We here have

4217
VEID (f) = VE]D(G, m,c, h5 €20, ‘e)

e2
= (—*) thlD(eY =) 620) :
m

Dimensional analysis leads to

e%h

mcl?

Veip (¢) = gE1D (€20) -

We elect to satisfy two of the restrictions by choosing as
our approximation to Vgp

1 62ﬁ €20 — 1

Ve =
e (f) 4n mcl? €30 + B p ’

with the numerical coefficient chosen so that the result
for the dielectric wall reduces to that of the metallic wall,
given by Eq. (1.4), for €29 = co. We then have

1 6277', 47rN2Ata20
4m mcl? 14 Bgp

VélD(l; €20 X ].) ~
and also

VEiD (L5620 = 1) = NZAI:/ dzz/ 27 p2 dpz Veiae(T)
0 )

_ 11 NgAtazoezh

-1 , (5.1)

mcl?

where we have used Eq. (1.5) for Vgja¢. Comparison of
the two forms gives

Bgp = 1/11,
so that our approximation is

_ 1 ezﬁ €20 — 1
T 4w mef? ey + (1/11)

Veip (£) (5.2)

(A special case of interest is that of an electron and a
liquid-helium wall. Some slight analysis of this case has
been given [12]. Very interesting experimental results
were obtained for this problem [19], but the data are not
good enough to go beyond verifying the classical static
interaction.)

For the same reasons as for Vj,,, versus Va¢p, we ex-
pect Viip to be a reasonable approximation to Vgip. An
explicit expression for Vg|p, in the form of an integral,
was recently obtained, [9], but no numerical results were
given. We have now evaluated Vgip(€e20) for a number of
values of €39. We write

1 Ezﬁ, €20 — 1
41 mcl? exp + 1

Veip (€20) = ¢E1D (€20) > (5.3)
and give some values of ¢gip (€2¢) in Table II. [Some addi-
tional values of ¢gip(€20) are the following: 1.930, 1.677,
and 1.3844 for ¢ = 4.0, 49, and 400, respectively.] We

introduce

V}:‘,ID(GZO) _ €20 -+ 1 1
Veip(e20) €20 + (1/11) ¢mip(€20)

PEID (€20) = (5.4)
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TABLE II. Numerical values of ¢rip(€20); values of
Veip(€20) follow from Eq. (5.3). pmip(€20) is the ratio of the
approximate and exact values of the interaction energy.

€20 ¢E1D (€20) Eq. (5.4)
1 11/6 1

1.1 1.848 0.954
1.44 1.878 0.849

9 1.891 0.582

16 1.832 0.577
100 1.569 0.643
10000 1.129 0.886

[e’s) 1 1

and give some values of pgip(€20) in Table II. By con-
struction, pgip(1) = 1 and pgip(co) = 1, and the deriva-
tive of pgip at e€zo = 1 is also equal to 1, but the con-
vergence at large values of €30 is very slow. To obtain
better results for €39 large, one would have to build into
an approximation to Vgip(ezo) a form which built in
the asymptotic dependence on €3g9. Since expressions for
VEip(€20) are available, in integral form [9] and in inte-
grated form [15], this can be done easily, but since that
would be somewhat contrary to our approach of studying
complicated cases by using results for simpler cases—we
would here be using exact results for Vgip(€20) to help
parametrize Vgip(€20)—we have not bothered to do so.

The use of the approximation Eq. (4.11) in Eq. (5.1)
gives

" _ 11 62ﬁ €20 — 1
EID ™ 161 mcl? eg0 + 2

(5.5)

This is very much in error, by a factor 11/4, at €29 = co.

The shift in energy AE,gip of the nth bound state of
an electron and a dielectric wall, generated by Vgp, is
given in first-order perturbation theory by

AE.gip = (¥n | VEiD (4, €20) | ¥n) ;

1, is the normalized bound state for the nonrelativistic
electron-wall interaction VNr (4, €20). AE,gin has been
estimated for the case of a metallic wall, with Vxgr (£, 00)
taken to be —e?/4¢ for the electron outside the wall and
the wall assumed to be impenetrable [12]; 9, (€20 = o0)
is trivially related to the three-dimensional Coulomb s-
state wave function. For €3¢ finite and the nonrelativistic
electron impenetrable-wall interaction given by v(£) of
Eq. (3.6), one can again readily obtain the wave func-
tion, now denoted by v, (€20). The ratio of ¥, (e20) and
Yn(€20 = 00) is thus known. Furthermore, for n large
enough for both ¥, (e20) and ¥, (€20 = 00) to be concen-

|
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trated asymptotically far from the dielectric wall, V§,,
and Vg differ only by the factor

€20 — 1
€20 + (1/11) )

(The use of the exact form [9] for Vgip provides the exact
ratio of the two potentials.) It follows that one can easily
obtain the ratio of AE,,gip and AFE, g -

VI. TWO WALLS: SOME SPECIAL CASES

The form of the force per unit area between two di-
electric walls follows from dimensional analysis alone; we
need not “extract” the physics other than to recognize
that the only dependence of Ppp on e and m is that
contained in €19 and €29. It is given by

PDD(ea m,c, hy Z, €10, E20)

he
7 gpD(€10,€20) -

Il

Ppp

We will consider two cases, €10 = €39 = €0, Where ¢p is
arbitrary, and €39 = oo, cases for which Ppp has been
evaluated numerically.

A. Identical zero-frequency dielectric constants

For €19 = €29 = €p, we choose the approximate form

Ppp(€e10 = €20 = €0) = Pp_p(eo)

2
2 p _
__T ne Jﬁlﬁ_ . (6.1)
240 ¢\ o + By_,,

with the subscript D = D indicating that the zero-
frequency dielectric constants are the same. The numeri-
cal coeflicient was chosen so that Pp,_, reduces to Pass
of Eq. (1.1) for €19 = €20 = o0. Bp_p can be deter-
mined by considering €p ~ 1. With aj9 = a9 = ag and
Niat = Naag = Nag, Eq. (6.1) becomes

2
2
74 he < 47 Natag ) ‘ (6.2)

/
Poepleo~D~ =355 s\ 1+ By,

In cylindrical coordinates, with 2; and z; (both non-
negative) defined by a line perpendicular to each of the
two walls, each measured by the distance from the sur-
face of the wall in which it lies, and with p; and p, the
distances from the line, the force per unit area exerted
by wall 2 on a semi-infinite cylinder in wall 1 centered
on the z; axis and extending from 2; = 0 to z; = oo, for
€ ~1,is

8 oo (e o] o0
Pp_p(eg ~1) ~ —&(NM)Z/O dzl/o dz2/0 27 pa dp2 Vagat(r)

_ 23 hC(NAtao)z

40 £4

; (6.3)
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where we used Eq. (1.3) for Vagas. Comparison of the
two expressions gives

472

! _— — —_ ~
Pp_p = {38172 1~2.36,

(6.4)

and our approximate expression becomes

2
72 ke € —1 _
—_— - s € = € = €Q .
240 #4 \ o + 2.36 107 F20 =20

(6.5)

Pb:D(EO)

The exact value Pp—p(€o) was evaluated numerically [3],
with the results expressed in the form

w2 hc(eo—l) ¢DD(€0). (6.6)

Pp=p(eo) = —55 7 | oo 71

¢pp(€o) was plotted; its value cannot be read very ac-
curately from the plot given. [The choice of the factor
(eo + 1)2 for the denominator is arbitrary.] Values of the
ratio

po=pleo) = L2=D(%0) _< € +1 )2 ]

PD:D(EO) - €0 + 2.36 (f)DD(Gg)
6.7)

are given in Table I for a few values of ¢g. We once again
expect at least rough agreement since, by construction,
" P}_p(eo) and Pp—p(eo) agree exactly at the end points
(e0 = 1 and €y = 00), have the same first derivative at
€o = 1—it vanishes there—and have the same second
derivative at ¢g = 1, and since there is nothing in the
problem to suggest any rapid variation of Ppp(eo) with
€o. In fact, Pp—p(€o) is monotonic in the range 1 to oo
and the two expressions are in meaningful if very rough
agreement.

The use of Eq. (4.11) in Eq. (6.3) gives [18]

207 he (e —1)°
6407(2 [4 60+2 !

which is off by about 20% at €y = oco.

" _
PD:D -

B. A metallic wall and a dielectric wall

We turn now to the case of a metallic wall and a di-
electric wall. We choose as our approximate form

Ppp(€10 = €o, €20 = 00) = Ppps(eo)

_ 72 ke €19 —1 (6.8)
© 240 4% €10+ By,
We then have
2 he 47 N-
Phar(eo ~ 1) ~ — o 22 ZT1ALT10 (6.9)

240 ¢4 1+ Bp,,

Ppp for this case is given by Ppp(e10 = €o, €20 =

00) = Ppum(eo). For €g ~ 1, we have

8 oo
Ppar(eo ~ 1) ~ —= Niat dzy Vaenm ()
BT, A

3 Niataiohe
- T o_ T ga

87 4

(6.10)

where we used Eq. (1.2) for Vacam(r), with r given by
r = £+ z;. Equating Eqs. (6.9) and (6.10) gives

2t
Bhy = — —1=3.33, 6.11
Dot = g (6.11)
and our approximate expression becomes
72 he € —1
Py =—— 6.12
D (€0) = =540 7 ¢ +3.33 (6.12)

Pprr(eo) has been evaluated numerically [3] and ex-
pressed in the form

72 hce—1
240 £4 €0+1

PDM(EQ) = ¢MD(50) . (6'13)

(The choice of the form €p+1 in the denominator is again
arbitrary.) We define the ratio ppar(eo) as

Ppas(€o) _ €+ 1 1
€0 + 3.33 ¢MD(€0)

pom(€o) = (6.14)

~ Ppu(eo)
Values of ppr(eo) for various values of €q are listed in Ta-
ble I. Once again the agreement is meaningful but rough,
somewhat rougher than for the previous case of €19 = €30.
The use of Eq. (4.11) in Eq. (6.10) gives

P” _ 9. Eﬁg—l
DM 3272 04 g+ 2

which is off by about 30% at €y = oo.

VII. TWO WALLS: COMMENTS ON THE
GENERAL CASE

A thoroughgoing analysis of the force per unit area
Ppp(€10,€20) between walls characterized by €19 and ez
is very much hampered by the paucity of numerical values
of Ppp available, values being known only for €190 = €3¢
and for €59 = oo. We intend to determine additional
numerical values and then to undertake such an analysis,
but we have here largely limited our considerations to
some general comments on the forms that might be used
in constructing an estimate Ppp, of Ppp for arbitrary
values of €19 and €e30; we do give one relatively simple if
crude approximation to Ppp.

A. Restrictions on the form of the approximation
Pz’)p(em, €20)

In this subsection we take as our objective the determi-
nation of some possible forms of P[,, which encompass
all of the relevant information which does not involve di-
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electric walls. That information is the following:

Ppp(€10,€20) = Ppop(€20,€10) , (7.1)
Ppp(l,e30) =0, (7.2)
72 he
T te_p 7.
PDD(O0,00) 240 4 MM ( 3)

23 NiaeN2araioazohic
40 £4 ’
(7.4)

Ppp(eo~1,€0 ~ 1) ~

3 N]_Atalghc
8w £4 )
Equation (7.4) is a slight extension of Eq. (6.3), and Eq.
(7.5) is just Eq. (6.10).

We implement the conditions imposed by Egs. (7.1)
and (7.2) by choosing the form

Ppp (€10 ~ 1,€20 = 00) ~ — (7.5)

Ppp(€r0,€20) = Prrar(€ro — 1) (€20 — 1) R(ero0, €20) »
(7.6)

where

R(€10,620) = R(Ezo,élo) . (77)
We will now show that, as opposed to the two special
cases considered in Sec. VI, we cannot, if Egs. (7.1)
through (7.5) are to be satisfied, choose R(e19,€20) to
have the product form

R(Elo, 620) = F(Glo) F(Ezo) . (7.8)

[The difference between the general case and the two spe-
cial cases is that not all of the equations (7.1)—(7.5) are
applicable for the special cases. Equation (7.5) is not
applicable if €190 = €39, and Eq. (7.4) is not applicable if
€20 = 00.] That Eq. (7.8) is not allowable follows from
the conditions on R(e10, €20) imposed by Egs. (7.3)—(7.5),
namely

lim lim
€10 00 €20 00

€10€20 R(€10,€20) = 1, (7.9)

independently of the order in which the limits are taken,

69
1,1) = — )
R(L,1) = g5 (7.10)
and
. 45
ez})lgloo €20 R(l,Gzo) = -2—71_2 . (711)

The assumption made in Eq. (7.8) then gives
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2
(lim femoP(eao)) =1

69
2 —
F (1) - 87'('4 ’
. 45
F(].) 62})11)1100[620}?(620)] = 573' .

Squaring the last equation and using the first two leads
to a contradiction.

Many simple approximate forms for R(e€1, €20) are pos-
sible. One possibility is

, _ 1 _
R'(€10,€20) = (€10 + B) (€20 + B) (1 + €10 + 620) .
(7.12)

Note that, as is necessary, v, whose presence makes it
impossible to write R(€10,€20) as F'(€10) F(€20), plays no
role as €10 ~ oo and €39 ~ 0o. A second possible form is

R”(Elo,ego) = F(Glo) F(Gzo) + G(Glo) G(Ggo) . (713)

Let us consider the force per unit area, defined by
Egs. (7.6) and (7.12), to be denoted by FIDD(elo,ezo).
On setting €30 = oo and letting €19 ~ 1, FIDD assumes
the same form as does Pp,,, of Eq. (6.8) for €39 = 0o and
€10 ~ 1, namely Eq. (6.9), with 8 replacing Bp,,. We
must therefore have

B = BIDM =~ 3.33 .

‘We then also have

— 41 Nppag)?
PlDD(El() 2620560’\'1) NPMM%(l-F%) .
DM

A comparison with Eq. (6.2) for Pp_p(eo ~ 1) gives

1 ¥ 1
. S— TG AN
(1+ Bpy)? 2 (1+ Bp_p)?
where B,_p &~ 2.36, so that v = 1.32 and

(€10 — 1)(€20 — 1)
(610 + 3.33)(620 + 333)

x(1+ 1.32 )
€10+ €20/

FIDD(Cm,Gzo) reduces to Pp,, of Eq. (6.12) for €39 = oo.
We introduce the ratio

p—}
Pppleio,€20) = Pum

(7.14)

—
PDD(G]-O = €90 = 60)
Ppp(e10 = €20 = €)

_(eo+1 )2 | 066 1
€ + 3.33 €0 ¢DD(60) ’

where we used Egs. (6.6), (7.3), and (7.14). Some values

pp=p(€0) =

(7.15)
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of pp—p are given in Table I; we see that _FIDD(em,ezo)
is not as good an estimate, for €19 = €390, as Pp_p. We
will seek a better estimate of Ppp in the near future.

B. Use of the atom-dielectric wall interaction

The words “elementary derivation” in the title were
meant to imply that the analysis in this paper of Casimir
effects involving dielectric walls is elementary; our analy-
sis does rely, however, on not particularly elementary pre-
vious determinations of a number of Casimir effects which
are much simpler than those involving dielectric walls,
but namely those which do not involve dielectric walls.
From a logical point of view we can, in the same spirit,
use Vaip(€20) in a determination of Ppp(€ro,€20) since
the former is certainly simpler than the latter. Thus, as
noted above, the direct determination [9] of Vasp(€20) is
much simpler than its derivation from Ppp(€10,€20) by
letting €10 ~ 1, and the derivation of Vayp might have—
and logically should have—preceded that of Ppp.

With Va¢p assumed to be known—given by Eq. (4.6),
with analytic approximations and with numerical values
of AtD both available — we seek an improved estimate
of Ppp(€1o,€20). To do so we replace Eq. (7.5), which
considers €19 ~ 1 and €39 = 00, by the more restrictive
equation which considers €19 ~ 1 and all €39, namely

PDD(€10 ~ 13620)
€20 — 1
€20 + 1

(7.16)

3 1
~ —NlAcgﬁCOém ¢AcD(€20) 6_4 .

Equation (7.16), which differs from Eq. (7.5) by the pres-
ence of the factor

620'—1
€0 + 1

datp(€20) 5

is obtained by using Eq. (4.6) for Vaip(€20) rather than
Eq. (1.2) for Vatpr = Vagp(00).

Of the many possible uses of Eq. (7.16), we will concen-
trate on its value in helping to choose a Ppp, for €10 ~ 1
and €39 ~ o0o; we have used our knowledge of the value
of Ppp and therefore of Ppp, for €50 ~ 1 and €y equal
to oo, but we have not built in any information on the
asymptotic form of Ppp for €10 ~ 1 and €39 ~ oo, and
that is the region where Ppp can be expected to (and
does) change most rapidly. (The behavior for €3 =~ 1
can be expected to be, and is, simply linear in ez — 1.)
To utilize Eq. (7.16) for ezp ~ 0o we note that

5
Vatp(€20) ~ Vaem (1 - 4—1—72> , €xpg~oo. (7.17)

€20

(See the Appendix.) From Eq. (7.16) we conclude that,
ignoring terms of O(1/ez0),

3 AcNiara 5
Ppp(€r0,€20) ~ —— LALTHO (1 - . ) )

4 1/2
8w £ el

€10 ~~ 1, €209 ~ OO . (718)
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VIII. DISCUSSION

The approximations obtained above for Vaip, Vrip,
and Ppp are a bit crude, but their determinations are
some orders of magnitude simpler than the exact deter-
minations and, as opposed to the exact determinations,
they make at least some of the “physics” more or less un-
derstandable. Furthermore, the general procedure should
make it possible to obtain a simple approximation Ppp,
for arbitrary values of €19 and €39. This would be quite
useful since, as opposed to Vayp and Vg1p, Ppp is a dou-
ble (not single) integral which contains not one parameter
but two (€10 and €z¢); the integrand is quite complicated
and the double integral must be evaluated numerically.
It would also be useful to have simple approximations
for Vatp and Vgip, even though they can be evaluated
analytically, because the analytic expressions are very
complicated.

Our primary interest has been in the exploration of
relations between different retardation effects, one par-
ticular aspect being the examination of the accuracy at-
tainable in going from the simple to the complex—from
Vatp to Ppp, for example—rather than, as often is done,
in going from the complex to the simple [2,3,20].

It would be straightforward to extend the present anal-
ysis to other situations. These include the interactions
of atoms or of electrons with walls with magnetic as well
as electric properties; exact results for these cases, in
the form of complicated integrals, have been obtained
recently [21]. They also include the case of the force per
unit area P (€19, €20, €30) between two walls when the re-
gion between them is not a vacuum but a medium with a
dielectric constant €39. Given a good approximation Ppp,
to Ppp, the extension in this case would be immediate,
since it has been shown [3] that

1 €10 €20
Spfop | —
€ €30 €30

30

P(Gm, €20, 630) =

where the Ppp on the right refers to the two-wall case.
A weakness of our approach is that it does not have a
solid theoretical basis—the forms chosen are somewhat
arbitrary even if reasonable. That weakness can be a
strength in that it allows one to use experimental data.
Assume, for example, that one did not know how to cal-
culate Va¢p and wanted to go beyond V,,, of Eq. (4.5)
and that one had measured Vjip for an atom of known
a1 interacting with a wall of known €59. One could then
replace €9 + 37/23 in the denominator of Eq. (4.5) by

€20 + 'ye;(/)z + 4, with the two parameters v and ¢ deter-
mined by one piece of theoretical information, the be-
havior of Vayp for €29 ~ 1, and one piece of experimental
information.

The most interesting possible extension would be to
the very difficult case of arbitrary £. To simplify the dis-
cussion we consider the specific case of two walls. The
£ dependence cannot then be extracted and Ppp is a
very comlicated double integral containing one parame-
ter £ and two complex functions €;(w) and ez(w). The
£ dependence can be extracted for £ small [2,3], and one
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should be able to obtain approximations for that case
by methods similar to those used above for ¢ large, and
one would then try to use interpolation to obtain esti-
mates for intermediate values of £. Since the fluctuations
in €;(w) and €z(w) will induce fluctuations in Ppp, the
estimates would at best be averages over domains of in-
termediate values of £. The flucutations of Ppp(£) with £
may well be very much less than the fluctuations of €; (w)
and e3(w) with w since Ppp contains an integral over w.

We note in passing that the transition of the atom-
surface interaction from 1/¢3 to 1/4* was very recently
measured for the first time [22].
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APPENDIX: THE ATOM-WALL INTERACTION
FOR €29 "~ OO

The interaction of an atom and a dielectric wall is given
by Eq. (4.6), where ¢atp(€20) is given in integrated form
by Eq. (4.38) of Ref. [3]. For determining Vaip (€20) for
€20 ~ 00, it is much simpler to start with Eq. (4.3) of
Ref. [9],

Vatp(€20) =

h
al[)/ d££3/ dpe~251p/c H(p 620) ,

" 27c3

where H(p, €39) is defined by Eq. (3.11) of Ref. [9]. One
readily finds that
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