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We study the classical electron motion of two-electron atoms. We present techniques to regularize
singularities in the equations of motion and to calculate stability properties of periodic orbits in

six-dimensional phase space. Depending on the configuration of the electron pair, the classical phase
space turns out to be regular, purely chaotic, or of mixed structure. For the fully hyperbolic case of
collinear electron motion, a strong correlation between ionizing trajectories and the collision manifold

of the triple collision is found. For the near-integrable collinear motion with both electrons on the
same side of the atom we (numerically) derive an action-angle representation of the Hamiltonian.

PACS number(s): 31.20.Tz, 03.20.+i, 05.45.+b

I. INTR.ODUCTION

The three-body problem of celestial mechanics is one of
the most famous problems of theoretical physics. A huge
number of papers has been published which deals with
the nonintegrable classical motion of three bodies under
the infiuence of their mutual gravitational interactions
[1]. In contrast, only a limited number of papers deals
with the classical mechanics of the (microscopic) three-
body Coulomb (TBC) problem. Particularly, a system-
atic analysis of the classical phase space of two-electron
atoms, such as the helium atom as the prototype system
of the atomic TBC problem, is non-existent. Quantita-
tive classical studies are complicated by the multidimen-
sionality, the nonseparability, and the unbound character
of the motion which is governed by singular and long-
ranged potentials.

Investigations of two-electron atoms usually focus on
the quantum aspects of the system in terms of approx-
imate solutions of the corresponding Schrodinger equa-
tion. However, the development of techniques to excite
and spectroscopy highly-doubly-excited states of two-
electron atoms [2—5] allows one to study electron dy-
namics and correlations in a semiclassical energy regime
where the excited electron pair carries features of classi-
cal moving particles. Thus highly-doubly-excited atoms
are sometimes referred to as planetary atoms [6] due to
their similarity to the gravitational three-body problem.
However, a direct transfer of results from the celestial to
the atomic three-body problem is not possible for two
reasons.

(i) In gravitational three-body systems the masses of
the bodies involved usually difFer by orders of magnitude.
Since the gravitational interaction depends on the parti-
cle masses, perturbative treatments are sufBcient in many
cases. On the contrary, the Coulomb interactions in two-
electron atoms such as helium are of the same order of
magnitude and therefore do not allow ad hoc a perturba-
tive treatment. In addition, due to the high degeneracy
of the independent-particle limit 1/Z = 0 (Z is the nu-

clear charge) an application of the Kol'mogorov-Arnol'd-
Moser (KAM) theory to derive an independent-particle
limit is impossible.

(ii) Gravitational forces are always attractive. In the
TBC problem, however, one interparticle interaction is
repulsive, which often leads to a destabilization of the
system. Depending on the initial conditions the classical
two-electron atom usually autoionizes after a few revolu-
tions of the electrons around the nucleus.

A systematic investigation of the classical properties of
two-electron atoms is also desirable because it provides
the necessary classical information for modern semiclas-
sical methods which have become powerful tools for the
study of excited states in atomic and molecular systems
[7—9]. The semiclassical techniques for nonseparable sys-
tems are usually based on the periodic-orbit (PO) theory
of Gutzwiller [10] which allows one to approximate the
quantum level density in terms of classical periodic or-
bits. Recently several authors [9,11—18] applied PO the-
ory to obtain semiclassical resonance energies for two-
electron atoms.

In this paper we will report on our investigation of
the classical phase-space structure of two-electron atoms
with an emphasis on helium. The paper is organized as
follows. In Sec. II we will give a general characterization
of the problem. In Sec. III we introduce a transforma-
tion to regularize Coulomb potential singularities, which
is an essential ingredient for a proper classical treatment.
We describe methods to solve the classical equations of
motion and to calculate stability exponents for periodic
orbits in three dimensions using local coordinates for the
orbits. For total angular momentum I = 0 there are
three symmetry planes where the motion reduces essen-
tially to two degrees of freedom, the third degree of free-
dom being in a static equilibrium. If we describe the
electron pair in terms of their radial distances ri, r2 from
the nucleus and the angle 0 between their radius vectors
the symmetry planes are characterized by (i) ri ——r2, (ii)
8 = a, and (iii) 8 = 0. In Secs. IV—VI we study con-
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figurations where the electrons are grouped near these
symmetry planes. The classical phase space turns out
to be of mixed regular-chaotic (i), chaotic (ii), and near-
integrable (iii) structure.

II. CHARACTERIZATION OF THE PROBLEM

A. Constants of motion

A three-body system can be described in terms of nine
(Cartesian) coordinates but there exist ten independent
constants of motion which allow one to reduce the de-
grees of freedom [19]. Six integrals of motion describe
the uniform center of mass motion r, (t) = vot + ro.
The transformation to the center of mass system reduces
the phase space from 18 to 12 dimensions. The three
components of the conserved total angular momentum
L allow for a further reduction to nine phase-space di-
mensions. Since the system is invariant with respect to
rotations around L (the conjugated angle can be chosen
arbitrarily) we can diminish the number of coordinates
again by one (elimination of the knots [19]). Therefore
we end up with a conservative system with four degrees
of freedom and eight-dimensional phase space (the total
energy E is an additional constant of motion).

In the present paper we focus on three-body configu-
rations with L = 0. Then the motion of the particles
is confined to a plane fixed in configuration space [19]
and reduces to three degrees of freedom. We take the
interparticle distances as dynamical variables.

B. Hamiltonian and scaling property

The Hamiltonian for three particles with charges Zi
and inasses m; moving in a plane (x, y) reads

+ + +P - Zi Z2 Z1 Z3 Z2Z3
2fAi ~12 ~13 ~23i=1

r,~ are the interparticle distances

1
rV = [(~' —*~)'+ (y* —y')']' .

The Hamiltonian (1) is homogeneous in coordinates and
momenta. Thus by introducing energy scaled quantities

r- = /E[r,

p-=IEI 'p,

is (uniformly) characterized by E" = —1: The classical
phase space depends on the particle masses and charges
only. Nearly all electron configurations are energetically
allowed to autoionize classically. Only the quantization
of classical motion prevents an exchange of arbitrary
amounts of energy between the electrons and leads to
the existence of bound (quantum) states. In the follow-
ing we focus on negative energies which cover the regime
of possible resonance formation in the system. For posi-
tive energies every trajectory represents a doubly ionized
system.

The scaling property (3) yields the relation L"
/~EEL between the scaled angular momentum (L") and
the physical angular momentum L. Keeping I fixed,
L" converges to zero with increasing electronic excita-
tion (E ~ 0). This means that the dynamics of highly-
doubly-excited states with moderate angular momentum
L g 0 (e.g. , atomic P, D, F states) can be approximated
by the planar configuration L" = 0.

C. Symmetries of two-electron atoms

For a two-electron atom (if not stated otherwise, we
use atomic units, i.e. , mi ——m2 ——1, Zi ——Z2 ———1,, and
the simplified notation ris ——ri, r2s ——r2) the Hamilto-
nian (4) is invariant with respect to reHection (ri, r2) ~
(—ri, —r2) and particle exchange (ri, r2) ~ (r2, ri).
Classical dynamics does not account for the Pauli prin-
ciple. However, the particle exchange symmetry of the
Hamiltonian reduces the accessible configuration space to
the fundamental domain [9], i.e. , the fully desymmetrized.
region of configuration space with ri ) r2.

For L = 0 special two-dimensional symmetry planes
exist which are characterized by the property that
electron-pair motion which initially lies in one of the
planes will remain there for all times. The three-
dimensional motion essentially reduces to two degrees of
freedom. The three existing invariant subspaces are (8
denotes the angle between ri and rz) (i) the Wannier
saddle (see Sec. IV) v i = r2, p„, = p„, , (ii) the e Ze
configuration (see Sec. V) 8 = vr; po = 0, (iii) the
Ze e configuration (see Sec. VI) 8 = 0; pci = 0.

III. METHODS OF SOLVING
THE EQUATIONS OF MOTION

A. Regularization

the Hamiltonian can be transformed to energy indepen-
dent form

Pi Z1Z2 Z1 Z3 Z2 Z3+ „+ „+
12 13 23

+1, E)0
=q 0, E=O

—1, E&0
E = 0 denotes the three-particle breakup threshold. The
energy regime below this threshold for double ionization

Whenever an interparticle distance vanishes (particle
collision) the potential energy diverges. Thus, an es-
sential requirement of the classical analysis is the reg-
ularization of the motion. There is a striking diKer-
ence in the topology of possible collisions. In analogy
to the two-body Coulomb problem the motion can be
regularized for binary collisions, where only one inter-
particle distance vanishes. In contrast, the triple collision
(ri ——r2 ——ri2 ——0) cannot be regularized, i.e. , the cor-
responding solutions have branch points of infinite order
[20].

The regularization of the two-particle Coulomb prob-
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1
F3 = F311 —~i X3

/ I
pl = pl —pc.m. i P2 P2 pc.m.

P3 Pl + P2 + P3 Pc.m.

lern has been performed by Kustaanheimo and Stiefel
(KS) by transforming the Coulomb problem to a sys-
tem of two two-dimensional harmonic oscillators [21]. In
the following we follow a work of Aarseth and Zare [22]
&om celestial mechanics which is based on a simultane-
ous application of two KS transformations to regularize
two binary collisions of the three-body problem.

In a first step we transform the planar system given by
the Hamiltonian (4) to the center of mass system [drop-
ping the indices (sc)]:

are the interparticle distances. For the following regular-
ization it is convenient to keep four coordinates although
a reduction to three coordinates would be possible by
employing the relation L = 0.

We introduce regularized coordinates

Ri = (Qi, Q2), R2 = (Q3 Q4)

P 1
——(Pi, P2), P2 ——(P3, I'4),

which are defined by means of the transformations (omit-
ting the primes of the coordinates x, Jl, r)

&1 —Qi Q2) JJ1 2 Ql Q2~ ri Ri Qi + Q2
2 2 2 2 2

X2 Q3 Q4 JJ2 —2 Q3 Q4 7 2 —R2 Q3 + Q4
2 2 2 2 2

The transformed Hamiltonian is reduced &om six to four
degrees of freedom and reads (E = —1)

1 ~2 1 I2 1 I I Zl Z3
Pl +

2 P2 + Pl-P2+
2@13 2P,23 m3 1

Z2Z3 Zl Z2+ f +
r2 r12

pJ, 3 ——mj, m3/(mI, + m3) are the reduced masses and

Q1P1 —Q2P2
2B2

Q3+3 Q4+4
2B2

P'gl

Pg2

In addition, a fictive time w,

rl r2 d7

Q2PJ + Q1P2
2B2

Q4&3 + Q3&4
2B2

(10)

(i = 1, 2),

2 1
r12 [ (+1 +2) + (~1 ~2) ]

is introduced. Thereby, velocities dx/dt diverging at the
Coulomb singularities are replaced by smoothed veloci-
ties dx/dr.

The regularized Hamiltonian Anally reads

with

R2 Pi + R1P2+ [(Ri R2)(P1 P2) —(Pi x P2) (Ri x R2)]
8@13 8@23 4m3

+Zi Z3 R2 + Z2 Z3 Ri + Ri R2
I

1 +2 Zi Z2&

Ri2 )

R12 r12 [(Qi + Q2) + (Q3 + Q4) 2(Q1Q3 + Q2Q4) + 2(Q1Q4 Q2Q3) ] (12)

and with 7 as the new time variable.
The derivation of (ll) by means of canonical transfor-

mations can be found in Ref. [22]. The regularization
technique can be extended to L g 0 with four indepen-
dent degrees of freedom. The Hamiltonian (11) exhibits
a form similar to two two-dimensional coupled harmonic
oscillators with modified kinetic energy.

We study the classical motion by numerically solving
Hamilton's equations of motion

dQ,
d7-

dH dP; dH
dI'; ' dr dQ;

(13)

For a TBC system we conveniently choose Z1Z2/r12 as
the repulsive potential as the binary collision r12 ——B12 ——

0 is forbidden by energy conservation for nonvanishing
rl, r2. The equations of motion become singular only
in the case of the triple collision (ri ——r2 ——r12 ——0).
Nevertheless, since B1,B2 approach zero for B12 —+ 0
the form of the singular potential Zi Z2 Ri R2/R12 in Eq.
(11) allows for a stable and fast numerical integration of
trajectories passing nearby the triple collision.

B. Periodic orbits

Action and period

The (scaled) action along a PO with period T" is given
by

8"= (Pi d Ri + P2 d R2)
PO

(14)

Periodic orbits of chaotic systems lie close in phase
space. Therefore they may serve as representatives to
describe the classical phase-space flow [23]. The behav-
ior of nearby (nonperiodic) trajectories can be approxi-
mated by means of the stability indices of the PO. The
idea to characterize the classical dynamics by local prop-
erties of PO (action, period, stability, topological indices)
has also been employed in the semiclassical PO theory of
nonintegrable systems [10] uncovering their key role in
the description of general dynamical properties. We now
summarize our techniques to calculate the relevant clas-
sical quantities.
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~

~ ~

~ ~

~

BH BHiPi . + P2.
I

dr . (15)BR, BR, q

Due to the scaling property of the Hamiltonian (11) we
derive &om the general expression

BS
BE

the simple relation

T" = (—E) 2 T = (—E) & ( E)—& 8"= —8"

between the scaled action and the period of a PO in the
TBC system.

2. Stability indicea

The winding number v describes the stable revolution of
adjacent trajectories around a PO.

(ii) (inverse) marginally stable if A = +1 (A = —1).
(iii) (inverse) hyperbolic if A = exp (+A) [A—exp (+A)] where A ) 0 (real) is the stability exponent,

sometimes called the Lyapunov exponent of the PO.
(iv) Loxodromic if A = exp(+u+ i@), with u, g being

real numbers.
The loxodromic case is peculiar for motion with more

than two degrees of freedom. We numerically obtain
winding numbers and Lyapunov exponents by integra-
tion of M according to Eq. (23).

8. Monodromy mats iz in local coos dinate8

The (8 x 8)-monodromy matrix has four pairs of eigen-
values whose products are equal to unity. Due to the
conservation of energy E and angular momentum

The stability of a PO can be calculated by making use
of the symplectic structure of the equations of motion
[24, 25]. The TBC system is described by means of the
vector

L —&i py1 g1 I ~1 + &2 I y2 g2 J ~2

(Ql P2 Pi Q2 + Q3 P4 P3 Q4) (24)

y (Ql Q2 Q3 Q4 P1 P2 P3 P4) (18)

in the eight-dimensional phase space. With the help of
the symplectic unit matrix

(( 0 1&)

q
—10

four of these eigenvalues are trivial and equal to one, the
corresponding eigenvectors can be constructed explicitly.

The overall motion is confined to the six-dimensional
subspace of the energy and angular-momentum shell.
Thus a deviation in energy, hE = h' p(r) . VH(7) with

VH = &, &, is conserved along every trajec-
~(&)

tory p(r). The vector
which is composed of 4 x 4 matrices 0 and 1, Haxnilton's
equations of motion can be brought to the compact form

V'H

/V'H(2
(25)

dp (BH)
«EB&) (20)

hp(T) = M[ppri' , T] bp(0) (21)

between an infinitesimal initial deviation Sp(0) and the
final deviation dp(T). In Eq. (21) M is the so-called
monodromy matrix. with elements defined as

B~'(~)
( )

(22)

and represents the linear approximation of the Aux
around the PO. From Eqs. (20) and (22) we obtain the
equations of motion for M,

dM B2H
d7 B+

M(0) —= 1,

which allows one to integrate M along a PO.
The stability of a PO is given by means of the eigen-

values A of M(T) which come in pairs or quadruplets.
(If A is an eigenvalue of M so are 1/A, A', and 1/A'. )
They can be classified as follows [10].

(i) elliptical, if A = exp (+27riv) with v being real.

We will study the behavior of classical paths in the vicin-
ity of a PO ppo(r). After one period a trajectory with
initial condition p(0) = ppci + bp(0) will reach the point
p(T) = gpss+ hp(T) in phase space. We obtain the linear
relation

measures the projection of bp perpendicular to the en-
ergy shell in units of bE. It is an eigenvector of M with
eigenvalue one after one period of a PO. By analogy, the
vector

V'L

(p»» 4)» q» q» Q4) Q3)
Qi+Q2+Q3+Q4+ 1 + 2 + 3 + 4

(26)
measures deviations perpendicular to the angular-
momentum shell in units of the conserved quantity bL.

An initial displacement &- in time remains constant
along a trajectory p(r) and is directed along the phase-
space velocity

dr ' iBP ' BQ)» = —"~ = (g P) = ~,—
~

= JVH . (27)

Correspondingly, an initial displacement in the angle P in
the plane perpendicular to the angular-momentum vector
L is conserved along a trajectory. The associated phase-
space vector is given by

Bp =(~ L)
BP

= (—Q2, Q1, —Q4) Q3, P2, P1) P4, P3) =—JV—L,

(28)
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where ( ) are the Poisson brackets. We can separate these
four trivial directions &om those describing the nontriv-
ial motion around a trajectory by a transformation to a
local coordinate system. The local system is constructed
kom the four linear independent vectors p~, pT, pI„and
p@ and a local orthogonal Vierbein which in general has
to be determined numerically. However, an analytical
construction of a complete orthogonal local basis set is
possible [26], if the motion takes place in one of the sym-
metry planes.

We will denote the basis vectors of the Vierbein which
lie perpendicular to the trajectory but within a sym-
metry plane by p, (i = 1, 2), and those which are di-II

~

rected orthogonal to the symmetry plane by p; (i
1, 2). The local orthogonal basis is thus given by the set

II Il pg) pT, pL„pp). The matrix

ii li

( Yi &1 Y2) Yi &1 Y2 tl YZ& YT& YL)1 YP) (29)

describes the linearized motion along a trajectory in the
local coordinates and the difFerential equation (23) trans-
forms to [25]

dm, = l[ xn,

with

( 0 II dO)
Bpz dr )

In this basis set the local monodromy matrix I has the
form

t' g~ II )
be

()=
bE

bI
«~)

II IIm11 m12
II IIm21 m22

C31 C32

c41 c42
0 0

0 0

cis ci4 F0+0)
C23 C24 0 0 0 0
m11m12 + 0 + 0
m21 m22 w 0 w 0J

0 0 1000
g100

0 0 0010
00' 1)

(~.!' \

be

(o)
bE
b~
bI

&»)
(32)

where the asterisks denote nonzero matrix elements
which are of no importance for the stability analysis. In
the general case of motion outside the symmetry planes
the coupling elements c,~ are nonvanishing. Then the
stability indices of the two local degrees of &eedom per-
pendicular to the PO are obtained by diagonalizing the
upper left (4 x 4) matrix after one period T and eigen-
values of loxodromic form are possible. However, for tra-
jectories located in one of the symmetry planes the c,~
are all zero, i.e., the local degrees of freedom decouple to
within and perpendicular to the symmetry planes. The
64 equations of motion (23) can be reduced to eight rele-
vant differential equations by integrating the two (2 x 2)

generates a transformation between the global variables
Q, P and a local basis system of the trajectory. The
monodromy matrix xn(r)

xn(7) = O '(7-) M(r) O(0)

submatrices directly with the help of Eq. (31). The local
transformation and the relevant l matrix for the case (ii)
with 0 = m are specified in Appendix A.

The Lyapunov index A or the winding number v (up
to multiples of 2vr) can be obtained from the traces of the
individual (2 x 2) matrices (m~!),~ and (m );~:

cosh(A) =
z ~mii + m22~ for

cos(2vr v) = —,'~m„+ m22~ for

~m»+ ~2z~ »,
(33)

~rnll + m22~

(34)

IV. THE SYMMETRY PLANE
DF THE YVANNIER SADDLE

A. General rexnarks

The symmetry plane of symmetric collective electron
motion, where both electron-nucleus distances are iden-
tical is known as the Wannier saddle [27]. The electron-
pair motion in the phase-space region near the symmetry
plane r1 ——r2 plays a dominant role in Wannier's classical
description of the three-particle breakup at small ener-
gies E & 0 [28, 29]. Electron dynamics near the Wannier
ridge has also been claimed to be of particular signifi-
cance for the formation of symmetrically doubly excited
resonances below the double ionization threshold [4, 27,
36].

The shape of a potential saddle appears if the three
Coulomb potentials of a two-electron atom are consid-
ered at fixed hyperradius 'R = gri2 + rz2 as a function of
the hyperangle n = arctan(ri/rz) and 0 = /(ri, r2) [27].
For fixed 7Z the motion on the Wannier ridge (n = vr j4)
is in an unstable equilibrium of the coordinate o. . Due to
this observation motion along the Wannier ridge is usu-
ally regarded to be unstable in general [27]. However, for
a quantitative stability analysis the couplings between all
the three dynamical variables (ri, r2, 0) [or equivalently
(R, n, 0)] have to be considered.

We will first study the phase-space structure on the
Wannier saddle as a function of the nuclear charge Z
for a two-electron atom with infinite nuclear mass. The
results change only marginally by taking into account the
finite mass of, e.g. , the helium nucleus. In Sec. IVC we
will focus on periodic motion of the electron pair. We
particularly discuss stability properties with respect to
variations perpendicular to the symmetry plane r1 = r2.

B. Phase-space structure
of the isoelectronic sequence

Due to the exchange symmetry of the Hamiltonian
with respect to r1 and r2 a trajectory which initially lies

Due to the energy scaling property of the Hamiltonian
the stability indices are independent of the energy.

The determination of the Morse indices of unstable
PO's and the multiples of vr for the winding number of
stable orbits is essentially given by the number of changes
in sign of the m12 elements during the propagation of the
local monodromy matrix. Details can be found, e.g. , in
Ref. [25].
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2-

& Q-

repulsion becomes more and more compensated by the
nuclear at traction.

It is convenient to visualize the phase-space structure
by taking Poincare surfaces of section (SOS). Such sec-
tions are shown in Fig. 3 for difFerent nuclear charges.
The phase-space position A = +g8 2:/(4 Z —1) and
P~ = gz/(4Z —1)p of the symmetric electron pair is
monitored at the surface of section y = 0 (8 = 7r) T. he
use of Z-scaled variables allows a better comparison for
systems with arbitrary Z while the regularized momen-
tum P~ gives rise to a compact surface. The symmet-
ric structure of the Poincare SOS mirrors the symmetric
motion of the electrons. The boundary of the SOS corre-

FIG. 1. Equipotential lines and boundary of the classi-
cally allowed region on the Wannier saddle (rz = rq) with
nucleus at (x, y) = (0, 0). (Z = 2, R = —1). The Wannier
orbit (y = 0) and the Langmuir orbit are shown, too.

within the Wannier symmetry plane rq = r2, p„, = p„,
will remain there for all times. The motion on the Wan-
nier saddle is bounded for Z ) 1/4 and autoionization of
an electron is prevented classically. Equipotential lines
for this configuration are shown in Fig. 1 as a function of
the coordinates

x = r sin(8/2), y = r cos(8/2), (r = rq ——r2) .

2-

P„

0-

-2
-2

I I

XF X

Fundamental PO's are depicted in Fig. 1: The symmetric
radial vibration of the electrons with 0 = vr, i.e., y = 0, is
the so-called Wannier orbit. The PO of maximum bend-
ing vibration (the so-called Langmuir orbit) was orignally
studied by Langmuir [30].

The Z dependence of the boundary of the classical al-
lowed region is shown in Fig. 2. For Z = 1/4 the en-
ergetically accessible configuration space degenerates to
a single point. With increasing Z the boundary of con-
figuration space approaches the y axis since the electron

0.7—
y/(42-1)

I—0.7

—0.7—

FIG. 2. Boundary of the classical allowed region as a func-
tion of Z, Z = 0.26, 0.3, 0.5, 1, 2, 10, 100 (from the inner to
the outer curve; Z-scaled coordinates used).

FIG. 3. Poincare surface of section (0 = 7r) for symmetric
electron configurations. (a) Z = 0.26, (b) Z = 0.43, (c)
Z = 0.75, (d) Z = 1, (e) Z = 2, (f) Z = 5, (g) Z = 10,
(h) Z = 100.
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sponds to the Wannier orbit itself which lies entirely in
the Poincare SOS.

Figures 3(a)—3(h) illustrate the transition from regu-
lar to chaotic motion for increasing nuclear charge Z.
The phase space for Z = 4 [Fig. 3(a)] exhibits a torus
structure with tori grouped around two central fixed
points which correspond to the Langmuir orbit (and its
symmetry-imaged orbit). The tori indicate the existence
of an additional constant of motion in the limit Z ~ 1/4.
The analytical form of this integral of motion derived
in Appendix 8 —reads

(36)

Its existence can be related to an adiabatic separation of
a (fast) bending and a (slow) radial electronic vibration
in the limit c = (Z —1/4) ~ 0. Assuming the adiabatic
invariance of I for small e we derive &om the value of
I on the surface of section 8 = n (r = x) the analytic
approximation

4Z —1
zp ——+

6

for the position x~ of the central fixed point. Table I
shows a comparison between the analytic and the exact
numerical results as a function of e.

The small parameter e measures the strength of the
perturbation of the integrable system at Z = 1/4. As
shown in Fig. 3 an increasing number of (resonant) tori is
destroyed with increasing perturbation parameter e. New
chains of elliptical and hyperbolical fixed points appear
and regions of chaotic motion appear and expand with
increasing e. Such a behavior is in accordance with the
KAM theory [31].

The physically relevant cases Z = 1 (H ) and Z = 2
(helium) [Figs. 3(d,e)] exhibit a mixed phase space of reg-
ular and chaotic motion. However, the dominant ellip-
tic island around the Langmuir-orbit fixed point remains
preserved. This indicates that the constant of motion is
approximately conserved for H and helium. The bend-
ing modes around the Langmuir fixed point are basically
more stable than electron-pair motion of dominant radial
motion which is located near the Wannier orbit outside
the large stability island.

At Z 5.6 the Langmuir orbit becomes unstable and
bifurcates a pair of stable bending orbits which are no
longer symmetric with respect to the x axis.

The limit of large nuclear charge (Z = 100) is depicted
in Fig. 3(h). Except for the four small elliptical islands

(of predominant bending motion) the whole phase space
is covered with so-called remnants of tori (Cantori) [32].
The electrons are located on these remnants in the SOS
as long as the trajectories do not enter the region near
the triple collision x = 0 [indicated by an arrow in Fig.
3(h)] where they are "scattered" to another remnant.
The independent-particle limit of large Z, 1/Z -+ 0, can-
not be handled by means of the KAM theory because the
classical motion for 1/Z = 0 is highly degenerated, i.e. ,

all tori possess resonant frequencies.

C. Periodic motion on the Wannier ridge

f. Stability with respect to the hyperangle cx

The Poincare SOS in Fig. 3 provides information on
the phase-space structure within the Wannier symmetry
plane. However, the stability of trajectories with respect
to the hyperangle o. outside the symmetry plane cannot
be studied in a simple way with the help of surfaces of sec-
tion. We determine the stability of PO's with respect to
n by calculating the monodromy matrix (see Sec. III B).
We therefore obtain (in linear approxiznation) the stabil-
ity behavior of trajectories near the Wannier saddle.

Our calculations of the stability of the 25 shortest PO's
for helium (which appear as fixed points in the SOS)
reveal that all PO's are extremely unstable with respect
to o. except for the Langmuir orbit, which turns out to be
stable [33]. On the average, the Lyapunov exponents of
the unstable PO's are about ten times larger than those
in the collinear symmetry plane to be discussed below
(Sec. V). As a consequence, slight deviations from the
symmetric configuration outside the symmetry plane lead
to rather fast autoionization of one electron.

2. The Langvnuir orbit

The Langmuir orbit (the shortest PO of the helium
atom) turns out to be stable with respect to all degrees
of &eedom. It is surrounded by an island of stability
in phase space, indicating the existence of an additional
(local) constant of motion [33]. This shows particularly
that the motion of the electron pair in the helium atom
is not ergodic. The frequently mentioned opinion [34,
35] that the motion on the Wannier ridge is unstable in
general is revised, too.

The Langmuir orbit is completely stable only for he-
lium. In all other cases of integer Z the orbit is unstable

TABLE I. Comparison between the approximate analytical [Eq. (37)] and the nuxnerical position
of the fixed point x~ corresponding to the Langmuir orbit.

0.2501
0.27
0.5
1
2

s= Z —1/4

0.0001
0.02
0.25
0.75
1.75

anal
XQ

6.6667 x10
0.01333
0.167
0.50
1.17

num+F

6.6669 x 10
0.01339
0.175
0.56
1.40
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with respect to the hyperangle n [33].
A semiclassical quantization of the Langmuir orbit has

been proposed by several authors to approximate the he-
lium ground state [30, 34, 37]. However, the quantization
failed due to the use of incorrect quantization conditions,
i.e., an incorrect consideration of the motion off the Po.
The number of quantum states associated with the torus
structure of the stability island around the Langmuir or-
bit is approximately given by the phase-space volume of
the island [38], which scales with the energy as ~E~
Nevertheless, the island around the Langmuir orbit is
rather small and we expect long-lived resonant states as-
sociated with the tori of the island only in the limit of ex-
tremely high double excitation [33]. However, in a recent
work Miiller et aI,. obtained resonance energies with rea-
sonable accuracies for moderately-doubly-excited states
via quantization of the torus structure around the Lang-
muir orbit [16]. They claimed the energetically upper-
most states of the intrashell states to be of Langmuir
type [17]. On the contrary, quantum calculations for
moderately-doubly-excited states for helium (with prin-
cipal quantum numbers N ( 8) revealed that those reso-
nances are related to collinear configurations of the type
to be discussed in Sec. VI [39].

8. The %Pannier +obit

is the Lyapunov exponent with respect to variations
in n T. he winding number v~ describes (for L = L „)
the stability with respect to off-collinear variations in the
initial conditions.

For L —+ 0 the Wannier orbit degenerates to a collinear
straight line motion of the electrons (see Fig. 1) includ-
ing the triple collision with the nucleus. The motion is
unstable with respect to the coordinate o. for all L and
Z and A behaves asymptotically (L ~ 0) as

—A(Z) lnL, (40)

with A(Z) ) 0 varying smoothly with Z. From Eq. (40)
we find that A becomes infinite in the limit L —+ 0. This
rejects the nonregularizability of the motion at the triple
collision. We obtain the "real" angular momentum I~ at
arbitrary energy by rescaling of L, I@ = L/g~E~. This
shows that for given real angular momentum the scaled
angular momentum L always tends to zero if we approach
the double ionization threshold E —+ 0, i.e. , A ~ oo.
Due to the diverging Lyapunov exponent we expect no
resonant structures in the quantum level density related
to the Wannier orbit. This semiclassical prediction has
been confirmed now by indepedent quantum calculations
which show that wave functions are not localized along
the Wannier orbit [ll, 14, 39].

= 2~ [
—(2 Z —1) + 2 Qz(Z + 2)],

1
4Z —1

1
1[(2Z —1) + 2 QZ(Z+ 2)] . (39)

FIG. 4. Schematic view of the Wannier orbit (0 = vr,

ri ——r2) for nonvanishing total angular momentum.

A further short symmetric PO is the Wannier orbit
with rq = r2 and 0 = vr. It has attracted particular
attention since it represents the bounded analogue of the
symmetric electron trajectories leading to the classical
three-particle breakup for (E ) 0). It has been further
used to describe the electron dynamics in symmetrically
doubly excited states in H and helium [4, 27, 40, 41].
A quantitative measure for the quantal significance of
this orbit (within the semiclassical framework of the PO
theory) is given by a classical stability analysis.

The Wannier orbit is shown in Fig. 4 for 0 ( I
L „=2(Z —1/4). In the general case of L g 0 the
two electrons move symmetrically on (exact) Kepler el-
lipses. For L = L the two ellipses become identical
circles in configuration space with the electrons moving
on opposite sides on the circle. For this particular case
the stability indices are given analytically by [42]

V. THE e Ze CONFIGURATION

Next we will consider the collinear configuration with
the electrons located on different sides of the nucleus
(0 = m). This system is of principal interest from a
classical point of view as it is conjectured to be purely
hyperbolic with a well defined Markov partition of the
phase space [9]. Furthermore, a semiclassical PO quanti-
zation using only the periodic orbits of the collinear con-
figuration leads to a good approximation for the quantal
states localized in the collinear symmetry plane [11].

The main characteristics of the corresponding poten-
tial surface (see Fig. 5) are the two ionization channels
for ri, r2 ~ oo and the symmetry line ri ——r2 (which is
traced by the Wannier orbit described above). The topol-
ogy of the potential is similar to potential surfaces of tri-
atomic molecules of ABA type below the three-particle
breakup [36, 43]. The potential surface has singularites
at ri, r2 ——0, i.e., at the binary collisions of one electron
with the nucleus. The binary collisions are regulariz-
able (see Sec. III) and the trajectories can be continued
through the singularity using, e.g. , the regularized coor-
dinates (9) and the fictive time (10).

The triple collision for which all particle distances
vanish plays a key role in understanding the motion of
the electron pair. The equations of motion are non-
regularizable in this point, i.e. , trajectories going into
the triple collision cannot be continued uniquely. There
exists a one parameter family of orbits starting or ending
in the triple collision. They form a purely stable and un-
stable manifold, the so-called collision manifold [44]. In
Fig. 5 a triple collision orbit is shown together with two
neighboring trajectories passing close to the triple col-
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FIG. 5. Equipotential lines (dotted lines) of the collinear
configuration e Ze with Z = 2 together with the collision
trajectory (—+) and two neighboring ionizing trajectories; r i,
rz are the energy-scaled electron-nucleus distances.

lision and subsequently ionizing along the two di8'erent
channels rj 2 m ao.

We now introduce the motion in the fundamental do-
main. It is generated by the Hamiltonian with the ad-
ditional constraint r2 ( ri induced by an elastically re-
jecting wall at rq = r2. The desymmetrized trajectories
in the fundamental domain contain the full information.
The procedure corresponds to the classical consideration
of the Pauli symmetry principle.

With respect to this reduced phase space, the stable
and unstable collision manifold tessalate the phase space
and generate a Markov partition. Each time the unsta-
ble manifold crosses the Poincare surface it divides the
plane into 2 distinct cells, where n is the total num-
ber of intersections of the manifold with the surface. By

reversal of time a similar structure is generated by the
stable manifold. Figure 6 shows the first two intersec-
tions of the stable manifold with the two-dimensional
SOS r2 —— 0. Again, we use regularized coordinates
Qi ——~rq, Pi ——2~re p„, to visualize the SOS. The par-
tition of the SOS into cells leads to a symbolic dynamics
of the system; every trajectory can be labeled with a bi-
nary code according to the rule [9] +, when there is no
bounce with the r-i = r2 boundary wall between two con-
secutive crossings of the Poincare surface; —,when there
is a bounce. Note that there can be at most one bounce
between two crossings of the SOS which guarantees the
uniqueness of the coding. The boundaries between the
+ and. —labels are obviously generated by the collision
manifolds. The existence of the Markov partition guaran-
tees the completeness of the symbolic dynamics, i.e. , ev-
ery binary code is represented by at least one trajectory.
To show the purely hyperbolic behavior of the system it
would suKce to prove that the partitioning of phase space
gets arbitrarily fine in the limit n M koo, i.e. , that the
volume of each Markov cell shrinks to zero. This is con-
firmed by numerical investigations, but, unfortunately,
we do not know of any rigorous proof for this. Indeed,
for the positronium negative ion (which difFers from the
helium atom in that the "nuclear" charge and mass are
unity) the shortest PO of the collinear configuration is
stable [26] and the corresponding Markov cell remains
fi.nite in the limit n m Zoo.

For a generating Markov partition not only the vol-
ume of the cells but also the surfaces of the cells tend
to zero. The intersections between the stable and un-
stable manifolds are then nowhere tangential. Orbits of
marginal stability, i.e., with monodromy matrix eigenval-
ues of unity, are an indicator for tangential intersections
of the manifolds. For the collinear configuration such a
marginally stable periodic orbit (with code +) exists. It
represents an ionized electron 1 with zero kinetic energy
at r~ ——oo, while the inner electron 2 moves on a degen-
erated Kepler ellipse around the nucleus. The existence
of this marginally stable orbit causes a cell with a finite
surface in the Markov partition even though its volume
shrinks to zero for arbitrarily fine partitions.

Wl M

CL

i

C3

C)
C)

I'"IG. 6. Markov partition of the Poincare
surface of section r2 ——0 with respect to
the regularized coordinates Qi ——v ri, Pi ——

2~rq pi for Z = 2. The collision manifold
(solid line) is surrounded by an ionization re-
gion (dotted area); the large areas labeled Ai
and A2 belong to phase-space points of tra-
jectories which fulfilled the ionization crite-
rion (41) already at the first return to the
surface of section.
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The collinear e Ze configuration represents an open
system, i.e. , one of the electrons can escape with an arbi-
trary amount of kinetic energy, while the other remains
bounded to the nucleus. An ionization boundary cannot
be defined in coordinate space since trajectories arbitrar-
ily far away can return to the nucleus. However, one can
give an appropriate ionization criterion in phase space
which is applicable at the outer turning point of the in-
ner particle 2. If the outer electron 1 has enough kinetic
energy to escape in the situation of two static charges,
(e.g. , pi/2 —2/ri + 1/ri2 ) 0), it will certainly ionize in
the dynamic case also. This leads to the criterion, that
whenever

p2 ——0 and pi)0, r2&Z (Z = —1), (41)

the outer electron is ionized and will never return to the
nucleus. In Fig. 6 the regions in the SOS r2 ——0 are
shown which ful611 the ionization criterion within two in-
tersections with the surface of section. There are two big
regions (labeled Ai and A2 in Fig. 6) belonging to tra-
jectories which will ionize in a single step without par-
ticipating in the chaotic dynamics. Most of them belong
to the simple reaction e + He+ ~ e + He, when an
incoming electron scatters without significant time delay
in the inner region. This type of ionization occurs also
when the electron-electron interaction is switched oK

A difFerent ionization mechanism is related to the sta-
ble collision manifold which is surrounded by a layer of
ionizing trajectories in the SOS. The boundaries of this
layer are generated by the stable manifold of the marginal
stable orbit (+) at infinity. By time reversal there ex-
ists an equivalent mechanism to capture an electron from
r~ ——oo along the unstable manifold into the chaotic re-
gion near the triple-collision point. The existence of this
type of ionization (or temporary capture) is related to
the existence of the chaotic electron-pair motion and to
the nonvanishing interaction between the electrons.

Hence, there are two (dynamically) separated regions
in phase space, a chaotic region with strong correlations
between the two electrons and an ionization regime with
quasi noninteracting electrons. The regions in phase
space of both types of ionization processes are connected
through the stable and unstable manifolds of the triple
collision.

For the calculation of classical quantities such as en-
tropies, escape rates, etc. [23], but also for semiclassical
PO quantization [45], the set of all periodic orbits of the
system is of particular interest. As the Markov partition
is complete, every Markov cell contains a PO character-
ized by the code of the cell and for every finite binary
code there is a PO. We calculated all the PO's up to
symbol length 16 (8800 in numbers), all of which are un-
stable with respect to variations of the collinear radial
motion. However, nearly all of them are stable in the
bending degree of freedom perpendicular to the symme-
try plane. We also found some orbits which are unstable,
but the instabilities are always very small compared to
those in the symmetry plane.

As already mentioned above, the marginally stable or-
bit (+) at infinity plays a particular role. The existence
of this orbit has inBuence on certain properties of families
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of PO's containing long (+) sequences in their code. The
orbits of these families approach the stable manifold of
the marginally stable orbit when increasing the number
n of (+) labels. For these orbits the stability exponent
A does not increase linearly with n (or equivalently with
the period T) but behaves as

A m minn PlnT (42)
for n, T ~ oo. This behavior is shown in Fig. 7 for the
three shortest families —(+), ——(+), and —+ —(+)
for which we Gnd o. values of 1.84, 1.52, and 2.06, re-
spectively. Thus the divergence rate per time A/T tends
to zero in the escape channels r~ 2 —+ oo and the motion
becomes quasi-integrable for large electron-electron dis-
tances. This quasi-integrability corresponds to the adia-
batic separation of the fast motion of the inner electron
and the slow motion of the outer electron.

VI. THE Ze e CONFIGURATION

This section deals with the classical Inotion of the elec-
trons located near the collinear symmetry plane 8 = 0,
i.e., both electrons are on the same sjde of the nucleus.
The fundamental periodic motion of such a collinear ar-
rangement is a coherent oscillation of both electrons with
the same frequency. The inner electron moves on a
slightly perturbed Kepler ellipse with vanishing eccentric-
ity. The outer electron oscillates in an efFective dynami-
cal potential well formed by the attractive nuclear force
dominant at large distances and the inter-electron repul-
sion at short distances. The minimal nuclear charge to
bind the outer electron in such a con6guration is Z & 1,

FIG. 7. I yapunov exponent versus symbol length for the
families of periodic orbits —(+), ——(+), and —+ —(+)
(Z = 2). The instability A = e for these families grows
algebraically (not exponentially) with the symbol length of
the orbits.
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for which the nuclear charge dominates the asymptotic
(ri ~ oo) Coulomb force. The inter-electron repulsion
pre venrevents the outer electron from penetrating into the re-
gion close to the nucleus. For helium (Z = 2) the outer
electron stays nearly frozen at some fixed radial distance
while the inner electron oscillates between the nucleus
and its outer turning point [12, 13].

We investigate the dynamical stability of these
collinear configurations by taking Poincare SOS as de-
picted in Fig. 8 for helium. The phase-space position
fri, pi j of the outer electron is monitored each time the
inner electron collides with the nucleus (r2 ——0). The
fundamental periodic motion described above appears as
the elliptic fixed point in the center of an extended torus
structure. Near the fixed point the motion of the outer
electron is nearly harmonic but for large rq the elongated
tori refIect an almost Keplerian motion. The open man-
ifolds surrounding the closed tori represent regular tra-
jec ories w'ectories which lead to ionization of the outer electron. If
the initial distance is smaller than a critical value, r-i = 5
while the inner electron 2 is at the nucleus, the outer
electron is "kicked" out of the atom and ionizes immedi-
ately.

The fundamental periodic orbit (the fixed point in Fig.
S) is also stable with respect to variations of the ini-
tial condition perpendicular to the symmetry plane, i.e. ,
when the electrons move in a (slightly) off'-collinear ar-
rangement [13]. Therefore the periodic orbit for Z = 2 is
embedded in a six-dimensional island of stability in phase
space.ace. It is also stable for finite scaled angular momen-

fturn I g 0 as was shown in Ref. [46], where this type o
electron motion was "rediscovered" and analyzed (their
type-2 configuration).

From Fig. 8 we conclude that the collinear configura-
tion is hardly distinguishable from an integrable system.
Consequently, the Hamiltonian can be written to a very
good approximation as a function of two action variables
Ji, J2 [10],

1 ~ 50 ' ' ' ' I I I I I I I I
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1.41
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FIG. 9. Accumulated actions of collinear periodic orbits
(drawn as circles) after the first return to the SOS as a func-
tion of their winding number o.. The solid line represents a
semianalytical fitting function.

H(p„ri, p2, r2) = H(Ji, J2) . (43)

J(n) = J2+ nJi, (44)

where the winding number a is given by the frequency
ratio

The action variables measure the symplectic area en-
closed by the different independent circuits around the
tori.

The main information of the SOS, Fig. 8, is then con-
tained in the energy-surface plot H(Ji, J2) = const in
the Ji/J2 action plane. Unfortunately, there is no gen-
eral procedure to derive the action (and conjugated an-
gle) variables analytically. However, we will now outline
how they can be determined numerically [47].

The total action J of a (not necessarily periodic) tra-
jectory accumulated after one closure of the circuit 2 on
the torus is given by

I I I I

OH/0 Ji
OH/8 J2

(45)

0.8—

0.4—

of the motion. For the central fixed point of the torus
structure in Fig. 8 the winding number can be deter-
mined by the linear stability analysis of the correspond-
ing periodic orbit, i.e. , o.po is given by the eigenvalues
exp(+2vrin) of the orbit's monodromy matrix [Eq. (34)].
For the periodic orbit the dimension of the torus reduces
by one and the symplectic area enclosed by the circuit 1
vanishes, i.e. ,

-0.4— = Ji = 0, J(npo) = Spo (46)

-0.8—

0
I I

10 20 40 60 80 100

FIG. 8. Poincare surface of section (i"2 ——0) for collinear
configurations with both electrons on the same side of the nu-
cleus (Z = 2). Scaled phase-space coordinates (ri, PI) used.

with Spo = 1.491 499 and npo = 0.067650 [13].
For rational n = r/s the orbits close themselves after

s revolutions and are again periodic. In the (exactly)
integrable case there is a continuously connected family
of periodic orbits on the corresponding rational torus.
However, even under an infinitesimal perturbation such
a resonant torus will generically break up and only two
perio iceriodic orbits survive (Poincare-Birkhoff theorem) [10],
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(p2 Z 5 (p2 Z —1&
~M =

I

—' ——I+ I

—'—
(2 r2p q2 r~

(47)

By simply applying Kepler's laws one derives from (47)
the action functional

JM(Q) = z (z —»'"
g—2E g Z )

Qi (48)

The monopole approximation already gives the calcu-
lated actions to within an accuracy of 10%. It does
not, however, reQect the stationary behavior at o. = o.pQ
which is due to higher multipole components in the inter—
electron potential. The simple ansatz

JM + CyO.' + C20.' 2 (49)

however, can be used to enforce the conditions (46),
which determines c~ and e2. This semianalytical formula
reproduces the calculated actions to within an average
error of 0.1%. Finally, one can approximate the remain-
ing difFerence by a convenient fit function which preserves

I I ~ I i I I I I t I ~ I ~ i ~ ~ I I $ ~ I I ~
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FIG. 10. Energy surface E = —1 in the Jq/ J2 action plane
for the collinear configuration with both electrons on the same
side of the atom (Z = 2).

one of which is stable and one of which is unstable. With
increasing perturbation strength the actions of these two
orbits will differ. Their differences are a measure of the
strength of the nonintegrable part of the Hamiltonian
neglected in (43) .

We here use the actions of the periodic orbits with ra-
tional winding numbers to approximate the action func-
tional (44). We find that the actions of the stable and
unstable orbits difFer by less than 10 which is the accu-
racy with which we determine the action integrals numer-
ically. In Fig. 9 we plot the actions of 43 difFerent periodic
orbits for helium together with a fitting function to be
explained below. Obviously, the action functional gets
stationary at o. = o,pQ and then decreases monotonically
to J(0) = Z/Q 2E. —

To understand the behavior of the action functional as
o, —+ 0 it is instructive to investigate the helium atom
with the electron-electron interaction approximated by
its monopole expansion, which Inay be justified when the
radial distances (rq )) r2) and periods (Q = T2/Tq ~ 0)
largely differ,

the correct boundary conditions as a M 0 and o, ~ npQ.
We find that with the choice

J(Q) = JM + C1Q + C2Q + JdifF(Q)I (50)

where

&max

Jg;ir = ) d„Q"i (Q —Qpo) (51)

it is sufBcient to incorporate terms up to nm~~ = 5 to
reproduce all the data within an error of less than 10
The corresponding function J(Q) is drawn as a solid line
in Fig. 9.

The action functional can now be used to calculate the
individual actions Jq and J2,

dJ
Jg(Q) =, J2(Q) = J(Q) —QJg(Q),

dt's
(52)

and to plot the energy shell in the Jq/J2 plane, which
is done in Fig. 10. Note that as Jq —+ 0, J2 tends
to SpQ whereas Jz becomes singular as J2 approaches
Z/v 2E = ~—2. The singularity reflects the fact that
all the energy is stored in the inner electron, whereas
the outer electron approaches the ionization threshold
with zero kinetic energy but diverging accumulated ac-
tion. We remark that with the energy surface at hand, it
is straightforward to quantize the action integrals sepa-
rately. This has been done in Ref. [48] and the procedure
gives very accurate semiclassical predictions for the en-
ergies of a certain class of asymmetrically doubly excited
quantum states, i.e., the so-called &ozen planet config-
urations [13]. These states directly correspond to the
locally integrable classical motion described above.

With increasing nuclear charge we observe a successive
destruction of resonant tori and the onset of chaotic mo-
tion within the collinear arrangement. The fundamental
PO remains stable up to Z = 12 but becomes unstable
for larger (integer) values of Z.

VEE. SUMMARY AND CONCLUSION

In the present paper we focus on classical electron-
pair motion of two-electron atoms near symmetry planes
where the overall motion reduces essentially to two de-
grees of freedom (for L = 0). Consistent with the linear
stability analysis in the symmetry plane we approximate
the motion of the third (perpendicular) degree of freedom
linearly.

Depending on the type of con6guration the system
shows an amazingly rich structure and a large variety
of different types of motion. The collinear configuration
with both electrons on the saxne side is nearly integrable
and leads to stable, bounded motion of the electron pair.
On the contrary, collinear con6gurations with the elec-
trons located on different sides of the atom represent a
fully hyperbolic system with a Markov partition of the
phase space and a binary symbolic dynamics for the peri-
odic orbits of the system. Finally, motion on the Wannier
ridge shows a mixed behavior with chaotic and regular
motion coexistent. Whereas the structure of the phase
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space is rather insensitive to the nuclear charge for the
collinear configurations, the phase-space structure on the
Wannier saddle depends strongly on Z.

The phase-space regions around the symmetry planes
are of particular importance for a semiclassical under-
standing of the quantum system and allow one to de-
scribe a large number of series of doubly excited states
(semi)classically. However, a systematic classical analy-
sis of the total six-dimensional phase space remains de-
sirable, even though such an analysis is a hard and still
unsolved problem. The problem becomes even harder for
total angular momentum L g 0, where the phase-space
dimension increases to eight.
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APPENDIX A: LOCAL COORDINATES
FOR THE COLLINEAR CASE 0 = m

For the collinear configuration with electrons on oppo-
site sides of the nucleus, i.e. , Q2 ——Qs ——P2 ——Ps ——0,
the gradients of H and L

V'H = (Hq, , 0, 0, Hq„Hp, , 0, 0, Hp, )
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QL = (0, Pq, P4—, 0, 0, Qg, —Q4, 0)

with Hg, , ——, and II~, , ——& are perpendicularOH OH
7 )

to each other in every phase-space point of the symmetry
plane. Therefore a transformation onto a local orthogo-
nal coordinate system containing the trivial eigenvectors
of the monodromy matrix is given by the matrix

0
—P4
—P1

0
0

—Q4
—Qi

0

II

71& Y2~ Y]. o Y2 7R& V&&VLr

Hp, /RH —Hq, 0
0 0 Q4/Rl, —
0 0 Qg/RI. —

Hp, /RH Hq, 0—
Hq, /RH —Hp, 0—

0 0 P4/Rl. —
0 0 Pi/Rl,

& Hq, /RH Hp, 0

Hq, /RH Hp,
0 0
0 0

Hq, /RIr Hp,
IIp, /RH Hq, —

0 0
0 0

Hp, /RH Hq, —

0
P, /Rl, —

P4/RI,
0
0

Qg/Rl,
Q4/RI. —

0

—Q4
0
0

P1
P4
0 )

(A2)

with R~ = ~VH~ = (Hq + Hq, + Hp, + Hp ) and Ri, = ~VL~ = (Q, + Q4+ P, + P4).
The traceless generating matrix l in Eq. (31) has the form

(l, ~ l~2 0 0

l»l» o oII II

11 l12
o o l»l»
0 0 0 0

0 0
0 0 0 0

( 0 0

*000l
+000
00+0
0000
0000
+000
0000
00*0)

(A3)

where the relevant matrix elements l, and l; are given by

II
lI~ = t2Hq, q, (Hq, Hp, + Hq, Hp, )11

+(Hq, Hp, —Hq Hp )(Hq, q, —Hq, q, —Hp, /, + Hp, p, )],

l~2 = 2Hq, q, (Hq, Hq, ——Hp, Hp, ) + (Hq, + Hp, )(Hq, q, + Hp, p, )

+(Hq, + Hp, )(Hq, q, + Hp, p, ),

IIl2, —
[ 2(Hq, p, + Hq, p, )(Hq, Hp, + Hq, Hp, )21

(Hp +Hp )(Hq q +Hq q ) (Hq +Hq )(Hp p + Hp p )]
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II II

l22 = —l~~ )
(A4)

J 1
li, = —[Qi Hp + Q4Hp —Pi Hq —P4Hp,

+QiPi(Hq. q. —Hp p ) + Q4P4(Hq q Hp p ) + (QiP4+ Q4P1)Hq q ],

li2 —QiHp3p3 + Q4Hp2 p2 + Pi Hq~qa + P4 Hq2q2 + 2PiP4Hq2q~ + QiHq~ + Q4Hq4 + PiHP~ + P4Hp4,

, (Qi Hq, q, + Q4Hq, q, + Pi Hpa p3 + 2Q1Q4Hq, q, + P4 Hp2 p2 + Q1Hqg + Q4Hq4 + Pi Hpg + P4H p4) ~

J J
l22 ——l~~.

Here Hq q, , Hp, p, , i,, j = 1, . . . , 4 are the second partial derivatives of H with respect to the coordinates Q;, P, .

APPENDIX B: THE CONSTANT OF MOTION
FOR NUCLEAR CHARGE Z = 1/4

1 1v=2 i/r+x, u=2 i/r —x, (B1)

The torus structure of the phase space for symmetri-
cal electron motion ri —r2 and nuclear charge Z ~ 1/4
[see Fig. 3(a)] indicates the existence of an additional
constant of motion. The following derivation of the inte-
gral of motion has been worked out in collaboration with
Bogomolny [49].

It is convenient to introduce semiparabolic coordinates

and

D 2
2i/2; 2V2 —= 2 i/2 —e "

V2 u2 6-+0 V2 V
(B4)

We thus obtain p = 1, v = 1/2, i.e. ,

RL=CtC ) V= 6V (B5)

O=u" +2u 1+2'/2
~

u + u,4i/2
V2 ~2 2 ~+0 CV

V2

The equations of motion of the Hamiltonian (B2) read

with r = ri ——r2 and x = r sin(e/2). By changing to
the fictive time d( = dt/r we obtain from Eq. (6) for
infinite nuclear mass a regularized Hamiltonian for the
symmetrical two-electron atom (derivatives with respect
to the new time variable ( are denoted by primes)

'tL

h = 4 i/2 e = —(u" + v") + u' + v' + 2 V 2
2 V —tt

(B2)

0 =v" + 2v
[

1 —2~2

u'l= v' + 2v
~

1 —2i/2—
a~0 v )

The solution of Eq. (B6) is

l' .u= VI~vcos
~

24

(B6)

(B7)

(Bs)
The parameter e = Z —1/4 which (up to a constant
factor) equals the pseudo energy of the system will serve
as a measure of the perturbation of the integrable limit
Z = 1/4. As a first step we study the scaling behavior
of the coordinates in the limit e ~ 0 by setting u:=
a+u, v:= e v with exponents p, v to be determined.

Since all terms of the Hamiltonian (B2) are positive
definite we obtain u, v,'0. The last term of the Hamil-

'-+0
tonian (B2) must fulfill simultaneously the conditions

24 — + u = 24 (B9)

the integral of motion

The integration constant ~I turns out to be the addi-
tional constant of motion, since we obtain from [using
Eq. (B8)]

/Q 2

2~2 = o(e)

2I: + vu
u 1 t2

v 4 2

Expressing (u, v) by (x, r) yields Eq. (36).

(B10)
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