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Application of unitary-group methods to composite systems
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The unitary-group approach is extended to the treatment of composite systems such as ionic states in
molecules (ligands, etc.). Those are represented hierarchically in terms of SU(n)-based Weyl-Young ta-
bleaux which reAect the permutational symmetry of the ionic sites themselves labeled by SU(2) based ta-
bleaux which, in turn, reAect the internal electronic structure. Matrix elements of quantum-mechanical
tensor operators, including both spin-independent and spin-dependent multipole-multipole interactions,
are presented using corresponding spin-graphical representations. The hierarchy of the state definitions
is shown to reveal the "fine structure" of the ionic interactions.

PACS number(s): 31.15.+q, 03.65.Fd, 02.20.—a

I. INTRODUCTION

The purpose of this paper is to extend methods of the
unitary-group approach (UGA) to treat cooperative phe-
nomena involving ionic states in molecules, ligands, and
lattices. Properties of such systems arise mainly due to
electronic structure. It is particularly important, there-
fore, to account for the effects of electron correlation.
Since the interactions involve electrons situated around
differing ionic sites correlations must reAect both the per-
mutational symmetry of electrons at each ionic site dic-
tated by Pauli's principle and also that of the ions them-
selves as part of a larger system. The UGA is well suited
to provide both a means for representing states and an
efficient calculus for the evaluation of matrix elements of
quantum-mechanical operators.

In Sec. II we show how states of an ionic system can be
represented hierarchically in terms of (a) SU(n)-based ta-
bleux which reAect the permutational symmetry of the
ionic sites and (b) by SU(2)-based tableau labels which
reAect the internal electronic structure of each ion.

In Sec. III we discuss the evaluation of matrix elements
of quantum-mechanical tensor operators, including both
spin-independent and spin-dependent multipole-multipole
interactions. Results are derived using techniques of
spin-graphical analysis.
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These operators contain the usual kinematic and
Coulombic interaction terms, but are independent of
spin. The term V„„ in (2.3) is assumed constant when ap-
plied in (2.1a) and all three V terms are parameterized
both by electron coordinates relative to their ionic center
and by the interionic distances.

We shall also assume an operator H,„,„ to be defined
which refers collectively to spin-dependent terms includ-
ing, for example, spin-orbit and spin-spin interactions.

II. BASIC THEORY

We consider a system of X ionic sites in a molecular or
ligand. As shown schematically in Fig. 1 the pth site is
characterized by a rigidly fixed nucleus (alternatively, an
ionic core consisting of nucleus screened by the electrons
in closed orbitals), with effective charge Z and mass m„
in atomic units, and N„(valence) electrons attached to
that site. This is the standard Born-Oppenheimer ap-
proximation where we assume separability of the total
system wave function into electronic and nuclear (ionic
core) parts, namely, ~It=+, iIt„. Each subsystem is de-
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FIG. 1. Schematization of electron-ion structure showing
vector relationships between interacting electrons from differing
ionic sites.
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These may (or may not) be treated perturbatively.
Many-particle eigenstates can be constructed by adapt-

ing to permutation (spin) symmetry. This is accom-
plished using the techniques of the unitary-group ap-
proach whereby Young operators defined on the parti-
tions of the group S& are applied to products of single-
particle wave functions to produce properly symmetrized
linear combinations of orbital products. We assume that
single-particle wave functions can be obtained and are la-
beled by ionic site, using Greek indices, and by the ap-
propriate spatial-symmetry classifiers. For example, with
atomic orbitals one might use the shell index, k and mI la-
bels, whereas in a molecule or ligand point-group symme-
try indices would be preferred.

We assume the number of orbitals available to the elec-
trons at site p is n„and the total number of orbitals is
n =QN, n„. Furthermore, we assume that the N„elec-
trons can be viewed as a quasiparticle. The model allows
for transitions from one to another electronic orbital;
hence, transitions between quasiparticle states are permit-
ted. Taking into account the spin of each electron (labels
s= —,

' and m, ) the electronic wave functions are con-
structed following the group chain,

U((2n) ) & g iE (U(A}(n)e SU(~, )(n'))
[ajax

N

y $(U[1 ](~p)
[p]

@SU(~ )(2))

(2.4)

where n' is the number of spin levels, [A,„] and [A)
denote irreducible representations (irreps) of S& and Sz,
respectively, while [X] denotes the conjugate partition
(tableaux) obtained by juxtaposing columns and rows.
The notation [A*] implies the conjugate partition if the
quasiparticles are fermionic (n half-integral) and the
same partition if the quasi-particles are bosonic (n in-
tegral).

From the group chain (2.4) we note that states are
represented hierarchically. In terms of the Weyl- Young
tableux, states are expressed as products of multirow,
multicolumn labeled Young frames where the pth box
corresponds to the subensemble of electrons which con-
stitute quasiparticle p. The details of permutational sym-
metry for the electron ensemble comprising each quasi-
particle is revealed in terms of a product of conjugate or-
bital and spin tableux. The statistical properties of quasi-
particles are deduced from the total irrep spin associated
with the electronic tableau structure (integral spin for bo-
sons and half-integral for fermions). The nature of the ta-
bleau hierarchy is shown schematically in Fig. 2(a).

Equivalently, states can be built up using techniques
from generalized angular-momentum-coupling theory.
One convenient and useful representation of this ap-
proach uses generalized Yutsis diagrams, or spin graphs,
as shown in Fig. 2(b). Each line of the graph is labeled by
a complete set of partition indices (A„) or, where no am-
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FIG. 2. Hierarchical structure of states: (a) the Weyl-Young
tableau representation, and (b) spin-graphical representation.
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FICi. 3. Spin-graphical representation of one-body operator
acting between electrons in neighboring ions.

biguity arises, by the total intermediate spin (S„;). For
each quasiparticle electrons are vector coupled to a resul-
tant total spin, that is, products of orbital and spin ta-
bleaux which form irreps of U(n„). Then, the spins (par-
tition indices) of the quasiparticles are coupled to form
intermediate states which are irreps of the intermediate
number of orbitals.

Finally, it is to be emphasized that there need not be
any special restrictions on the allowed sets of orbital la-
bels for each quasiparticle system of electrons. These can
include both pure and mixed configurations of orbitals.
Tableau states can be further adapted to states labeled by,
say, total I. or other spatial symmetry, and S. This is ac-
complished by using ladder and projection operators
[1—3].

With respect to the wave functions '0„ from (2.1b)
these are represented as symmetry adapted ensembles of
either nuclei or ionic cores with closed shells and filled
orbitals. In either case the nuclei determine the space
and spin properties used in labeling. Much of the early
work on the unitary-group approach by Biedenharn and
Louck [4] and co-workers was specifically directed at the
dynamics of nuclear ensembles (using perturbed
harmonic-oscillator models). We shall not discuss this is-
sue further, therefore.

To summarize the results of this section, we have con-
structed states based on a hierarchical approach to cou-
pling in which electron ensembles around ionic sites are
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FIG. 4. Spin-graphical representation of two-body
(multipole-multipole) operator matrix element illustrating
singlet (K =0) and triplet (K = 1) decomposition of exchange
terms.
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treated as quasiparticles with well-defined quantum-
mechanical properties and these quasiparticles are cou-
pled to form the electronic states of the many-ion system.

III. TENSOR OPERATOR MATRIX ELEMENTS

In this section we treat the evaluation of matrix ele-
ments of various operators within the context of the
hierarchical basis functions discussed in the previous sec-
tion. Of particular interest is the relationship between
matrix elements of operators acting on the electronic
quasiparticles versus those same states specified more
directly in terms of the detailed electronic structure. In
each subsection below we consider a different aspect of
matrix element evaluation.

(b)

FIG. 5. Spin-graphical representation of (a) single-particle
and (b) multiparticle operators acting on electron states within a
quasip article.

A. Multipole operator matrix elements

We consider first the matrix elements of spin-
independent tensor operators T'"~(p, v). Applying the
Wigner-Eckart theorem within the quasiparticle repre-
sentation the reduced matrix elements are typified by the
graph in Fig. 3. Thus, we find the algebraic form,

p —1 N A„
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'
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'
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k

A
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where d (a, b, . . . , ) are the number of orbitals in irreps a, b and so on and quantities in braces are the SU(n) generaliza-
tions of the SU(2) Racah coeKcients [5].

Taking into account the structure of the quasiparticles an amendment must be applied to expression (3.1). The exact
form is dependent on the structure of the tensor operator, however. For k =1 and T' '(pi, vj ) a one-electron operator
(e.g. , transition, excitation) acting to transform the ith electron of system p to the jth electron of system v the amend-
ment is

N

&I:A' (~')Jll~'"'(v v)IIIA (~)) &=&«')IIT'"'(v v)ll«) & 2 2 CA, A(T'"'(&i »))
i=1 j=1
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C .(T'"'(pi, vj ))= + 5(S„k,S'k) II 5(S &,S'k)d(n„;, n )F,(i)F,(j),
k=1 k=1

(3.1')

(3.2)

F( )

O' P

2 ~pi —1

n

Pl

~pk

k =i+1 Pk

nI k

2
(3.3)

The parameter n, is the occupation number for orbital i and is expressed as mod2 in (3.3) to account for singly and

doubly occupied orbitals.
Multielectron operators, as shown in Fig. 4, are represented by tensor products such as
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k1 k k2T("~„= y &2k +1(—1)~kl, k2, q 9'1 9' q2
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(k]) (kp)
(3.4)

Two-electron operators (3.4), for example, the Coulomb repulsion between two electrons from the same quasiparticle,
have been studied by Drake and Schlesinger [6j.

As an example of the type of operator, which does arise, we consider the multipole expansion of two neighboring
quasiparticles,

RL+1 P (3.5)

where C' ' are the usual spherical tensors and

p vN

&M"(C v)=X X X
i =1 j=1 l, , l.

It+1.=L

(2L )!
( 2l; )!(2&, )!

1/2

r„', r ' &I;l m;m lLM &C ' (r„;)C ' (r„j) . (3.6)

Equations (3.5) and (3.6) constitute the multipole expansion of the Coulomb interaction between two systems of charges
separated by R„with the assumptions R„)r„, , r . Carets on the various radial vectors refer to the corresponding
unit vectors along those directions. Each spherical tensor in (3.6) should be viewed as a single-electron transition opera-
tor or as a multielectron operator. Examples of such graphs are shown in Fig. 5.

B. Spin-dependent operator matrix elements

The spin-dependent part of the Hamiltonian H,„;„usually consists of spin-orbit and spin-spin interaction terms.
These interactions diA'er from the spin-independent ones primarily in the way in which states of di6'erent partitions of
SN are coupled by the respective tensor operators. To denote the fact that the operators act on the partitions we write
them as S(rr) and Sy(r)r y. The type of graph representing a reduced matrix element which arises is shown in Fig. 6

This graph is expressed algebraically as
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Accounting for the internal electronic structure produces a multiplicative amending factor to (3.7), similar to
(3.1)—(3.3), namely,

'))lls,',".', , (p, v)ll(A;(~) &=c',",, (s',", (p, v))&(A')IIS',", (p, v (3.7')

where

c',",, (s',", (~,v)) = &(x„')lls'"'ll(x„) &&(x.')lls'"'ll(x. ) &,

where, for S'~' a one-electron spin operator, one Ands the reduced matrix element

(3.g)
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We note that matrix elements (3.9) are determined with reference to the quasiparticle structure only; that is, using two-
column (two-row) orbital (spin) tableau states [6,7].

For example, the spin-orbit interaction can be expressed alternatively as

cV

I'-, so= X
@=1

g —,'-g, poS„;.[V„;U( I r, ] ) X V„;]

f (r~;)
g,po

— S„,.L„,+(small)
I@I

(3.10a)

f(R„)
V„„so=g " S„V„"',

p=1 pv

(3.10b)

3(s„; p„;)(s,) p„)
2

Ppi, vj

where the potential U is due to all fields except that of the (pi)th electron, g, is the gyromagnetic ratio, po is the Bohr
magneton, f (f ) accounts for the nonspherical symmetry of the charge distribution comprising the potential, S and L
are the spin and orbital angular momentum operators and we assume that the spin-orbit interactions resulting from
non-sphericity are small enough to neglect. Expression (3.10a) states the operator form applied to interacting electrons
whereas (3.10b) is applied to quasi-particles using a pointlike approximation.

Matrix elements of the operator (3.10b) correspond to the case pi=@2= —,
' and I =1. Amendments to these matrix

elements are then found directly from (3.7') —(3.9).
The spin-spin interaction can be expressed in the alternative forms,

X —1 Ã p v g(p . . )
Hss = —g g Jo(R„)S„.S„—g g " '

s„; s„— (3.11a)
p=1 v=@+1 i =1 j=1 ppi, vj

X —1 X
=JOS' '+ g g g(R„)c' '(p, v).s' '(p, v),

p=lv=p+1
(3.11b)

where Jo(R„) is the exchange integral and p„, , is the distance between the ith and jth electrons of the respective
quasiparticles. s' ' and c' ' are second-rank tensor operators which act on spin and space, respectively. The expressions
(3.11a) and (3.lib) refer to the operators applied to electrons versus quasiparticles, respectively.

The term involving S' ' is a scalar operator which acts to interchange spins of electrons i and j of quasiparticles p
and v using (3.11a), or to interchange the spins of quasiparticles p and v using (3.lib). In either case, matrix elements
are zero unless the quasiparticle states are from the same irrep. Furthermore, the matrix elements are zero, also, unless
all orbital labels are identical except for position.

The second terms in (3.1la) and (3.11b) involve second-rank tensors which act independently on the orbital and spin
states for an atomic wave function. Values for the C' ' tensor are common in the literature [8]. The evaluation of the
S&

' tensor components is straightforward in cases where the single-atom spins are all —,'. These cases have been treated
by Kent and co-workers [9] in the context of a spin-correlated system of electrons.

Matrix elements of (3.11b) are found by applying (3.7) with pi =@2=1 and I =2. In order to relate this expression to
(yl) (y2)matrix elements of (3.11a) it is necessary to further express s ' and s ' as two-electron operators and approximate

g(p)/p by g (R). The resulting amendment is, then, a product of Racah and 12-j symbols of the kind occurring in (3.7),
one for each quasiparticle. Hence,

(3.12)

where the operator indices [1], [2], and [4] are the parti-
tion labels for (symmetric) coupling of 1, 2, and 4 elec-
trons corresponding to the single-electron (y =

—,
' ), triplet

(y, I =1), and quintet (I =2) coupling cases. The graph
shown in Fig. 7 illustrates the coupling in this case.

To summarize the results of this section, we have de-
rived algebraic expressions for the matrix elements of
various tensor operators using the hierarchical basis func-
tions. We have related those matrix element expressions
based on the quasiparticle viewpoint to those found by
taking into account the internal electronic structure. Fi-
nally, we note that the formalism, typical of the USA, is
extensible to any number of particles and ionic systems
which is one of its main characteristics.

IV. CQNCI. USIONS

We have shown how to construct hierarchical, permu-
tation symmetry adapted basis functions, in the context
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FIG. 6. Spin-graphical representation of reduced spin-orbit
operator matrix element.
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FIG. 7. Spin-graphical representation of reduced spin-spin
operator matrix element.

of the unitary-group approach, which at once contain
both a description of the electron ensemble about an ionic
site treated as a quasiparticle and the detailed structure
of the electron configuration. Using techniques
developed previously these basis functions can be adapted
to arbitrary space and spin symmetries.

We showed, furthermore, that matrix elements of
spin-independent and spin-dependent quantum-
mechanical tensor operators can be systematically and
efhciently evaluated using the basis functions. In particu-
lar, the hierarchical nature of the basis functions allows

for a simple means of determining the internal electronic
"fine-structure" corrections to the matrix elements calcu-
lated using a strictly quasiparticle approach.

We anticipate that our approach and results will be of
interest to those practitioners interested in the treatment
of complex molecular or ligand systems. Our approach
provides for a description of states which is intermediate
between states defined using solely collective and local
models. The advantages of this scheme should be real-
ized in situations where the number of atomic species and
states is relatively small, such as in some primitive lattice
unit defined by an ion and its neighbors, and where de-
tailed local interactions play a significant role.

Finally, readers interested in the mathematical details
regarding phases and techniques for evaluating the vari-
ous 3n-j coefficients should consult Refs. [4] and [5].
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