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Upper and lower bounds on the radial electron density in atoms
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Rigorous upper and lower bounds on the atomic spherically averaged electron density are found for
all radial values in terms of the charge density at the nucleus, p(0), and the first few radial expectation
values. Moment-theory methods and Chebyshev inequalities are used to obtain the bounds. This type of
result can be employed to compare diverse information obtained by using different models, numerical
approximations or experimental data. In order to study the goodness of the bounds, a computation in a
Hartree-Fock framework is done. The accuracy of our simplest upper bound is similar to a previous one
found by King [J. Chem. Phys. 78, 2459 (1983)j using very different methods and information. Other
bounds, containing more information, clearly improve the aforementioned result. The same method al-
lows one to obtain bounds on the derivative and primitive functions of the electron density as well as on
the atomic charge.

PACS number(s): 31.10.+z, 31.15.+q

I. INTRODUCTION

The study of the atomic charge density p(r) has a
relevant role in obtaining physical properties of those sys-
tems in a density-functional-theory framework [1]. How-
ever, not much rigorous information has been obtained
about the atomic charge density, in spite of the efforts of
many authors during the past years. Because of that,
rigorous results, such as lower and upper bounds at any
point r, would be desirable.

It is interesting to work with the spherically averaged
charge density

p(r)= J p(r)dQ,1

4~ n

for which some rigorous properties are known [2,3].
Among them, we should mention its non-negativity and
its behavior near and far from the nucleus, i.e.,

p'(0) = —2Zp(0),

p(r)~r~e " (for r~) .

Equation (2) is the so-called "Kato cusp condition" [2],
which relates the values of the density and its derivative
at the nucleus.

Moreover, it has been shown numerically that p(r) is a
monotonically decreasing function of the radial distance
[4] [i.e., p'(r ) ~0] and that, to a very good degree of ap-
proximation, is also convex [5] [i.e. , p"(r))0] for all
ground-state atoms. Other interesting monotonicity
properties have also been studied [6,7].

On the other hand, tight upper arid lower bounds to

the atomic charge density at the nucleus p(0) [5,8] as well
as rigorous inequalities among radial expectation values
[6,9]

(r ) =f r p(r)dr (a) —3) (3)

are also known. Throughout the paper, we use the nor-
malization ( r ) =N, N being the number of electrons of
the atom.

Many numerical calculations of the radial expectation
values ( r ) within different models are found in the
literature [10], as well as relationships among them and
other significant atomic quantities [9,11,12] (e.g. , first ion-
ization potential [13], information entropies [14], fre-
quency moments [15]). Moreover, some of these values
are experimentally accessible (e.g. , by means of electron
[16,17] or photon [18,19] scattering by atoms) and/or
physically relevant. Let us mention here that the
Langevin-Pauli diamagnetic susceptibility g is expressed
[20] in terms of ( r ),

2( 2)

as well as to the nuclear magnetic screening constant [21]
or diamagnetic screening factor o.

where a is the fine-structure constant. On the other
hand, the quantity (r ') is proportional [20] to the
electron-nucleus attraction energy E,~,

E,~ = —z(r '),
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Additionally, one should take into account that the re-
cently obtained [22] relationships among radial expecta-
tion values of both position and momentum spaces pro-
vided another tool for getting information on the quanti-
ties (r ) from the knowledge of (p~),

(J')= fp') (p)dp

Thus we have relevant but limited information on the
radial expectation values of the density, either from ex-
perimental data, or by using different models or rigorous
relationships among quantities of both position and
momentum spaces. In this work it is shown that the
knowledge (from any source) of the first few radial expec-
tation values of the density imposes strong restrictions on
the values of such density at any point.

This kind of results allows one to study the compatibil-
ity of different models, because the restrictions on the
density imposed by the knowledge of some moments cal-
culated within a model can be compared with densities
provided by other models or calculated by extrapolation
of experimental data or numerical approximations.

The aim of this work is to obtain rigorous upper and
lower bounds to the spherically averaged density p(r) at
any point r ~ 0, in terms of the above-mentioned quanti-
ties p(0) and (r ). The results obtained suggest that a
greater effort in the knowledge of radial expectation
values would be desirable. For illustration, we show the
bounds to the atomic charge density p(r) by using
Hartree-Fock moments, although the validity of the tech-
nique is model independent and its usefulness has been
pointed out in the preceding paragraph.

Until now, only some upper bounds to p(r) based on
Block's inequality have been reported [23]. They are ex-
pressed in terms of the kinetic energy of the physical sys-
tem, T=(p )/2, and the two radial expectation values
of lowest order, namely, ( r ' ) and ( r ). The pro-
cedure described below has not been previously used in
this field to bound the atomic charge density p(r). So, we
cover the range of intermediate values of r for which
rigorous results are very scarce [23]. It is interesting to
note that these bounds depend only on a few low-order
moments (r ).

This procedure applies the so-called Chebyshev ine-
qualities [24] to some functions related to the charge den-
sity p(r). These functions are (a) the charge density p(r),
(b) the cumulative density g(r) = J~(r )dr, (c) the num-

ber of electrons contained. in a sphere of radius r, i.e.,

Q(r)= f "4vrr p(r)dr,
0

and (d) the first derivative p'(r) of the charge density.
Related techniques have been applied in other fields, such
as, e.g. , particle physics [25,26], photoeffect studies in
Hilbert space [27], or to bound thermodynamic quantities
[28].

In Sec. II a review of results about moment theory,
Pade approximants, and orthogonal polynomials is given,
in order to show how the bounds are obtained. In Sec.
III the results described in the preceding section are ap-
plied to the four above-mentioned charge functions. Fi-
nally, Sec. IV contains some concluding remarks.

II. CHEBYSHEV BOUNDS FOR THE
CUMULATIVE WEIGHT

f r g~(r)«=pk, k=0, 1,2, . . . , X,
0

(6)

and which eventually converge to the true weight g (r)
when X tends to infinity or such that one has the weak
convergence for the average

H(z)= lim f F(r,z)gz(r)dr .
&~oo 0

(7)

Some methods can be used to solve the previous re-
duced moment problem: orthogonal expansions or refer-
ence density methods [31], Bernstein polynomials tech-
nique [32], Stieltjes-Chebyshev techniques [33], moment-
preserving splines [34], or maximum-entropy techniques
[35,36].

In order to obtain bounds for the cumulative weight,
i.e., the distribution f(r), we shall use the Stieltjes-
Chebyshev procedure related to Pade approximants
(PA's) and continued-fraction techniques [33,37,38]. The
basic result is that the information contained in the first
%+ 1 moments in (6) is sufficient to bound rigorously the
cumulative density function f(r) at any point in [0, ~).

More precisely, the Chebyshev inequalities [24,37,39]
provide lower and upper bounds to the values of f(r)
through the positive residues of the Pade approximants at
points related to the position of the poles.

To obtain these bounds it is convenient to deal with the
Stieltjes function

H(z)= f = f dr, g(r) ~0,
0 1 zr 0 1 zr

which is a particular case of Eq, (4).
The formal [40] series expansion of H(z) is given in

Many physical quantities of great interest are related to
integral transforms of non-negative functions

H(z)= f F(r z)g(r)dr, g(r) ~0, r K[0, oo ) . (4)
0

The estimation of these quantities using only a limited
number of parameters is an old and controversial prob-
lem (see, e.g. , Ref. [24]). In its usual form, the known pa-
rameters consist of the moments of the weight g (r) or of
a differentiable distribution f(r) [24,29],

pk = f r"g(r)dr = f r "df(r), k=0, 1,2, . . . . (5)
0 0

Moment theory provides approximations or rigorous
bounds [30] on the average H(z) of F(r,z) by using the
properties of the orthogonal polynomial system associat-
ed with the weight g(r) Ho.wever, sometimes this is not
sufficient and information on the actual weight g(r), or
on the distribution f(r), is also needed.

The practical and physical situations are such that only
a few moments are available, either from experimental
measurements or from theoretical calculations, so a
unique reconstruction off(r) is impossible in view of this
limited information.

Nevertheless, there are approximation procedures for
constructing sequences of functions g&(r), such that their
moments are the known ones
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terms of the moments defined in Eq. (5) by

H(z)= g p;z'.
i=0

(9)

The [n —I /n ] Pade approximant to H(z) can be written
as

0 if O~r &r(")

f„(r)= g y';") if r'")(r (rz~+)) (1 ~p (n ) (20)
i=1

P„((z)
[n —1/n ](z)=

n

(n)
Y!

, , &
—zr,(") '

corresponding to a weight function

where P„((z) and g„(z) are polynomials of degree n —1

and n, respectively, and can be calculated from the rela-
tion

H(z) [n ——Iln]=Q(z ") .

df„(r ) = g y', ")Sir —r,'"')dr . (21)

Such distributions satisfy the so-called Chebyshev ine-
qualities [24,37,39]

n ~e(n)

1 z —r,*(") (12)

The parameters y';"' and r "' are related to the residues
and poles of the PA:

f (r(I1) Q) (f (r(n) Q)

(f ( r(n))

~ f„+,(r "'+0)
~ f„(r "'+0) . (22)

(n) 1 '"'= —y '"'r'"') 0e(n)r;
(13) f ( (n)) —) [f ( (8)+0)+f (

(/l) 0)] (23)

The previous inequalities indicate that the Stieltjes values
defined by

The relationship between the moments and the pole posi-
tions and residues of the PA is

(M„= g (r'") )"y("', k =0, 1,2, . . . , 2n —1 . (14)

The sequence [q„]„orelated to the Pade denominators
by

converge monotonically with n at their step points to the
correct distribution.

In order to obtain bounds on f(r) at any point in the
interval of interest [0, ~ ) and not only at the points relat-
ed to the poles of the approximants, we consider new ap-
proximants to the formal series expansion of H(z) or h (z)
having a pole in an arbitrary prescribed position on
[0, 0() ). More precisely, we use the approximants

1
q„(z ) =z "Q„ (15) p„,(z)

A„(z)=
q„(z)

is the orthogonal polynomial family with respect to g (r)
In the same way, we define p„,(z) —[q„(r )/q„ i(r) ]p„2(z)

q„(z)—[q„(r)/q„ , ( r)]q„ , (z)
(24)

p„ i(z) =z P„ I (16)

so that

p„,(z)
A„(z)=

q„(z)

n ~(n)

1 z —r(") (17)

is the n convergent of the continued-fraction approxima-
tion to the Stieltjes transform

h(z)= —H —=I1 1 ~ df(r)
Z Z 0 Z I"

satisfying

oo p.=X
i=0 Z

A„(z)—h(z)=O 1
(19)

Many of the bounding properties of the PA are based on
the properties of the orthogonal sequence [q„]„~0.

In view of Eq. (11) or, equivalently Eq. (19), the PA is
associated with the distribution function f„(r), given by

Although alternative approximants can be devised [37],
the denominators of them are the so-called quasiorthogo-
nal polynomials associated with the distribution function
f(r), which have the same properties as the system of or-
thogonal polynomials except the degree of approximation
in quadrature formulas [see Eq. (25)].

The real roots r,'"'(r) and the positive residues y,'")(r)
of the new approximants satisfy the moment-problem
equations

n

pk= g [r "'(r)]"y',"'(r), k=0, 1,2, . . . , 2n —2, (25)
i=1

where r =r "'(r) for some value of i, since by construction
r is one of the roots of q„(z). As indicated above, r "'(r)
and y(."'(r) are now functions of r, which can be varied at
will over the positive real axis. In terms of these values,
the approximants take on the form

y(n)( )
A„(z)=g, yI")(r) &0, (26)

, z —r,'"'(r) '

which is similar to Eq. (17)
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Rigorous upper and lower bounds on f (r) are obtained
from the Stieltjes histogram (20), having now a prescribed
spectral point r =rj"'(r) with weight y'"'(r) and n —1 ad-
ditional points r "'(r) and weights yI" (r), in the form of
Chebyshev inequalities

& f(r)
& f„+)(r+0)
& f„(r+0}. (27)

j—1

~(n)(r)+ 1~(n)(r) (28)

which is simply the midpoint of the Chebyshev bounds
(27) at r =—r,'")(r), and can be calculated in terms of the
polynomials p„(z) and q„(z).

By using the derivative of Eq. (28), it has been shown in
Ref. [33] that the Chebyshev weights g„' '(r) are real,
non-negative, convergent to g(r) in the limit n ~~, for a
continuous weight as in our case. Moreover, the nth-
order Chebyshev density is continuous in the real axis,
has 2n —4 continuous derivatives there, and supports
2n —2 moments.

Solutions of Eqs. (14) and (25) are conveniently ob-
tained from considerations on the continued fraction or
Pade representation of the Stieltjes integral (8). Several
eKcient algorithms can be used in practice: the
quotient-difference algorithm [41], the product-difFerence
algorithm [29] related to Lanczos's method, or the S-
continued-fraction algorithm [41]. We have checked that
these three approaches are satisfactory for the small
number of moments used in th!s work ( & 15), but insta-
bilities can arise when a large number of moments is
used.

A convergent approximation to f(r) is obtained from the
Stieltjes value (20) in the form

fc(r) =
—,'[f„(r 0)+f—„(r+0)]

f(r ) = f "[—p'(r) ]dr =p(0) p—(r)
0

and therefore on p(r), r H [0, ~ ), in terms of p(0) and the
first radial expectation values of the one-particle density
p(r).

Two interesting characteristics of the bounds obtained
in this way should be noticed. First, they allow one to
obtain rigorous information about the behavior of p(r)
for some specific and relevant values of r (e.g. , the
Hoffmann-Ostenhof radius [3] rHo =Z/I, Ibeing the ion-
ization potential of the atom), where, until now, there has
been no information available in the literature. Second,
in a similar way as done in the study of Compton profiles
[43], one can give upper and lower bounds on parameters
such as rk (0& k & 1), which tell us the radius for which
the density takes the value kp(0).

In Fig. 1, the upper and lower bounds obtained by us-
ing 4, 8, and 12 moments and the density function p(r)
for the neon ground state have been plotted. As could be
expected, it shows that the bounds improve (especially
the lower ones) when the number of moments considered
increases. Moreover, due to the nested structure of the
bounds, their arithmetic mean can be considered as a
convergent approximation [33] for p(r), which could be
used in order to compare the method we have followed
here with other approximations, such as the maximum-
entropy densities [36] or polynomial expansions [31].

On the other hand, as pointed out in Sec. I, some upper
bounds to p(r) are known (given by King in Ref. [23]).
Among the six different types of King upper bounds, we
have chosen for comparison the one which is best [44] for
intermediate and large values of r. A numerical Hartree-
Fock study has been done for all atoms with Z ~54,
showing that King's bound (obtained in terms of the
kinetic energy T=(p )/2) and our 4-moment bound
[constructed from p(0), ( r ' ), and ( r ) ] are of similar
accuracy. However, if more information is considered,
our bounds clearly improve the King one. As an illustra-
tion, Fig. 2 shows the behavior of King's bound with
respect to the corresponding 4 and 12 moments and for
the neon ground state.

III. APPLICATIONS TO ATOMIC SYSTEMS

In this section we apply the bounds given by Eq. (27) to
four different weight functions related to the atomic elec-
tron density [cases (a}-(d) in Sec. I]. On the other hand, it
should be mentioned that all numerical calculations have
been performed in the Hartree-Fock framework by using
Clementi-Roetti data [42].

(a) g ( r ) = —p'( r ) ~ 0. This is not yet a theoretically
proven inequality, but it has been checked numerically
for all ground-state atoms [4]. In this case

(a.u. )
10

10'

10-'

10

10

0—41

4 moments

8 moments

12 moments

p(0), k =0
p„=f "r"g(r)dr=

k( k 3)
4~

k=1,2, . . . .
(29) 10—5

0 0.5 1.5
r (a.u. )

So, we obtain rigorous upper and lower bounds on the
distribution function

FIG. 1. Spherically averaged charge density p(r) (solid line)
and upper and lower bounds from 4, 8, and 12 moments for the
neon ground state. Atomic units are used.
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103 which shows how the probability density accumulates
when r grows. In Fig. 3 the upper and lower bounds
from 4, 8, and 12 moments together with the function
g(r) have been plotted, and also for the neon ground
state.

(c) g(r)=4rrr p(r) ~0. This relation allows one to
bound the charge [19]

Q(r)= f 4~r p(r)dr (31)
0

(a.u. )
102

1O'

100

in terms of the moments
1O

—'

)Mk
= f 4nr"+ p(r)dr =(r"), k =0, 1,2, . . .

0
(32)

10
0

I

0.5
I

1.5 2r (a.u. )
This is a relevant quantity because, e.g. , it is needed in
determining the Thomas-Fermi energy of neutral atoms
[19]. However, no information of the type we give here is
known in the literature.

Figure 4 includes the behavior of the bounds from 4, 8,
and 12 moments and also for the neon ground state. No-
tice that the above-mentioned nested structure also holds
in this case. So, the arithmetic mean of the successive
lower and upper bounds can be considered again as ap-
proximations for Q(r), which improves when the number
of moments considered increases.

(d) g(r)=p"(r)~0. Convexity is, to a good degree of
approximation, a property fulfilled by the electron densi-
ty of all ground-state atoms [5]. This property allows one
to bound p'(r) by using this technique together with the
cusp condition (2), because

f "p"( r )dr =2Zp(0) —p'( r ) . (33)
0

FICx. 2. Comparison between the upper bounds from 4 and
12 moments and the King upper bound (see case A in the last
paper of Ref. [23]) for the neon ground state. The solid line
represents the spherically averaged charge density. Atomic
units are used.

(b) g(r ) =p(r ) ~ 0. This is a well-known rigorous prop-
erty of the electronic density. The moments are now

( k —2)
Pk= 4' , k=O12, . . . . (30)

The knowledge of the first moments allows us to bound
the cumulative density

lt/(r)= f p(r)dr,
0 In this case the moments are

—p'(0) =2Zp(0), k =0
pk= f r"p"(r)dr= p(0), k=1

0

( " ) k=234
(34)

40 12
Q(r)

(a.u. )
+(r)
(a.u. ) 10—

30

4 moments
6 moments

18 moments10 4 moments

8 moments
————-- 12 moments

I

0.4
0

0 0.5 0
00.1 0.2 0.3 0.5 1.5

r (a.u.) r (a.u. )

FIG. 3. Cumulative density f(r) (solid line) and the corre-
sponding upper and lower bounds obtained by using 4, 8, and 12
moments, for the neon ground state. Atomic units are used.

FIG. 4. Neon ground-state charge Q(r) (solid line) and the
corresponding upper and lower bounds from 4, 8, and 12 mo-
ments. Atomic units are used.
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In this way, we have described the information which can
be obtained with this method for convex densities. For
the sake of completeness we have plotted in Fig. 5 the
bounds from 4, 8, and 12 moments together with —p'(r).

It is clear that the above results can be extended by
means of more restrictive monotonicity properties for
functions closely related to p(r), e.g. , p-order monotonici-
ty [6,7] (p ) 1), log convexity [45], etc. In particular, if
some fermionic density is completely monotonic, it is
possible to obtain, by using the same technique, bounds
of the Baker-Gammel [46] form g; A;exp( B,r),—where
the coefficients 2, and 8; are related again with the resi-
dues and poles of the PA associated with the density.

IV. CONCLUDING REMARKS

-p'(r) 5

(a.u. )
10

103

102

101

10-'

10—2

10 I

0.5

r (a.u. )

It has been shown how the knowledge of the first few
moments of the derivative of a monotonically decreasing
density p(r) allows one to obtain rigorous upper and
lower bounds on this density for any value of r. These
bounds can be systematically improved if the number of
known moments increases or if additional information on
monotonicity properties of the density is available. Since
the bounds are nested, it is also possible to obtain conver-
gent approximations which may be compared with those
given by other methods. Moreover, due to the considera-
tion of the approximants given in Eq. (24) having a pole
in an arbitrary prescribed position, the method allows
one to study how the derisity decreases for any specific
value of the radius.

The test of the bounds in a Hartree-Fock framework
suggests that more effort in the model-independent calcu-
lations of expectation values would lead to important re-
sults. In the same way, the method allows one to study
the compatibility of diverse models, numerical approxi-
mations, or moment computations (based indirectly on
experimental computations).

The method we have used is general and it may be ap-
plied to many other problems of the density functional

FIG. 5. Derivative of the spherically averaged density —p'(r)
(solid line) and the corresponding upper and lower bounds from
4, 8, and 12 moments for the neon ground state. Atomic units
are used.

theory. In particular, we should mentioned that it is pos-
sible to obtain upper and lower bounds on the Compton
profile for several atoms and molecules and, if we consid-
er the moment space, results analogous to those present-
ed in Sec. III can be derived for those physical systems
having a monotonically decreasing moment density y(p).
This will be done elsewhere.
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