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Functional representations in non-Fourier basis with applications
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Orthogonal trigonometric basis functions in ( —m, m. ) are considered and the suitability of Fourier-like
expansions involving odd harmonics of the semifundamental frequency is noted. Comparison with the
conventional representation is made, pointing out the advantages of employing non-Fourier bases. As a
practical application, near-exact results of variational calculations for the ground state of the quartic-
anharmonic-oscillator problem are presented both for small and large coupling strengths.
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I. INTRODUCTION

Functional representation in terms of an orthogonal
basis is often preferred over a straightforward power-
series development for various reasons [1] and, in this
context, trigonometric basis functions have become quite
popular both in functional [2] and numerical [3] analyses.
Here the basic strategy is to expand a function F(x),
satisfying F(m) =F( —m ), in the following way:

F(x)=ao+
m =1,2,

a cosmx + g b„sinnx,
n=1, 2, . . .

tr(x (m—. (1)

One ascribes a fundamental frequency (unity) to F(x)
and calls the development (1) a harmonic series, keeping
aside the rather trivial constant term ao. Conventionally,
however, Eq. (1) is termed a Fourier series.

The purpose of the present paper is threefold: (i) to
emphasize that Icosmx] and [sinnx ] (m, n: 1,2, . . . ) are
not the only possible symmetry-adapted orthogonal sets
in ( —tr, m), (ii) to present a comparative survey of the
efticiency of all possible orthogonal trigonometric bases
in ( —m., m) in representing various functions, and (iii) to
demonstrate how the alternative sets may be computa-
tionally more advantageous, particularly a judicious
choice of a variational trial function could be made by
virtue of (ii) for the quartic-anharmonic-oscillator prob-
lem, leading to very accurate estimates of the ground-
state energy and other properties, and hence the wave
function.

II. BASIS SETS

p sinptr cosqtr=q sinqtr cospn, pAq . (3)

In a symmetric interval such as ( n, tr), cosine—an. d
sine functions are always orthogonal. So, let us consider
first the orthogonality of two cosine functions cospx and
cosqx. Thus we require

f cospx cosqx dx=0, pWq (2)

for discrete variables p and q, not necessarily integers.
From (2), one is led to the condition

It is easy to see by inspection that (3) and (4) are satisfied
at least under two different conditions: (i) p and q are in-
tegers and (ii) p and q are odd half-integers. In the form-
er situation, one recovers the Fourier bases [cosmx ] and
[sinnx I, while the latter refers to alternative basis func-
tions [cosm, x/2] and [sinn, x/2] (m„n&. 1,3, . . . ). At
this point, however, it is not quite apparent whether (3)
and (4) would also be satisfied for other sets of values of p
and q (but see below).

We may now assert that the following four orthogonal
sets are certainly possible in ( m, 7r) to—rep. resent an arbi-
trary function F(x), given the proper boundary condi-
tions:

set I: cosmx, sinnx,

set II: cosm, x /2, sinnx,

set III: cosm1x /2, sinn, x /2,
set IV: cosmx, sinn, x /2 .

(5)

An alternative way to arrive at (5) is to consider the
Sturm-Liouville problem [4]. In terms of the eigenvalue
equation

Y"(x )+A, Y(x)=0,
the above sets follow as quantized solutions, respectively,
with the boundary conditions (i) Y(m ) = Y( —m ),
Y'(m ) = Y'( —m. ); (ii) Y(tr) = Y( —m. ) =0; (iii) Y(m. )= —Y( —

m ), Y'(m ) = —Y'( —m ); (iv) Y'(m. ) = Y'( —tr)
=0. Thus two conditions are required in each case. Let
us note here that set I corresponds to the Fourier series
(1). Set II may be identified with the solutions for the
particle-in-a-box problem of quantum mechanics [5].
Sets III and IV, however, to the best of our knowledge,
have found little practical use so far, and they do not ap-
pear in the course of discussions on trigonometric series
[2,3]. One further point is that the way (6) has led us to
the sets in (5) shows clearly that no other orthogonal set
is possible. The reason is obvious. Imposing conditions

Similarly, for sine functions, the orthogonality relation
becomes equivalent to the condition

p sinqtrcosptr=q sinptrcosqtr, pWq .
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on higher derivatives of F(x) at the boundaries would
not alter the nature of restrictions on the arguments of
sines and cosines from those already mentioned.

III. DISCUSSION

Evidently, for each of the sets in (5), there will be a cor-
responding series representation, in very much the same
way as the Fourier series (1) refers to set I. In this
respect, we first observe that all the sets, except set I, in-
volve odd harmonics of the semifundamental frequency.
Second, we remark that set II applies with equal facility
to represent a function F(x), obeying F(rr) =F( —ir), in
place of set I. One has to consider only a trivially
modified form of the function, F(x)=F(x) F(rr)—,
amounting to an overall constant shift. Finally, and most
importantly, rates of convergence of the coefficients C„
[C: a or b, as in (1); r: m, m, /2, n, or n, /2] will crucially
determine the adequacy of the expansions concerned and,
in this respect too, the alternative basis functions
[cosm, x /2} and [sinn, x /2} perform at times very
desirably. If the coefficient C„decays as

C„-r, a) 0, (7)

n=1,2, . . . ,

( —I )"+'[(I/n)sinnx ], (8)

one would find that the value of a depends both on the
nature of F(x) and the basis. A larger a value naturally
implies faster convergence. In a nutshell, Table I
presents a comparative survey of the performance of vari-
ous bases.

In order to appreciate the usefulness of Table I, and
hence the adequacy of representations based on the odd
harmonics of the semifundamental frequency, let us erst
consider the case of sinn, x /2. Table I shows that, in this
case, a ~ 2 always. For sinnx, on the other hand, we have
a~ l. Thus, as an odd function set, [sinnix/2} is, in
general, superior. One may also observe from the table
that, if we expand sinnx in terms of [ sinn, x /2 },
coefficients would decay as n, (vide entry 1 or 3 ). On
the contrary, for the converse expansion, it turns out that
a= 1 (vide entry 2), providing an additional testimony of
our above remark.

To cite a practical case, we choose the problem of
analysis of a sawtooth signal [6], given by the function
F(x)=x, —ir~x ~7r. Conventionally, here the Fourier
representation goes as

n) =1,3,
(
—1) ' [( I/n, )sinn, x /2], (9)

which is a far better representative both from the stand-
point of convergence (a=2) and the behavior near
x=+ir. Thus the set [sinn, x/2} may be quite impor-
tant in areas such as signal processing [6,7].

While expansions in [sinn, x/2} are generally recom-
mendable, the set [cosm ix /2} may be of importance in

specific situations. In what follows, we shall demonstrate
how such a basis set may be very conveniently employed
in certain variational calculations for bound states.

IV. VARIATIONAL CALCULATION

Let us choose the problem of finding the eigenvalue
and eigenfunction for the ground state of the quartic
anharmonic oscillator, defined by the Hamiltonian

H= —V' +x +Ax (10)

This problem has been treated in various ways from time
to time [8,9]. While Ref. [8] presents very accurate data
by using a variational scheme with scaled basis functions,
other approaches are also in vogue and a selected list of
works may be found in Ref. [9], which, by no means, is
exhaustive. Here we shall essentially employ the basis
[cosmix/2} in a linear variational framework. Chang-
ing the domain to ( L,L ), the —basis set becomes
[cosm, 7rx /2L } and we consider the trial function in the
form

Ni

g(X, ,L,x ) =
ml =1,3,

a cosm, ~x/2L, L~x ~L, —
1

and zero otherwise. The choice (11) is quite reasonable
and straightforward, since the exact density also should
approach zero well beyond the classical turning point
(L, ). The Fourier basis [cosmx } cannot be directly em-
ployed here because these functions do not vanish at the
boundaries +~. Integrals involved in such calculations

showing (i) a= 1, in accordance with entry 4 of Table I
and (ii) since F(vr)WF( —m) here, the right-hand side of
(8) behaves wildly near the boundaries, converging
wrongly at [F(ir)+F( —m)]/2 at x =+sr The situation
with [sinn, x /2}, however, is quite comfortable. One ob-
tains

TABLE I. Dependence of a [Eq. (7)j on the nature of F(x) and the various trigonometric bases in
( —vr, ~).

Serial
number

Nature of
F(x)

F (m) =F(—vr)

F(~)= —F( —~)
F(~)=F( —m) =0
F'(~) =F'( —~)
F'(~) = —F'( —~)
F'(~) =F'( —~)=0

cosmx sinnx cosm, x /2 sinn &x /2
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TABLE II. Approximate ground-state energies for the Hamiltonian (10) at A, = 1 and 40000 as func-
tion of the number of basis (N) employed in (11). The bracketed data in the last row show exact values

[8].

Number of
basis
(X) L,p, /m

A, =40000

Eo

2
4
6
8

10

0.705
0.814
0.916
1.115
1.140

1.393
1.392 37
1.392 351 8
1.392 351 641 9
1.392 351 641 531

[1.392 351 641 530 2]

0.134
0.146
0.161
0.175
0.187

36.3
36.274 8
36.274 46
36.274 458 2
36.274 458 134

[36.274458 133 7]

are also quite easy to evaluate in the chosen basis. For
convenience, we list below the relevant matrix elements
in normalized bases, viz. ( I /')/L )cosm;~x /2L and
(I/t L )cosm rrx/2L:

( q2) — 2 2/4L2 ( P2) () .

(x') =I.'(-' —2/m'~2)

(x ), . =(8L /ir )[(m;+m. ) cos(m, +m )ir/2

+(m,. —m ) cos(m; —m )rr/2];

(x");;=L ( ,
' 4/m; ir +2—4—/m, rr ), .

(x ), =(16L /m )[(m, +m, ) [I—24/(m;+m ) ir I

Xcos(m, +m )m. /2

+(m; —m. ) [ I —24/(m, —m ) m. ]

Xcos(m, —m, )~/2] .

We note in addition that L, cannot be too large or too
small. This is because, the average kinetic energy in-
creases without limit as I —+0 while the average potential
energy behaves in the same manner as I.—+ ~. Thus I, in
(11) indeed appears as a nonlinear variational parameter,
to be optimized (L, , ) subsequently.

Table II shows the results of our calculations for ap-
proximate ground-state eigenvalue Eo. We have chosen
two widely separated values of A, (viz. A, = 1 and 40000) in
order to check any instability in the scheme. A rather
small number of basis functions (N) have been employed
in each case [N=(N, +1)/2], but we note that conver-
gence is quite fast. This is expected. From Table I, we
may easily infer that the rate of convergence of the

( —V') =(x2&+2k, &x'&, (12)

so that the average energy, which is also the eigenenergy,
would become, by virtue of the virial theorem,

E„= (2x) +X3& x& . (13)

For the exact function itic, then we should have

coeScients a would follow the power law a —m, at
1 i.

large mi. Thus, as a trial function, (11) possesses very
good computational convenience, justifying the worth of
employing non-Fourier bases. The results we obtain are
also impressive. With just ten basis functions, we note
that the error is already approximately 10 "% at I,= 1

and 10 % at A, =40000. For further improvement, one
needs only to increase the number of basis. Finally, to
convince ourselves about the suitability of the choice (11),
a comparison should be made between L, , and L„ the
classical turning point. One finds that L, /sr=0. 281 at
A. = 1 and the value changes to L,, /~ =0.055 at
1,=40 000. Thus the inequality I, , )&I,, is also
satisfied, as we presumed. Had we taken larger X, it is
transparent from Table II that such an inequality would
have been more dominant.

To assess the quality of the optimized wave function,
we have also computed (x ) and (x ). Results are
presented in Table III. Since in a linear variational con-
text, the virial theorem [10] is not generally satisfied with
approximate functions, we have attempted to verify the
same. In view of the unavailability of near-exact results
for the aforesaid moments, we believe that this
verification should furnish a reliable testing ground. For
the exact function, we should have, from (10),

TABLE III. Expectation values &x ) and &x & for the ground state of the oscillator (10) and verification of Eq. (14) for approxi-
mate estimates obtained from our calculations.

2
4
6
8

10

0.307
0.305 82
0.305 813 61
0.305 813 650
0.305 813 650 72

0.260 1

0.260 245
0.260 241 5
0.260 241 448
0.260 241 446 70

E /E

0.999 7
0.999 996
0.999999 998
1.000 000 000 21
1.000 000 000 01

0.01051
0.010 584
0.010583 883
0.010583 881 27
0.010 583 881 29

A, =40000

0.000 302 7
0.000 302 11
0.000 302 1109
0.000 302 11076
0.000 302 11075

E, /Eo

0.999 4
1.000 02
0.999 999 8
0.999999 993
1.000 000 000 03
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TABLE IV. Demonstrative 4-basis {N=4) calculations of
(x~) for the ground state via the Hellman-Feynman route, i.e.,
the derivative method given by Eq. (15). More accurate esti-
mates are presented in Table III, with which these agree.

TABLE V. Verification of Symanzik scaling relation by the
approach of Eo/A, ' ' towards a constant value {=1.06036) in
the present study.

h/1,

0.1

0.01
0.001
0.0001

0.260 5
0.260 25
0.260 243
0.260 243

AF. /hA,
A, =40000

0.000 302 7
0.000 302 12
0.000 302 111
0.000 302 111

10000
15 000
20 000
30 000
40 000

1.062 7
1.062 5
1.062 4
1.062 3
1.062 2

N=4

0.061 2
1.061 0
1.060 9
1.060 75
1.060 68

E„/Eo = 1, (14)

(x ) =dE/dA, =EE/bi, = [E(A+h) —E(A, —h )]/2h,
h «A. . (15)

where Eo satisfies Hgo=Eogp. Thus a pertinent goodness
test for an approximate wave function go would be to
check how far (14) is satisfied with E„and Eo replacing

E, and Eo, respectively, where E„=2(x )+3k,(x ).
Table III also shows the relevant data. It is now prob-
ably transparent that the present scheme furnishes
sufFiciently good-quality wave functions as well with little
e6'ort.

It may, however, be inferred from the form (11) for go
that 1/L would act as a scale parameter to satisfy the
virial theorem in an obvious way [10]at its optimal value.
However, such an assertion is strictly valid only if the op-
timization is performed analytically. In a numerical
scheme such as the present one, a sensitive dependence of
E, /Eo on the level of accuracy to which L,z, is deter-
mined is, in general, quite likely, especially when gc is not
a reasonably good approximation to go. This is why we
have incorporated this aspect in Table III. What we ob-
serve in this respect here is again very desirable. The said
dependence is noticeably weak in our scheme. Indeed,
L, , is accurately estimated only up to the third decimal
place (see, e.g. , Table II). But we note that Table III
respects the number of basis (N) much more than the ac-
curacy level of L,z, in the context of validity of the virial
theorem. This is precisely why our results finally agree to
ten decimal places. So, we may now conclude that tI'jo

obeys E, /Eo= 1 more because the individual average
properties are accurately obtained; that it involves an op-
timally scaled coordinate has little decisive value here.

In order to examine the quality of fo unambiguously,
two more goodness tests are finally in order. One of these
is concerned with satisfaction of the Helbnann-Feynman
theorem. For H in (10), it states that, at a given value of

Table IV shows how well (15) is satisfied for approximate
estimates at various values of h /A, . Here we report mere-
ly 4-basis calculations, but note that the estimates ob-
tained by employing the right-hand side of (15) agree very
satisfactorily with the results of (x ) presented in Table
III, even for moderately high h /A, . The Symanzik scaling
relation, pointed out by Simon [9], is another requirement
to be checked. At large k, for this oscillator problem, the
eigenenergy E(A, ) should increase as A, '~, so that Eo/A, 'r3

approaches a constant value of 1.060 36. In Table V, we
display how satisfactorily this asymptotic behavior is
obeyed. Here too, we report small-basis calculations only
in order to emphasize the remarkable performance of the
present scheme. As Eo values themselves are quite accu-
rately obtained in larger basis sets, it is quite natural that
the required behavior would be followed much more
closely in such situations.

The importance of form (11) in a variational context
may now be appreciated. It is capable of furnishing very
good-quality wave function and hence the average prop-
erties. We further observe that integral evaluations in
and implementation of the present scheme are also
recommendably easy in comparison with the prevalent
methods [8,9] of approaching the problem in hand.

V. CONCLUDING REMARKS

Non-Fourier basis functions have not so far found wide
applicability. The present endeavor is a preliminary step
towards this goal. We have demonstrated that, at times,
such bases are computationally very convenient. Table I
may be a helpful guide in this regard. Further work
along this line is in progress.
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