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Energy and P-function solutions to relativistic Hamiltonians with Coulombic and linear potentials
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It is argued that quantum-mechanical P functions can be derived consistently by using renormaliza-
tion length scales implied by the quasiclassical minimization of Hamiltonian forms. Our
renormalization-group results for the Dirac-Coulomb system can then be related analytically to ones ob-
tained in ladder quantum electrodynamics in four space-time dimensions. Involving spinless relativistic
two-body Hamiltonians, one can present exact energy- and P-function solutions for the Lorentz scalar
linear potential. Inverse-square, other linear, and mixed linear plus Coulomb potentials can also be
treated. The exact energy of this last potential has been discussed in conjunction with an alternative p
function.

PACS number(s): 03.65.Sq, 11.10.gr, 11.10.C'rh, 12.20.Ds

I. INTRODUCTION

Proofs have been given that the Dirac equation with
both Lorentz-vector [U(x) = —a/x] and Lorentz-scalar
[S(x)= —y/x] Coulomb potentials, where x = ~x~, leads
to the nonperturbative P function [1]

CXP(a;y)=a 1 —
zc

' 3/2

+a —1—y 0!
C

K ' OC

which relies on the self-similar attributes of the ground-
state energy

[ —ay+tc(ac —a )'~ ],1 (1.2)
0'c

in which 1 =n„=0 and s = 1 [2]. The length scale of the
present renormalization description has been identified
with the location x =xo of the minimum of the efFective
radial potential [see Eq. (7) in Ref. [1]]characterizing the
quantum-mechanical 1/N description of bound states
[3,4]. Note that the 1/N description of Coulomb poten-
tials gives energy results which are exact to first 1/N or-
der [5], so that the same remains valid for the above P
function. In this respect, xo has the meaning of a non-
perturbative renormalization scale, which becomes sub-
ject to an inherent dependence on the couplings by virtue
of the fixing condition of the expansion parameter do of
the 1/N method. We then have to realize that the
coupling-valves for which xo =0 and xo= ~ lead to ul-
traviolet (UV) and infrared (IR) fixed points, respectively.
Additional fixed points are able to be produced by extra-
polating the P functions towards intervals in which
xp (0. Concerning Eq. (1.1) it has also been assumed
that only the a coupling is sensitive to xp. So the above P
function produces the UV fixed point ac=(tc +y )'
and the IR fixed point a= —y. One has ic=(N —1)/2,
where N stands for the number of space dimensions. Go-
ing outside the bound-state region (see the dashed curves)
leads to the additional UV fixed point a = —Q.c, as
displayed in Fig. 1. An immediate generalization, incor-
porating the above 1/N approach, can be done just in
terms of the quasiclassical minimization of the pertinent
Schrodinger Hamiltonian &(x,p) =p + V(x) =E. This

p(ag)'

i
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FIG. 1. The a dependence of Pla;y) for y) 0 (a) and y(0
(b).

amounts to minimizing &(x,dp/x), where dp plays, this
time, just the role of a parameter relying on the mapping
p —+dp/x [6]. Starting from a well-defined analytic ex-
pression for the ground-state energy Eo then gives xo via

xo
V(xp)+ V'(xp)=Ep .

2

In general, Eo may be exact or an approximation, so that
the xo outcomes are subject to the same statements, re-
spectively.

The above P function can also be viewed as a certain
subcritical counterpart of the nonperturbative f3 function
derived before with the help of the ladder approximation
to the Schwinger-Dyson equation for the fermion self-
energy [7—9]. In this later case, the critical coupling is
given by ac=~/3 in four space-time dimensions. How-
ever, the analytic form of this ladder quantum electro-
dynamics in four space-time dimensions (QED4) /3 func-
tion can also be reobtained, up to the value of the UU
fixed point, by performing the renormalization-group
(RG) description of the Dirac-Coulomb system in terms
of the collapse of the wave function, now for a) ac [10].
This indicates that we have to account for nonperturba-
tive field-theoretical phases in which quantum-
mechanical RG structures survive vacuum polarization
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~~ (x,p ) =2Ip + [po+S (x) ] J
'~ + U(x) =6, (1.5)

where po is the mass parameter are discussed in Sec. IV,
with a special emphasis on exact Ao and /3 solutions for
the Lorentz scalar linear potential S (x)=kx /2. Closed
1/X approximations to the potentials U(x)=k'x and
S(x)= —Ao/x [17] have also been done. The con-
clusions are presented in Sec. V.

II. THE DERIVATION OF RG EQUATIONS

It is an instructive exercise to reformulate our
knowledge about 60 and do into RG language. Starting
from the definition of the present /3 function,

p(a;y)=p, a,a
Bp

where /2, =1/xo and using the exact 1/X result

(2.1)

eA'ects. In other words, quantum-mechanical RG struc-
tures are able to serve as useful analogies providing a
better understanding of nonperturbative renormalizations
of related field theories. In this context, other mutual re-
lationships or theoretical intercorrelations, such as the
analogies between the cp field theory and the anharmonic
oscillator [11],the interpretation of inverse dimensionali-
ty as temperature [12],or the practical importance of ma-
trix models [13], can also be mentioned. On the other
hand, the exploration of the fixed points, as well as of the
phase-transition attributes of quantum-mechanical sys-
tems, has its own intrinsic interest. Indeed, having ob-
tained the p functions enables us to derive the corre-
sponding order parameters, as discussed before [14]. Ac-
cordingly, we are in a position to extract useful nonper-
turbative information concerning fixed-point structures,
this time from quickly tractable RG formulas for exactly
and/or approximately solvable quantum-mechanical sys-
tems. The derivation of such results, which are useful for
further interrelated investigations, represents the main
goal of the preset studies.

This paper is organized as follows. In Sec. II we shall
discuss the RG equations for the ground-state 1/N ex-
pansion parameter

do=do(a)=(ac —a )'~ (1.4)

of the Dirac-Coulomb system, as well as for Do. This re-
sults in the exact derivation of corresponding anomalous
dimensions. Comparisons with ladder QED4 results and
related parameter-fixing interpretations are presented in
Sec. III. Two-body spinless relativistic Hamiltonians
such as [15,16]

which can also be reobtained identically in terms of Eqs.
(1.1) and (1.4). Conversely, the RG solution to (2.3) is

a
do(a) =do(ao)exp yd (a')

a0 0 a'y
L

(2.5)

in which ao plays the role of an initial coupling. It is
then obvious that Eq. (2.5) gives the RG invariant

do(a)

(
2 2)1/2

do(ao)
i /2

—CODSt,
(ac —ao)

(2.6)

which reproduces precisely Eq. (1.4) via const = l.
Concerning 6'o one proceeds similarity. Now the RG

equation is

P +P(a;y) —yz (a) ho=0,a . a
Bp Ba

(2.7)

in which

do (Ica+doy)
yg (a)=

ya —~do
(2.8)

represents the corresponding anomalous dimension. The
solution to Eq. (2.7) reads as

a ) dQ
1

bo(a)=ho(ao)exp I y@ (a')
a0 0 a''y (2.9)

so that

@o(a)

I~do(a) —ya
ho(ao) =const.

~do(ao) yao
(2.10)

Equation (2.10) reproduces precisely Eq. (1.2) as soon as
const=1/ac. Other states can also be treated in the
same manner by starting from Eqs. (8), (9), and (11) in
Ref. [1]. Thus, the Dirac-Coulomb system is subject to a
well-defined RG description, which opens the way to fur-
ther analogies with ladder QED4.

P(a;y) +Do —yn(a) Q(a) =0,a (3.1)

where the canonical dimension has been denoted by Do.
Accordingly, the dynamical scaling dimension reads as

III. ANALOGIES WITH LADDER QED4

Do
Choosing a physical observable such as p, 'Q, (a), we

find the RG equation

do =I~axo(ac yxo) (2.2)
Dn(a) =Do yn(a) . — (3.2)

one finds immediately the RG equation

(3
p +P(a;y) —

yd (a) do=0 .
Qp ()cx 0

(2.3)

X~c
yd (a)= — 1+ 1—

ac K(X

1/2
A

2c
(2.4)

Accordingly, the exact anomalous dimension of do reads
as

First let us assume that the above observable is RG in-
variant, as usual. Then, yn(a) =0, so that [14]

dQ(a) =Q(ao)exp DoJ—
a0 (a', y)

(3.3)

where eo again has the meaning of an initial coupling.
Restricting ourselves to e values near o.c yields the lead-
ing form
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P(a;y) =-2(ac —a) 1+~2' 1—
K

1/2

(3.4)

in accord with Eq. (1.1). This in turn produces the lead-
ing behavior

Q(a) —=const X 1—CX

ac

Do /2

(3.5)

DoP =c onst Xp '(ac —a )", (3.6)

for ca&ac, in which n )0 is, this time, an arbitrary
power exponent which should be fixed later. Obviously,
I' represents a "nonconserved" order parameter as long
as n&Do/2. The anomalous dimension characterizing
(3.6) reads as

which shows that +=ac plays the role of a phase-
transition point. Next we would like to generalize Eq.
(3.5) by starting from an order parameter such as [18]

~y~
=—=0.349,iT

(3.14)

where y(0 (y)0) relies on the broken (symmetric)
phase. One should also have

25/2
m+ 1 -=2.975, (3.15)

which shows that the mutual relationship between ladder
QED~ and the present RG description of the Dirac-
Coulomb problem works by restricting the underlying
Dirac equation to X=—2.975 space dimensions, provided
that ~y~

—=0.349. This leads to a refinement of the fixing
condition for N which was written down earlier [1]. So
the mutual relationship between ladder QED4 and our
RG approach is theoretically tractable, provided that the
n exponent is subject to the extrapolation n =

—,
' ~n =1.

However, this later point indicates that further
clarifications, as well as a more appropriate selection of
underlying potentials, remain desirable.

yp(a) =Dp —y„(a),
where

(3.7)
IV. P FUNCTIONS FOR RELATIVISTIC

TWO-BODY SYSTEMS

y„(a)=n
a(a+ac ) yac1+ 1—

&c2 KCK

1/2
CX

2
CXg

(3.8) Squaring twice Eq. (1.5) leads to the Schrodinger-
equivalent Hamiltonian [15]

y (a) =1+ 1— (3.9)

where the plus and minus signs correspond to the broken
and symmetric phases of the theory, i.e., to ( PP) WO [20]
and (Pg) =0 [21,22], respectively. On the other hand
(3.7) and (3.8) produce the leading behavior

Now we are in a position to address the question of
whether the above anomalous dimension is able to be re-
lated analytically to the ones derived within the ladder
approach to the combination between QED~ and the in-
duced four-Fermi interaction [19]. For this purpose, let
us recall that the fermion mass operator i' for which
Dp = 3 exhibits the anomalous dimension

1/2

g2
E =E(6)= —p4 Q (4.2)

as discussed in similar cases before [5]. Our first example
is the Lorentz-scalar linear potential S(x)=kx/2, which
is of interest in the description of quark confinement
[23—25]. This potential is exactly solvable for s-wave
states, i.e., for L =

—,', where L =I+(N —2)/2. Indeed,
putting l =0 and X =3 and using the energy formula for
the "driven" harmonic oscillator discussed recently [26]
gives

&(x,p) =p +S (x)——,
' U (x)+2pP'(x)+ —,'6'U(x)=E,

(4.1)

in which

y p(a) =Do 2n —2 ~ 1 ——1/2

(3.10)
kE =(2n„+ 1)——@02, (4.3)

for a near a&. Putting DQ=3, we then find that the
matching conditions between Eqs. (3.9) and (3.10) read as

n=1, (3.1 1)

2 g —+K (3.12)

Combining these results with the equivalence condition
ac =czc, i.e., with

which indicates that, in this context, our order parameter
ceases to be RG invariant and

6 = [2k(2n„+1)]' (4.4)

provided that k )0. One would then obtain the xp pa-
rameter as

1x 0
= [ —3po+ (go+ 4k) '~2], (4.5)

by virtue of Eqs. (1.3), (4.1), and (4.3), where n„=O. Ap-
plying the RG differentiation,

so that 6 becomes, surprisingly enough, independent of
Pp,

(~2+ y2) i/2
3

gives

(3.13)
8

xo =xo —P(k)
dXp XQ

to Eq. (4.5) yields the P function

(4.6)
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( +4k)' —3
P(k) =k(pc+4k)'

pc+ 2k —3po(p2o+4k)'i2
(4.7)

tions one obtains the equations

8o—3@ok'xo+2k' xo —4po=0 (4.10)

which has been outlined in Fig. 2. We remark that P(k)
exhibits the IR fixed point k =0 as well as the UV fixed
point

and

8 k'x —k' x =(N —1) (4.11)

kc =2PO2 (4.8) in which do = (N —1)/2 to first 1/N order. Applying the
RG differentiation to (4.11) then gives the P function

which agrees with the x0= ~ and x0=0 limits men-
tioned before, respectively. The vertical asymptotes
characterizing Eq. (4.7) are located at k =pc(4 —3i/2)
and k+ =pc(4+ 3''2). One has also the additional fixed
point k, = —p0/4, which comes from the extrapolation
of P(k) beyond the starting xo )0 domain. The superpo-
sition between . the Lorentz-scalar and Lorentz-vector
linear potentials S(x)=kx/2 and U(x)=k'x can be
treated in a similar manner. Without considering further
details, we would like to say that the present s-wave
energy-solution reads as

f3(k') =k' 1+ (N ——1)
2

u
(4.12)

where

and

@ =—'[3k'x +(k' x +16p )' ) (4.14)

1 ki2 4+ 1 ki3 5(ki2 2+ 16 2) —I/2+(N 1)2XO 2 0 X0 PO

(4.13)

8=—[ —p k'+(k k' ) (—n +—')' ]
2

2
(4.9)

Next, we have to remark that Eq. (4.11) can be approxi-
mated as

I
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FIG. 2. An outline of the P function for S (x) =kx /2.

if k )k', which reproduces Eq. (4.4) as soon as k'=0.
The next example is the Lorentz-vector linear potential

U(x)=k'x, which is not exactly solvable, in contradis-
tinction to the above cases. For convenience, we shall
then resort again to the quickly tractable 1/X method,
which has been applied to similar cases before [5,27]. A
further simplification arises by performing a tentative ex-
trapolation towards two-body fermion-antifermion sys-
tems via l ~1+s/2 and n„~n„—s/2, where, this time,
s =0, +1 [28]. Indeed, choosing the S, state, for which
I =n„=0 and s =1, enables us to eliminate the undesir-
able square-root term [29] from the 1/N fixing condition
for d0 via s =1. It should also be mentioned that the
1/N formulas for Dirac systems with non-Coulombic po-
tentials become improved by inserting an additional
spin-orbit term into the corresponding Schrodinger-
equivalent Hamiltonian [30]. For the sake of simplicity,
such a term will be hereafter ignored. Under such condi-

@ok'xo = (N —1)— (4.15)

if k'~0. This, in turn, means that u should be replaced
correspondingly by u +k ' x 0. On the other hand, one
has @o~2po for k'~0, so that

xo +(N —1) i—(2pok')

for k'~0. Consequently, /3(k') becomes
2/3

P(k') =-3k' 1 — k' i
4p

(4.16)

(4.17)

which yields the IR fixed point k'=0 and the UV fixed
point

2c ~ 1P'0 & (4.18)

2 — Ao Ao — —@2- 2&(x,p) =p —
po + =E = —po,'x' 4x 4

(4.19)

which can be treated by using Eq. (16) from Ref. [17].
Although this later equation has been established, in
combination with the WKB method, to first 1/X order, it
produces accurate ground-state (n„=0) energy results, as
verified previously [31]. Accordingly, one finds

E=- v'2
(4.20)

2~ (poAo —L )'
0

which reproduces, somewhat fortunately, Eq. (4.8) as
soon as N =3. Keeping in mind the fact that Eq. (4.17)
represents a quite crude approximation, we would like to
emphasize, however, that Eq. (4.18) is able to reflect
correctly the analytic dependence of kc on N. As in the
Coulomb case, the IR fixed point k'=0 is the only point
which survives the nonrelastivistic limit.

Our third example is the Lorentz-scalar attractive in-
verse square power-law potential S(x)= —Ao/2x . This
leads to the Schrodinger-equivalent Hamiltonian
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Flax. 3. An outline of the P function for S (x)= —Ao/2x .

for n„=O, so that

(4.21)

which exhibits the UV fixed point

I 2

o=&c=
Po

(4.22)

(4.23)

by virtue of Eq. (1.3). This gives the P function

(PoAo —L )'i [(poAo —L2)'i~ —V'2/2]
P(Ao) =An

L —poAo/2+ [(poAo —L ~)/2]'~~

been established. In addition, the xo and do parameters
can be interpreted as nontrivial generalizations of the
Bohr radius and of the principal quantum number, re-
spectively. This also means that studying the P functions
leads simultaneously to useful interrelated information
about such generalizations. So far, the vertical asymp-
totes displayed in Figs. 2 and 3 have the role to restrict
the number of fixed points by preserving the boundary
conditions needed. It has also been proved that our pa-
rameters concerning the Dirac-Coulomb problem can be
chosen in order to reproduce the UV Axed point, as well
as the anomalous dimension of the mass operator, in
ladder QED~. Such agreements are able to support our
emphasis on similarities and/or structural relationships
between ladder QED~ and the present RG approach to
the Dirac-Coulomb system. Nevertheless, this does not
rule out the existence of more complex RG structures in
the case of QED. It is also clear that such intercorrelated
studies can also be done for other systems.

Finally, it should also be mentioned that other self-
similar descriptions, including the derivation of corre-
sponding P functions, have also been proposed [36]. We
argue, however, that our xo scheme should be favored on
general grounds bearing on relevance and simplicity.
However, there are systems which exhibit precisely an ex-
act energy in terms of a superimposed mass scale, say
p, ,(a;k), depending on the couplings. Indeed, the two-
body relativistic Hamiltonian (1.5) with a superposition
between a Lorentz-vector Coulomb potential
U (x ) = —a /x and a Lorentz-scalar linear potential
S(x)=kx/2 [23—25] is subject to the exact ground-state
(n„=o) energy [37]

2
1/2 1/2

6' =2k' —+ L (5.1)
2 4

provided that

IAo=A1=
Po

(L'+ —,
' ),

and the IR fixed point

(4.24)

' 1/2 —1/2

po=p, (a;k)= —k'~ —+ L

(5.2)
as shown in Fig. 3. It should also be specified that Eq.
(4.22) has a pole located at

Ac=A+= [L + ,'+(L + —')' ]—2

Po
(4.25)

V. CONCLUSIONS

Typical forms of P functions have been established in
some detail, as illustrated in Figs. 1 —3. All these func-
tions exhibit UV Axed points, which are responsible for
the onset of related phase transitions [14]. Now we found
it suitable to identify the renormalization scale with the
xo parameter implied by Eq. (1.3). Indeed, one has a
large number of exactly solvable potentials [32—34]
which are not able to be treated properly by the I/K
method. Accordingly, Eq. (1.3) should be favored to the
detriment of the xo choice based exclusively on the 1/X
fixing of the parameter [35]. Exact and/or approximate
formulas for the pertinent ground-state energies have also

13,(aa) =p, a
~Ps

2
1/2

2
' I/2

'L2 A'

4

i

—1

CX+
8bo

(5.3)

where ho= ,'+(L a /4)', —which produc—es the UV
fixed points a=+2L, and the IR fixed point &x=0. Beta-
functions depending on both cz and k couplings can also
be derived similarly as before [1], now by starting from
the complex supercritical form of Eq. (5.2). In other
words, one still has a number of open points which are

which plays the role of an actual mass-quantization con-
dition. One proceeds by establishing the superpotential
characterizing the Schrodigner-equivalent Hamiltonian.
This indicates that one has actual grounds to interpret P,
as a special renormalization scale. We then find the alter-
native P function
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worthy of being explored. We can then hope that such
investigations may reveal new patterns towards a better
understanding of the phase-transition attributes of
many-body systems in terms of related one- or two-body
quantum problems and conversely.
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