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An analaysis of errors in measurement yields insight into the penetration of quantum particles into
classically forbidden regions. In addition to physical values, realistic measurements yield "unphysical"
values which, we show, can form a consistent pattern. An experiment to isolate a particle in a classically
forbidden region obtains negative values for its kinetic energy. These values realize the concept of a
weak value, discussed in previous works.
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I. INTRODUCTION

When the word "quantum" first entered the language
of physics, it meant a restriction on possible values of en-
ergy. Although the quantum theory that later emerged
has many other aspects, it is still axiomatic that the only
observable values of a physical quantity are the eigenval-
ues of a corresponding quantized operator. The more
precise our measurements, the more clearly this restric-
tion stands out; thus when we obtain values that are not
eigenvalues, we interpret them as errors. Still, measure-
ments are uncertain in practice, and can even yield classi-
cally forbidden, "unphysical" values. We have un-
covered remarkable regularities in the way that unphysi-
cal values can appear in sequences of measurements, sug-
gesting that these values may not be unphysical at all. In
quantum theory it seems that, not only are physical quan-
tities not restricted, they can even take values outside the
classically allowed range. Here we discuss this effect and
show how it arises in the context of barrier penetration
by quantum particles.

The phenomenon of barrier penetration, such as tun-
neling through a potential barrier, is an outstanding ex-
ample of quantum behavior. Quantum particles can be
found in regions where a classical particle could never go,
since it would have negative kinetic energy. But in quan-
tum theory, too, the eigenvalues of kinetic energy cannot
be negative. How, then, can a quantum particle "tun-
nel"? The apparent paradox is resolved by noting that
the wave function of a tunneling particle only partly
overlaps the forbidden region, while a particle found
within the forbidden region may have taken enough ener-
gy from the measuring probe to offset any energy deficit.
There is no wave function that represents a particle re-
stricted to a region where its potential energy is larger
than its total energy.

Nevertheless, we will show that actual measurements
of kinetic energy can yield negative values and that, un-

der proper conditions, a remarkable consistency appears
in these apparent errors. In a model experiment, we mea-
sure the kinetic energy of a bound particle to any desired
precision. We then attempt to localize the particle within
the classically forbidden region. The attempt rarely
succeeds, but whenever it does, we find that the kinetic-
energy measurements gave an unphysical negative result;
moreover, these results cluster around the appropriate
value, the difference between the total and the potential
energy. This consistency, which seems to come from
nowhere —a background of errors —suggests strongly
that the notion of a quantum observable is richer than the
one generally accepted. Previous papers suggesting this
conclusion analyze a measurement of spin [1]and a quan-
tum time machine [2].

II. ANALYSIS OF ERRORS IN MEASUREMENT

We begin by reviewing the standard von Neumann [3]
theory of measurement in nonrelativistic quantum
mechanics. Suppose we wish to measure a dynamical
quantity C. We choose a measuring device with an in-
teraction Hamiltonian

H;„,=g(t)PC,

where P is a canonical momentum of the measuring de-
vice; the conjugate position Q corresponds to the position
of a pointer on the device. The time-dependent coupling
constant g ( t ) is nonzero only for a short time interval
corresponding to the measurement and is normalized so
that

g(t)dt =1 .

When the time interval is very short, we call the measure-
ment impulsive. For an impulsive measurement, H;„,
dominates the Hamiltonian of the measured system and
the measuring device. Then, since Q = (i /th') [H;„„Q]
=g(t)C, we obtain (in the Heisenberg representation) the
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result

(Q)=(e m. )
' e (4)

The uncertainty in the initial position of the pointer pro-
duces errors of order e in the determination of C; when
@~0 we recover the ideal measurement. Suppose that
the system under study is initially in an eigenstate of C
with eigenvalue c;. Ideal measurements can yield only
the result c;. But when the pointer itself introduces un-
certainty, other results are possible, indeed a scatter of re-
sults, with a spread of about e, and peaked at the eigen-
value c;. If the measuring device works as described,
then any measured value is possible, although large errors
are exponentially suppressed. There is no mystery in the
appearance of such errors; they are expected, given the
uncertainty associated with the measuring device. Mea-
surements of a positive definite operator such as p could
even yield negative values. Of course, the dial of the
measuring device might have a pin preventing negative
readings, but let us assume that it does not. Even if the
negative values themselves are unphysical, they are part
of a distribution representing the measurement of a phys-
ical quantity. They should not be thrown out, since they
give information about the distribution and contribute to
the best estimate of the peak value.

The standard theory of measurement not only allows
errors, it also prescribes their interpretation: they consti-
tute scatter around a true physical value which can only
be one of the eigenvalues of the operator measured. Of
course, the system under study may not be in an eigen-
state of the measured operator. Then results of measure-
ments will be distributed according to quantum probabili-
ties, folded with errors due to the measuring device.
Since these errors originate in the measuring device and
not in the system under study, it seems that they cannot
depend on any property of the system. However, closer
analysis of these errors in the context of sequences of
measurements reveals a pattern which, far from being
random, clearly reAect properties of the system under
study. The pattern emerges only after selection of a par-
ticular final state of the system. In the next section, we
take a particular example and analyze it in detail to show
how and where the surprise appears.

III. NEGATIVE KINETIC ENERGY

Our example may be summarized as follows: we
prepare a sufficiently large ensemble of particles bound in
a potential well, in an eigenstate of energy, and measure
the kinetic energy of each particle to a given precision.

Qr. —Q.=C

where Qs„and Q;„denote the final and initial settings of
the pointer.

In an ideal measurement the initial position of the
pointer is precisely defined, say Q;„=0,and so from its
final position we read the precise value of C. But in prac-
tice, measurements involve uncertainty. To model a
source of uncertainty, we can take the initial state of the
pointer to be

The results of these measurements are predictably scat-
tered, and even include some negative values, although
the kinetic-energy spectrum is positive. Then we measure
the position of each particle and select only those cases
where the particle is found within some region "far
enough" from the well —with "far enough" depending on
how precisely the kinetic energy was measured. In al-
most all such cases, we find that the measured kinetic en-
ergy was negative. Not only are the measured values neg-
ative, they also cluster around a particular negative value
appropriate to particles in the classically forbidden re-
gion. Also, the spread of the clustering is the characteris-
tic spread for kinetic-energy measurements with this de-
vice.

We begin with a particle trapped in a potential well.
The Hamiltonian is [4]

Following von Neumann, we model a measurement of
kinetic energy with an interaction Hamiltonian

2

H;„,=g(t)P (7)

where P is a canonical momentum conjugate to the posi-
tion Q of a pointer on the measuring device. As in Eq.
(2), we assume that the coupling between the particle and
device is turned on so brie Ay that the Hamiltonian
reduces to H;„„andwe obtain for the operator Q

Qs —Q.= 2

The initial state of the pointer is given by Eq. (4). The
uncertainty in the initial state of the pointer leads to er-
rors of order e in the measurement of kinetic energy.

Initially, the particle and device are in a product state
4;„(x)4;„(Q);after the interaction is complete, the state
1S

—(i/A)PP /2m+ ( )g) (Q)

in which the particle and the device are correlated. Now
we consider kinetic-energy measurements followed by a
final measurement of position, with the particle found far
outside the potential well. For the final state we choose a
Gaussian wave packet with its center far from the poten-
tial well,

(10)

and we require 6 )aA /m e. We can now be more
definite about what it means for the particle to be far
enough from the potential well; the condition on xo is

axo »(a A' /2m@)

Since a fi /2m =lEol, the expression in parentheses is

H= + V(x),
2m

with V(x) = —Vo for lx l
(a and V(x) =0 for lx l

& a. We
prepare an ensemble of particles in the ground state of
this Hamiltonian, with energy Eo (0:
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the ratio of the magnitude of the effect lEol to the pre-
cision of the measurement e. This condition is derived in
the Appendix. Note that for more precise measurements
of kinetic energy (e~O), the final state is selected at in-
creasing distances from the potential well (x0~ ~ ).

The state of the measuring device after the measure-
ment, and after the particle is found in the state %„„(x),is
obtained by projecting the correlated state of the particle
and measuring device onto the final state of the particle
%s„(x).Apart from normalization, the final state of the
measuring device is

@„„(Q)—&@„„le' ~' l@;„)@;„(Q), (12)

X Jdp'
—p 5 /2A —ipxo/A'

~2/2 +p 2 4;„(Q—p /2m ) .

(14)

This integral has poles at p

=+i'm%;

we may evaluate it by
integration on a contour including a line of p with imagi-
nary part —ipo for any po) iiia. The integral in Eq. (14)
then reduces to two terms: a pole term

4;„(Q+aA' /2m ) (15)

and the integral Eq. (14) with p replaced by p ipo Th—e.
pole term represents the measuring device with its
pointer shifted to the negative value —o. A /2m. If the
final state included only this term, measurements would
yield —a fi /2' for the kinetic energy, up to a scatter e
characteristic of the measuring device.

The correction to the pole term is the integral in

p vo~

A'a ~x, —~'&'/2 ~ e
e 2p

OO

—(p —iso) 5 /2A —t'(p —i@0)xo/g

a iii +(p —ipo)

X@;„Q—(p —ipo) /2m] . (16)

We can bound the magnitude of the correction by replac-
ing the integrand with its absolute value. The integral
over the absolute value converges (see Appendix). Since
we replaced the integrand with its absolute value, the
only dependence on xo that remains is the exponential
e' o ' o. Since o. (po/A, the correction to

where 4;„(x)= lEO ). For simplicity, we take V(x) in Eq.
(5) to be a 5-function potential (a~0). Then 4;„(x)is
&aexp( —alxl).

The exponent in Eq. (12) contains the operators P and
p. It is convenient to express 'p;„(x)via its Fourier trans-
form

3/2 —ipx /fi

0';„( )= J dp
7T o, 4 +p

and replace the operator p with its eigenvalue. The ex-
ponential of iPp /2m—fi effects a translation of Q in
&5;„(Q)and we obtain (up to a normalizing factor)

axo —a s /2

N;„(Q+a irt /2m ) can be made arbitrarily small by tak-
ing xo large, as in Eq. (11). In this limit, the final state of
the measuring device shows the unphysical result—a A /2m for the kinetic energy.

We thus obtain a correlation between position mea-
surements and prior kinetic-energy measurements: near-
ly all particles found far outside the potential well yielded
negative values of kinetic energy. On the other hand, we
could look at the entire set of data di6'erently. We could
consider all particles that produced negative values of
kinetic energy and ask about their final position. We
would find nearly all these particles inside the well. The
correlation works one way only. Prior kinetic-energy
measurements on particles found far from the well cluster
around a negative value, but position measurements on
particles yielding negative values of kinetic energy cluster
around zero. How do we interpret this one-way correla-
tion?

IV. INTERPRETATION

Our example suggests that particles in a classically for-
bidden region have negative kinetic energy. But the con-
ventional interpretation of quantum mechanics has no
place for negative kinetic energy. Measurements corre-
spond to eigenvalues or to expectation values only. These
must be positive in the case of kinetic energy, so negative
measured values of kinetic energy must be errors.

However, the conventional interpretation involves an
assumption about how measurements are made. The
conventional interpretation considers measurements on
ensembles of systems prepared in an initial state, without
any conditions on the final state of the systems. Such an
ensemble, defined by initial conditions only, may be
termed a preselected ensemble. By contrast, we consider
measurements made on preselected and postselected en-
sembles, defined by both initial and final conditions. The
experiment of the preceding section is an example of a
measurement on a pre- and postselected ensemble. It is
natural to introduce pre- and postselected ensembles in
quantum theory: in the quantum world, unlike the classi-
cal world, complete specification of the initial state does
not determine the final state.

A measurement on a pre- and postselected ensemble in-
volves a preselection, a measurement, and a post-
selection. Aharonov, Bergmann, and Lebowitz [5] (ABL)
gave a formula for the result of the intermediate measure-
ment. Let an operator C be measured at time t between a
preselected state la ) at time t i and a postselected state

l
b ) at time t2 If C has eigen. values c, then the probabil-

ity P(c~ ) that the intermediate measurement of C yields

cj is [5,6]

l&blU(t2, t)lc. ) &c l U(t, ti)la) lP(ci)= (17)
g l&blU(t~, t)lck &&cklU(t, t, )la &I'
k

Still, the ABL formula applies to ideal intermediate mea-
surements. Equation (17) presupposes that the measure-
ment of C yields one of its eigenvalues c . Real measure-
ments, on the other hand, are subject to error. At the
same time, the disturbance they make is bounded. These
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(18)

If N;„(Q) is sharply peaked, then the various terms
4&;„(Q—c;) will be practically orthogonal, and the proba-
bility of obtaining e; as an outcome follows the ABL for-
mula, Eq. (17). But suppose @(Q) has a width e. Its
Fourier transform has a width in P of A'/e. Small ~P~

corresponds to a measuring device that is coupled weakly
to the measured system. If e is large, then ~P is small,
and we can expand the exponential in Eq. (18) to first or-
der in I' to obtain

(b e ' "~a )C&(Q) =(b ~1
—iPC/A~a )C&(Q)

=&bla&e
' " ~(Q) . (19)

Here

&b/C/a&
&b/a &

(20)

is the weak Ualue of the operator C for the pre- and post-
selected ensemble defined by ( b

~
and

~
a ) .

The definition of a weak value provides us with an in-
tuitive language for describing quantum processes. In
our example, the operators of total energy E, kinetic en-

ergy K, and potential energy V do not commute. There-
fore, the classical formula E=X+V does not apply to
the quantum operators E, E, and V, but only to their ex-
pectation values; and the expectation value of K in any
state is positive. However, the formula applies to weak
values, as follows immediately from the definition, Eq.
(20):

E =K~+ V (21)

and the weak value of E is not necessarily positive. We
can compute it as E =E —V . We know
E =Eo= —a A' /2m, since the preselected state is an

energy eigenstate, and V vanishes since the postselected
state is far from the potential well. Then we have
K = —a A /2m, the "unphysical" value obtained above
in our example. Weak values do not appear in the con-

two aspects of real measurements go together. Suppose
our measuring device interacts very weakly with the sys-
tems in the ensemble. We pay a price in precision. On
the other hand, the measurements hardly disturb the en-
semble, and therefore they characterize the ensemble dur-
ing the whole intermediate time. Even noncommuting
operators can be measured at the same time if the mea-
surements are imprecise. When such measurements are
made on pre- and postselected ensembles, they yield
surprising results. An operator yields weak values that
need not be eigenvalues, or even classically allowed [1,7].
The negative kinetic energy of Sec. III is an example of a
weak value.

Let us briefly review how weak values arise. The initial
wave function of the measuring device is N;„(Q). After
an impulsive measurement of an operator C and projec-
tion onto a final state, the final state of the measuring de-
vice is

(b ~e
' "~a )N;„(Q)=g (b ~c; )(c;~a )@;„(Q—c;) .

ventional formulation of quantum mechanics, but they
appear in measurements.

Equation (19) shows how weak values emerge from an
imprecise measurement (e large). But the weak value
emerged from a precise measurement of kinetic energy in
our example. Instead of the condition on the initial state
of the measuring device (e large), we had a condition on
the final state of the particle (xo large and 5) afi /me).
What do these measurements have in common? Equa-
tion (19) assumes a weak measurement interaction which
disturbs the measured system within limits. When ~P~ is
small, the measurement hardly intrudes between the pre-
and postselected states of the system. The pre- and post-
selected states define the measured system during the in-
tervening time. But when P~ is not small, we can still
control the eQ'ect of a measurement. In our example, we
preselect a state with negative total energy and postselect
a state where the potential vanishes. It is not enough to
postselect particles outside the well. The kinetic-energy
measurement disturbs the particles, and they may not
remain bound. We must somehow postselect particles so
far from the well that measurements of kinetic energy
could not have kicked them there. Then both negative
total energy and vanishing potential will characterize the
particles throughout the measurement.

To see what to postselect, let us write Eq. (12) as an in-
tegral over x instead of over p:

(Q) — dx e o e
—(ilk)PP /2, m

fin

Xe 'i4;„(Q), (22)

up to normalization. If we could ignore the part of the
integral near z =0, we could replace p with — A in
Eq. (22), and the final state of the measuring device would
be @„„(Q)=@;„(Q+aA' /2m ). Although we cannot ig-
nore this part of the integral, we can choose %„„(x)to
suppress it. %s„(x)will suppress the integral near x =0 if
Eq. (11) holds and 5) afi /me We ha.ve already derived
these conditions (see the Appendix). Now we show intui-
tively, using time symmetry, how they keep particles
away from the well.

Defining an ensemble via an initial state breaks time
symmetry. To preserve time symmetry, we may select
both an initial and a final state, thus defining a pre- and
postselected ensemble. Both the ABL formula, Eq. (17),
and the definition of a weak value, Eq. (20), manifest time
symmetry. We may think of quantum states propagating
forwards and backwards in time [7]. The initial state
evolves forwards in time, and by time symmetry the final
state evolves backwards in time; both states inhuence an
intermediate measurement. Indeed, the adjoint of Eq.
(22) represents reversed time evolution with %s„(x)as the
preselected state and 4;„(x)as the postselected state. If
we reverse the time evolution, the weak value remains the
same, as well as the condition on 4„„(x).Applying the
time evolution operator to %'s„(x),

&'/fi)Pp /2 0
2 2

e e
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we see that the effect of the measurement is to broaden
V„„(x). While time evolution of 4;„(x) can kick particles
out of the well, time evolution of %„„(x)can bring parti-
cles to the well. Either forward or backward time evolu-
tion of 4s„(x)can bring particles to the well, although
forward time evolution is more familiar.

Equation (23) is awkward because P is an operator.
For a given value of ~P~, the semiclassical probability for
the measurement to bring a particle to the well is
the absolute square of Eq. (23) for x =0. Thus, for any
state N;„(Q) with ~P~ strictly bounded, such as
(&el+vrQ)sin(Q/e), a sufficient condition on xo is

cos( &2m Q x 0/iii)

&2mQ (a iii +2mQ)
(29)

for positive Q, and zero for negative Q. The ABL formu-
la predicts exactly this distribution of kinetic energies.

V. CONCLUSIONS

values. It is easy to see that if e approaches 0 while xo is
held fixed, so does the chance to measure negative kinetic
energies. Taking the limit e~O in Eqs. (4) and (14) turns
@;„(Q—p /2m ) into a 5 function, and the final state of
the measuring device becomes (up to normalization)

xo))2a(5 +iri P /m 5 ) (24)

for all P. However, the Gaussian state 4;„(Q)of Eq. (4)
includes Fourier modes with arbitrary ~P . Large ~P~ are
suppressed, but for no xo are they suppressed altogether.
In the state C&,„(Q),the probability of a given P is

—e (25)

Folding this probability with the absolute square of Eq.
(23), we obtain

0
—x /(.6 +Pi P /m 6 )

Xv'~ -- (i+a'P'/m'S')'" (26)

(27)

If we preselect V„„(x),Eq. (27) represents the fraction of
the preselected ensemble that we would expect to find at
the well. But the probability to postselect 4;„is

2(xx0suppressed by a factor e ' for large xo. We want a
pre- and postselected ensemble dominated by particles
outside the well, and so we require the latter probability
to be much larger than the former, that is,

5) airi /me, (28)

with xo large. These are the conditions imposed on
%s„(x)in Sec. III. We need both conditions to restrict
particles to the classically forbidden region. When these
conditions hold, V vanishes, and a kinetic-energy mea-
surement yields K, even though the measurement is pre-
cise.

This is an important lesson: the right pre- or postselec-
tion allows us to increase the precision of the intermedi-
ate measurement. The price is that we must wait for in-
creasingly rare events. As measurements of kinetic ener-

gy become more precise (e~O), they disturb the particle
more. To get negative kinetic energies, we must post-
select particles further from the potential well (xo~ ~).
As the precision of the measurement increases, negative
kinetic energies become less and less frequent; in the limit
of ideal measurements, the probability vanishes, and so
ideal measurements of kinetic energy never yield negative

as the probability for the measurement to bring particles
to the well. For large xo the integral is dominated by
large ~P~; we may replace 6 +A' P /m 5 by fi P /m 5
and neglect the denominator to get an upper bound

—2x m5e/fi
e

x =—g(t)[x, Pp /2m] . (30)

P and p are unchanged during the measurement, so the
normalization condition, Eq. (2), implies [8]

xfi~ xj~ Pp /m (3 l)

From here it follows that the change of x is bounded only
if the pointer is in an initial state with P bounded, i.e., if
the Fourier transform of @;„(Q)has compact support.

We have seen that measurements of the kinetic energy
of a particle in a potential well can yield negative values
consistently. These measurements involve selecting a
final state of the particle far from the well. The negative
values represent the weak value of the kinetic-energy
operator.

From the point of view of standard quantum theory, all
that we have produced is a game of errors of measure-
ment. Ideal measurements of kinetic energy can yield
only positive values, since all eigenvalues of the kinetic-
energy operator are positive. But in practice, measure-
ments are not exact, and even if their precision is very
good, sometimes —rarely —they yield negative values.
We have seen that if particles are subsequently found far
from the potential well, the measured kinetic energy of
these particles comes out negative. Consistently, large
measurement "errors" did occur, producing a distribu-
tion peaked at the "unphysical" negative value Eo.
Mathematically, this peak arises from an unusual in-
terference. The measuring procedure pairs each particle
eigenstate of kinetic energy K with a Gaussian wave
packet exp[ —(Q —X) /2e ] of the pointer. But after
projection onto the postselected particle state, these
Gaussian wave packets interfere, destructively for posi-
tive X and constructively for negative K. The pointer is
left in a Gaussian state centered on the negative value Eo,
with a spread characteristic of the measuring device.

What special properties of nonideal measurements led
to this result? First, these measurements involve only
bounded disturbances of particle position. Second, since
their precision is limited, they can supply, "by error, " the
necessary negative values. These two properties are inti-
mately connected: any measurement of kinetic energy
causing only bounded changes of position must occasion-
ally yield negative values for the kinetic energy. The von
Neurnann formalism states that the change of x due to
the measurement is
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But then the support of N;„(Q)is unbounded [9], which
immediately implies a nonzero probability for the pointer
to indicate negative values (Q &0). Indeed, the "game of
errors" displays a remarkable consistency, and this con-
sistency allows negative kinetic energies to enter physics
in a natural way.

The concept of a weak value of a quantum operator
gives precise meaning to the statement that the kinetic
energy of a particle in a classically forbidden region is
negative, namely the weak value of the kinetic energy is
negative. Weak values are defined on pre- and postselect-
ed ensembles. The interpretation of this concept raises
subtle questions about time. Our example involves
preselection of particles in a bound state, measurement of
their kinetic energy, and postselection of the particles far
from the potential well. We associate negative values of
kinetic energy with the particles. However, instead of
postselecting particles far from the well, we could mea-
sure the kinetic energy again with greater precision. We
would then find that almost every time the first measure-
ment yielded a negative value, the second measurement
yields a positive value, and we would interpret the nega-
tive value as an error of the measuring device. The final
measurement, whether of position or of kinetic energy, is
made after a kinetic-energy measurement has yielded
negative values. Nevertheless, the interpretation of these
negative values depends on the final measurement. If we
measure position, we attribute them to the particle, while
if we measure kinetic energy, we attribute them to the de-
vice. The effect seems to precede the cause.

The example of a particle in a potential well is a limit-
ing case of quantum tunneling, when the barrier becomes
very broad. Negative kinetic energies arise in finite bar-
riers, too; but precise measurements of kinetic energy re-
quire postselected particles deep in the classically forbid-
den region, so negative kinetic energies may be difficult to
observe in narrow barriers. Finally, we note a surprising
extension to our result. By assuming an impulsive mea-
surement of kinetic energy, we could neglect the Hamil-
tonians of the system and measuring device and consider
just their interaction. It follows that we can observe par-
ticles with negative kinetic energy even if there is no
binding potential at all. What matters is only the shape
of the preselected particle wave function. Here, too, neg-
ative energies are consistent with other physical processes
(scattering) [10].
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APPENDIX

X f dp e ' 4;„[Q—(p ipo—) /2m]~

and 4;„(Q—(p ipo—) /2m)~ is

—(g+po/2m ) /2e
F77 e

—p /Sm E +p (Q/2m@ +3po/4m e )

Xe

(A 1)

Using [11]

dp e PP +l&IP

2 2

e
a /8~ I a

4p '
Sp

a+Ii/4 8p
(A3)

and

e 1I (x)= 1+0
(2~x )' X

(A4)

for large x, we find that Eq. (Al) leads to an exponential
in

2 2 po 6m
g2 2 me

po 5m e
2~2 2g4

(A5)

The upper bound on the correction, Eq. (16), will be ex-
ponentially suppressed if this sum of terms is sufficiently
negative. The parameter po is arbitrary, aside from the
constraint po) aR. Since 5&uA /me is a condition on
%s„(x),we can eliminate the dependence on Q by choos-
ing pa=5m@/A'. Then for large enough xo, the exponent
is negative. Setting 5=na))i /me for n ) 1, we obtain for
the exponent 4, a4A4—a(n —1)xo+2(n n)—

4m e
(A6)

so that the upper bound on the correction term is ex-
ponentially suppressed if

IE. I

(A7)nxo &)

as in Eq. (11).

We wish to obtain an upper bound for the magnitude
of the correction term, Eq. (16), in the final state of the
measuring device. The absolute value of the denominator
is at least po —a fi, so a bound is

(a —po/A')xO —a 5 /2
Aa e

p2 ~2@2
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