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Path-integral Monte Carlo method in quantum statistics
for a system of N identical fermions
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A rigorous expression for the partition function of X identical fermions with spin 2 is obtained in a
form suitable for a path-integral Monte Carlo (PIMC) simulation of a many-electron system at a finite
temperature. A sum over permutations is reduced to a sum over classes with readily determinable fac-
tors. A distribution over projections and values of the total spin is also obtained, enabling PIMC calcu-
lations of spin-dependent quantities. A MC algorithm is proposed which accounts simultaneously for all

types of trajectory linkages. A test calculation, four electrons in a spherical cavity with a radius of 1 nm

at a temperature of 300—2000 K, is performed.

PACS number(s): 03.65.Ca, 05.30.—d, 02.70.Lq, 05.70.Ce

I. INTRODUCTION

A Monte Carlo (MC) method developed for classical
statistics was successfully applied in recent decades in
computer simulations of a large variety of molecular sys-
tems. However, real atoms and molecules in fact are
complicated many-electron systems and their interaction
cannot always be adequately described within a classical
pair potential model even at room temperature. That is
especially the case for dense plasmas in which atoms,
molecules, and atomic and molecular ions coexist with
the electron component. So there is a need to have an in-
strument for the quantitative description of systems tak-
ing explicit account of the quantum statistics of the elec-
tron subsystem at finite temperature.

There exists now a MC method for quantum systems
using Feynman path integrals [1]—the path-integral
Monte Carlo (PIMC) method. Its numerical implementa-
tion to a system of N distinguishable particles is based on
a sublimit approximation to the Feynman integral for the
partition function expressed as the trace of a product of
high-temperature density matrices in the coordinate rep-
resentation [2—5]. In this treatment each quantum parti-
cle is represented by a "ring polymer" whose elements
are connected by harmonic forces. Interparticle interac-
tions are expressed as interaction between "simultane-
ous" vertices, i.e., vertices with the same index.

In the simulations of real systems, quantum particles
are usually either helium atoms [5] or electrons [6,7]. As
far as an ¹ lectron system is a system of identical fer-
mions its treatment requires a strict account of permuta-
tion symmetry and spin statistics.

It is known that permutation symmetry leads to linked
trajectories [1] and the antisymmetry of the ¹lectron
wave functions results in the problem of alternating signs
of weight functions in the PIMC method. Still not clear
is the question of an adequate account of the spin statis-
tics. As a result, until now no simulation scheme practi-
cally realizable for systems with a sufficiently large num-
ber of electrons had been suggested. In the existing pa-
pers there were carried out PIMC simulations for 1 or 2

electrons [6,7]. The most serious contribution to this
problem was made in the work of Shevkunov [8] in which
the Young diagram approach was used to account for the
spin statistics of electrons.

The aims of this paper are (1) to give a strict formula-
tion of the PIMC method for the system of N identical
electrons (Sec. II) and (2) to try to construct a practically
realizable computational scheme (Sec. III). In Sec. IV a
test simulation for four electrons in a cavity is presented
with a discussion of its results. A short conclusion is
given in Sec. V.

II. PARTITION FUNCTION OF THE
N-ELECTRON SYSTEM

A. Antisymmetric density matrix

Consider a system of N electrons in volume V and the
external field q&(r) Its Ham. iltonian is

The external field can have the form

zke

r —Rk

where Rk are the nuclei coordinates and zk are their
charges.

It is known that the density matrix of the system of N
spinless fermions p "(r„.. . , rN, r', , . . . , rtv) can be ex-
pressed as antisymmetrical combinations of the density
matrices of a system of N distinguishable particles
p (ri . . rid rI . . rtv) [9]:
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p"(ri, . . . , rN, r', , . . . , rN)=(1/¹!) g g sgn(P)p (P(r!), . . . , P(rN), P'(r'1), . . . , P'(rN)),
I~I I~'I

where p (r„.. . , rN, r', , . . . , rN) is expressed by

rN rl ''' rN) gf, (rl ' rN)e"P( ~+ 4' ("1 . rN)

{P ] is the multitude of all permutations of N elements, sgn(P) is the sign of the permutation P, and {g, ] is the full set
of solutions of the Schrodinger equation

The density matrix of the system of N distinguishable particles can be readily expressed by the path integrals in the
form suitable for computer simulations [2—5].

According to the general scheme of the quantum-field-theory formalism [9,10], for a system of particles with spin s
we should replace particle coordinates {r; ] by x, =

I r, ,o;] and . f dr by g f dr, where cr; are spin projections. For a
single particle with a spin-independent Hamiltonian it is possible to write

p(x, x ') =po(r, r')5(o', o')

[po(r, r ) is the coordinate part of the density matrix]. Accordingly, for X distinguishable particles with a spin-
independent Hamiltonian,

D I D I I I I
P (x! . xN x1 ' xN) Po(r1 ' ' N 1 ' ' N)5( o1!rl) 5(oN oN) (3)

Substituting (3) into (2) we obtain the expression for the partition function of the ¹lectron system, which is the trace
of the antisymmetric density matrix:

Z =Tr(p")=(1/X!)f dr! . drN g sgn(P)E(P)po(ri, . . . , rN, P(r, ), . . . , P(rN)), (4)

where
K(P)= 5(o „P(o,)) . . 5(crN, P(oN))

is the spin factor contributing to the partition function. The first sum over permutations in formula (2) gives X after in-
tegration. In the absence of spin, K (P)= 1 and we come back to the known expressions (see, e.g. , [9], Chap. 2).

B. Path integrals and reduction to a sum over classes

It is known that the density matrix for X distinguishable particles can be expressed as a path integral [1]:
Dy I I

PO(rl ' ' rN rl ''' rN)

N J N J= lim f + dq, (l) . dq;(J) (J/A, ';)' ~'exp —g g {(~J/&,')[q;(j+1)—q;(j)]'] (0/J) g —U{q;(j)I
i=1 j=1 i =1 j=1

where
U{q;(j)]=g p(q;(j))+ g @(q;(j)—q (j)) .

i&k
Integration is made over the trajectories q;(j) (i is the

index of a particle, j is the index of a trajectory vertex),
with the origins in points q, (1)=ri, . . . , qN(1)=rN and
finishing in points q!(J + 1)= r '„qN( J + 1 ) = rN (see Fig.
1), where 1,, =2m.PA' /m, is the thermal wavelength for
the ith particle.

In sublimit approximation J is taken to be a finite but
large number. In the partition function Z =Tr(p ) the
initial points coincide with the final ones and hence a sys-
tem of X closed trajectories with J intermediate vertices
is formed.

In each term of the sum (4) the final point coincides
with the initial one, though not necessarily for the same
particle. Figure 2(a) demonstrates an example of such a

q,(2)

r,=q,(1)

r2=q, (1)
r' =q (J+1)

r~q4&) r~+J+1)

FIG. 1. Schematic representation of the trajectories for den-
sity matrix of Xdistinguishable particles.
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TABLE I. Number of enumerated and nonenumerated dia-
grams for various N.

(b)

Number of
enumerated

diagrams (Xf)

1

2
6

24
120
720

5 040
40 320

362 880

Number of
nonenumerated diagrams

g (&)

1

2
3
5
7

11
15
22
29

FIG. 2. Scheme of linked trajectories for 1V =6 identical par-
ticles for permutation (135624). (a) Full set of trajectories with
intermediate vertices. (b) Schematic diagram.

system of trajectories corresponding to N =6, J =7, and
to the permutation (123456)~(135624).

A certain structure of hnked trajectories corresponds
to each permutation. It can be presented by a diagram
(or graph) with enumerated vertices, corresponding to in-
itial points q, (1)=r„.. . , qiv(1)=r~ and directed lines
linking these points, omitting explicit presentation of in-
termediate points [Fig. 2(b)]. To each permutation there
corresponds its own enumerated diagram; their total
number is Nt. .

In order to perform MC simulation in the ensemble (4)
it is necessary to organize a random walk both in coordi-
nate Iq;(j)] space inside given volume Vand in the space
of all possible trajectory linkage schemes which corre-
spond to all the permutations I P].

As far as the full set of permutations is & its complete
account for large N is impossible. It is evident, however,
that contributions of permutations difFering only in
enumeration of vertices in diagrams of the same topologi-
cal structure are the same since all the expression is in-
tegrated over the set of coordinates Iq,.(j)]. For exam-
ple, the contribution of the permutation in Fig. 2 is equal
to that of permutations (123456)~(231546),

l

n(G)=
N Cn(C. '- .

)

Now let us calculate the spin factors K(P) in the parti-
tion function (4). The sum (5) contains 2 terms corre-
sponding to all possible sets of spin orientations. Group
the 6 symbols that belong to the same cycles in a permu-
tation I'. For instance, for permutations of Fig. 2 it reads

(123456)—+(152634), and some others. Such permuta-
tions, as is known from the group theory [11],belong to
the same class of the permutation group. The sign (pari-
ty) of permutations belonging to the same class is also the
same. The spin factors K(P) are the same also (they will
be discussed and calculated below). Therefore it is possi-
ble to transfer from the sum over all permutations to the
sum over classes of permutations (with corresponding
coefficients) or correspondingly to the sum over
nonenumerated diagrams. Their number grows with the
increase of N comparatively slowly [8] (see also Table I).

Each nonenumerated graph can be labeled with a set of
symbols IC ], v= 1, . . . , N, where C is the number of
cycles of length v, g+=, vC =N [9]. The total number
of diagrams of a given class G is [9,11]

o. . . . o =+—11''' ' 6

(5(cr„o,))(5(o2,o3)5(o3 cT5)5(o~, o2))(5(o4, o6)5(o6, o4)) .

It is evident that each group is nonzero only if all its spin variables are the same. So in each group it is possible to keep
only one 6 symbol whose arguments can change independently, yielding a factor of 2 into the resulting product. So we
get

K (P) =K (G) =2

i.e., 2 to the power of the complete number of cycles in the given class G. It should be noted here that the same result
appears in the Handscomb MC method for the quantum Heisenberg model in the absence of an external field [12].

Expression (8) has a simple interpretation: "exchange interaction, "which corresponds to the linked trajectories, can
take place only among particles with the same spin projection (particles should be completely indistinguishable). Or, in
other terms, the spin projection does not change along a closed trajectory.

The sign of a diagram can be also expressed by a simple formula:

sgn(G) =( —1)(
N N

[G]=g (v —1)C =N —g C„
v=1

(9)
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[each closed trajectory of length v gives sgn( —1) ]. So the expression for the partition function of N identical parti-
cles (4) can be rewritten now as a sum over classes 6:

Z=(l/N!) fdr, . drN+n(G)K(G)sgn(G)poD(r, , . . . , rN, P&(ri), . . . , PG(gN))
G

=(1/N!) g n (6)K (6)sgn(6)Z, i(6),
G

(10)

where

Z„(6)= f«, «Npo(r &, . . . , rNPo(ri), . , PQ(rN ))

J N J
=(Az) f + dq;(1) dq;(J) exp —g g I(~/Az) fq, (j+ I)—

q, (j)] ]
—(P/J) g UIq, (j)], (11)

i=1 j=1 i=1 j=1

where q, (1)=P&(q;(J+ 1)) are the "classical" partition functions for the G set of linked trajectories, Pz is any permu-
tation of the class 6, and A J =1,/v'J is the "high-temperature" thermal wavelength. Factors n (6), K(6), and sgn(6)
are calculated according to (7)—(9).

C. Distribution over projections
and values of the total spin

Since, for each closed linked trajectory, spin projec-
tions of all particles are the same and in the absence of an
external field are either + —,

' or —
—,
' with equal probabili-

ty, it is not dificult to build a distribution over the value
of the total spin projection (the sum of spin projections of
all the particles). For a given diagram of the 6 class the
full spin-projection distribution co(m, G) is determined by
an evident formula:

on the parity of N) with step l. Each state of spin S is
2S + 1 times degenerate over the spin projection
m = —S, . . ~, S, each spin projection corresponding to a
single microstate. It allows one to obtain the distribution
Q(S, G) over values of the total spin S on the basis of the
already existing distribution co(m, G) over m. Since each
of the states with total spin S =m, m +1, . . . , N/2
makes a single contribution to the set of states with total
spin projection m, it is possible to write

N/2
co(m, G)= g Q(S, G)

S=m
co(m, G) =

i'' '' N
=+—'

5(criiPo(o, )) . 5(oN, Po(oN))
and hence

Q(S, G ) =~(S,G) —co(S + 1,6) (13)
Ã

X5 pa, —m
i=1

(12) (considering that co(N/2+ 1,G) =0). For cases presented
before we have (a) for identical permutation:

Practically, the distribution coefficients ru(m, G) can be
obtained as the number of ways to obtain m, adding up
numbers v/2 corresponding to all closed linked trajec-
tories in the class G with various possible combinations of
signs.

For the identical permutation [ C, ]
=

I N, O, . . . , 0]
spin projections of a11 particles can have independent
values +—,. To obtain the full projection m it is necessary
that X/2+m particles should have spin projection +—,

'

and X/2 —m have —
—,'. It can be fulfilled in CN

ways, i.e.,

~(S I)—CN/2+S CN/2+S+ 1

N

N!(2S+ 1)
(N/2 S)!(N/2+—S +1)!

and (b) for the diagram in Fig. 2:

Q(3, 6)=A(0, 6)=1, Q(2, 6)=Q(1,6)=0 .

(14)

TABLE II. An example of the calculation scheme for the
coef5cients co(m, G) corresponding to the diagram of Fig. 2.
The various spin-projection signs for each closed trajectory are
listed.

~(m 1)=CN"+ cV!

(N/2+ I )!(N/2 —m)! Cycles Total spin

As an example of the general case for the diagram 6,
Fig. 2, %=6, one can get the following spin-projection
distribution (see Table II):

co(m, 6) 1, 2, 1, 1, 1)

( —3, —2 1, 2, 3)

The total spin of the ¹ lectron system S can have
values in the interval from N/2 up to —,

' or 0 (depending

projection

3
2
1

0
0

—2
—3
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In general Q(S, G) can be negative.
The coefficients co(m/G) and Q(S, G) determined by

formulas (12) and (13) must evidently fulfill the following
conditions:

N/2
K(G)= g co(m, G)

m = —N/2
N/2

Q(S, G)(2S+I) .
S=O or—1

2

Now using (15) one can present the partition function
with explicit contribution of states with different total
spin:

Z =,g (2S+1)g n (G)sgn(G)Q(S, G)Z,~(G) .1

S G
(16)

Formula (16) allows one to obtain canonical averages of
quantities depending on spin. For instance,

TABLE III. Coefficients for the diagrams, N =2, 3,4, 5.

A(S, G) sgn(G)n (6)(2S+1)Q(S,G)

[c.I

(2,0)

(0,1)

Diagram n (6) K(G) sgn(G)n (6)E (G) co(m, G)

N=2
(1,2, 1)

(1,0, 1)

S=1 S=0 S=1

Q(S, G) sgn( G)n ( G)(2S + 1)Q(S, G)

[c„I
(3,0,0)

(1,1,0)

(0,0, 1)

Diagram

C3 C3 C3

~C3

n (6) K(6) sgn(6)n (6)K(G) u(m, G)

(1,3,3, 1)

(1,1,1,1)

(1,0,0,1)

S=—
2

1S =—
2

—12

S=—'
2

N=4
Q(S, G) sgn( G)n ( G)(2S + 1)Q(S,6)

(4,0,0,0)

(2, 1,0,0)

(0,2,0,0)

(1,0,1,0)

(0,0,0, 1)

Diagram

C3C) C3C3

C) C3

CO M

1 16

6 8

16 (1,4,6,4, 1)

(1,2,2,2, 1)

3 2

0 —30 —18

3 4

8 4

6 2

12

32

(1,0,2,0, 1)

(1,1,0, 1,1)

(1,0,0, 1)

—1 2

0 —1

15

40

0 —30

n (6) K(G) sgn(G)n (G)E (6) cu(m, 6) S =2 S = 1 S =0 S =2 S = 1 S=0

(5,0,0,0,0)

(3,1,0,0,0)

(1,2,0,0,0)

(2,0,1,0,0)

(0,1,1,0,0)

Diagram

OC36 C3

C3 C3

1 32

10 16

15 8

20 8

20 4

32

—160

120

160

—80

(1,5, 10,10,5, 1) 1

{1,3,4,4,3,1) 1

(1,1,2,2, 1,1) 1

(1,2, 1,1,2, 1) 1

(1,0, 1,1,0, 1) 1

4 5 16

1 —60 —80

0 1 90

1 —1 120 80

1 —120 80

10

—20

30

—40

—40

Q(S, G) sgn{ 6)n (6)(2S + 1)Q(S,G)

n(G) K(G) sgn(G)n(G)E(G) co(m, G) S=
2
S=

2
S=—,

' S=
2

S=
2

S=
2

(1,0,0, 1,0) 30 4 —120 (1,1,0,0, 1,1) 1 0 —1 —180

(0,0,0,0, 1) 24 2 (1,0,0,0,0,1) 1 0 144 —96
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(S ) = g S(S+1)(2S+1)
s

0&S &N/2
(2S + 1)S(S + 1)Q(S, 1)/2

and it must give the classical limit 3N/4 for N indepen-
dent spins. It is valid indeed if Q(S, 1) are determined as
in Table III.

III. ORGANIZATION OF THE MC PROCEDURE

As seen from (10), the complete partition function in-
cludes integration over all vertices of the trajectories q;(j)
and summation over diagrams (classes). Accordingly the
MC random walk in the space of states must include two
types of steps: changes of coordinates and changes of di-
agram, i.e., linkage of trajectories (such an algorithm for
the X-electron system was presented and realized in
[7,8]). The first type of step presents no problem and can
be carried out according to conventional rules (Metropo-
lis procedure for classical systems). Problems arise for
MC steps of the second type. There are two main prob-
lems.

The first is the problem of MC transitions between dia-
grams, i.e., between different types of trajectory linkages.
The following procedure was suggested in [8]. A pair of
"simultaneous" points are chosen arbitrarily on two
different trajectories: q; (j) and qk (j). Then follows
"rethrowing" of links: from q, (j) to qk (j + 1) and from
qk( j) to q;(j + 1). As is easily seen, rethrowing of links
between trajectories belonging to different cycles results
in their unification and, between trajectories inside a
common cycle, to its disruption into two cycles. This

Xg n (G)sgn(G)Q(S, G)Z,i(G) . (17)
G

In Table III we present all the diagrams and coefficients
n (G), K(G), co(m, G), and Q(S, G) for N=2, 3,4, 5.

It seems that the coefficients co(m, G) and O(S, G) can
also be obtained using group theory and the Young dia-
grams [8,10]. One can notice [11] that, for each N,
co(m, G) coincide with the characters of representations
and A(S, G) with the character of irreducible representa-
tions of the group of permutations for corresponding
classes G.

Calculation of the coefficients on the basis of Young di-
agrams was made in [8], but our results for
Q(S, G)n (G)sgn(G) differ from those of the paper [8] by
factors A(S, 1) [see (14) and the first line for each N in
Table III]. The complete agreement with [8] is for N =2;
for N~ 3 it is only for S =S,„since Q(S,„,G)=1 for
all N and G.

Meanwhile, the necessity of factors Q(S, 1) can be
confirmed by some evident considerations. In the high-
temperature limit only the identical permutation survives
and the spin contribution to the partition function is

&s&&zfl(S, 1)(2S+I). It must be equal to 2 . It is
really so only if A(S, 1) are determined according to
Table III. The average (S ) for the whole system as
/3~0 is

way it is possible to obtain all possible topological classes
of trajectories.

However, there arises a difficulty. Usually points q;(j)
and qk(j+ 1) are far from each other and the emergence
of two new terms proportional to [q;(j)—qk(j+I)] re-
sults most often in a very low transition probability, the
more so at high temperatures.

The second problem concerns the fact that weight fac-
tors in (10) have alternating signs. This obstacle is avoid-
ed by ascribing a negative sign to the averaged quantity
(estimator) and dividing the sum obtained by the counter
which contains a sum of + 1 and —I, —1 corresponding
to states with negative sign [7]. If it occurs that contribu-
tion from diagrams (classes) with positive and negative
weights are equal (or even approximately equal) the un-
certainty 0/0 emerges. Unfortunately this is the case
when the PIMC method is applied to electron systems
such as atoms and molecules at room temperature when
the number of electrons exceeds X =2. Room tempera-
tures are low for such systems. At temperatures tending
to zero the harmonic term [Jm/(2ph )][q,(j)—q;(j + 1)] in (6) also tends to zero, leading to the
"equivalence" of different diagrams. The sum of all
weights corresponding to different diagrams (see Table
III) is zero for N ~ 3. As a result in practical calculations
the counter would contain a number like several hundred
after millions of MC steps.

As shown in a number of papers (e.g., [13,14]):

Z+ —Z-
Z+ +Z

—exp[ g(E0 E—
& )]—

as T~O (f3 +~ ). Here—Z+ and Z are (positive) con-
tributions to the partition function with positive and neg-
ative weight and E& and Eo are the energies of the
ground state for boson and fermion systems, respectively.

In [13] the following approach to overcoming this un-
certainty was suggested. It is known that the solution of
the Schrodinger equation at lowest energy is symmetrical
under transpositions of particles. Let this energy be E&,
which corresponds to the ground state of a boson system.
For fermions the wave function is antisymmetric (at least
for N ~ 3) and the ground-state energy Eo )E&. In the
process of simulation we, in fact, reproduce the partition
function Z+ +Z corresponding to an 2V-particle boson
system thus involving in our game all states with energies
E)EI„ including E &Eo. These nonphysical states are
indeed eliminated by the "alternative sign" weight.

It was shown in [13] (which is easy to understand) that

y+(U)=y (U) for U(Eo, (19)

where y+(U) and y (U) are energy densities for states
with positive and negative weights. At low temperatures
the system mainly occupies states in the vicinity of Eb
with E (Eo. These states cancel and yield no contribu-
tion to the average. Therefore one should try to con-
struct a computational scheme which avoids states with
E (Eo. Such an approach was suggested in [13] for the
Hubbard model.

In our case such an approach cannot be applied since
in the coordinate representation used in the path-integral
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simulations the energy has no definite value (the kinetic
part of the Hamiltonian does not commute with the posi-
tion operator). Formally one can write an estimator for
U but it would depend on /3. As a result y+(U) and

y ( U) would also include p and the arguments leading to
(19) become incorrect.

We propose another scheme which permits one to at-
tack the problem of sign. Let us represent the exponent
in (11)as a sum of two terms:

J
Hz-(q) = —g U jq;(j)]J =1

J—1 N
+ g g, [q (j+1)—q (j)]' (20)

=i;=. i 2P A'

[Hz(q) does not depend on permutation class G]. The
remaining part is

Jm
H,„(q,G)= g [q;(J)—qp (;)(1)]

;=i 2P iii

It is then possible to express Z (10) as follows:

1
J

, y. f g + dq;(j)(& )
'

g (6) (6)&(6)&' G

(21)

X exP[ P(Hr(q—) +H,„(q,G) ) )

, f g + dq;(j)(A, )N!
X exP[ PHr(q) ] —W(q),

where

W(q) =g sgn(G)n (6)E(G)exp[ /3H, „(q,G)] . —
G

(22)

(23)

So we simulate a system of X nonclosed trajectories with
the inclusion of an additional potential

~
W jq;(j) ] ~, which

accounts for the contribution of all types of linkage
schemes and depends only on the end points of the trajec-
tories.

There is hope that an essential part of the uncertainty
would cancel in the sum of diagrams. For p —+ ~,

W(q) ~g sgn(6)n (G)IC (6)=0 .
G

So summation over diagrams can be carried out explicitly
for each configuration and consequently there is no need
to make a random walk in the space of diagrams, as was
the case in [8].

The factor W[q, (j) ] can be now included in the poten-
tial in the following way:

JZ= dq; j A.J sgn 8' q
i =1 j=1

XexP[ PHr(q)+»~ W(q)—I] . (24)

In this way we explicitly distinguish the factor which re-
sults in Z~0.

IV. TEST SIMULATION: FOUR ELECTRONS
IN A CAVITY

We have tested our approach for a comparatively sim-
ple system: four electrons in a spherical cavity of radius
1 nm with no external field. The absence of the strong at-
tractive field of an atomic nucleus allows us to make cal-
culations with a comparatively small number of vertices
J—about several tens for each electron (see also [7]). In
this work we use J =64.

To simulate the ensemble with the partition function
(24) it is sufficient (in principle) to make MC steps of only
one type —shifts of single vertices. However, as became
clear from preliminary MC runs, such a primitive pro-
cedure proves to be ineffective. Really, due to the pres-
ence of the effective potential in~ W(q)~, the trajectories
tend to become closed. Although all the linkages are
present only one term in the sum (23) yields a predom-
inant contribution. Regions of the configurational space
corresponding to different linkage schemes appear to be
separated by high-potential barriers. So in the course of
simulation, transitions from one such region to another
occur extremely rarely.

In order to achieve good averaging in the whole space
of states during a MC run we introduce three additional
types of steps: (1) shift of a whole trajectory; (2) cyclical
permutation of vertices [in fact, it means that the func-
tion W(q) is calculated between vertices labeled "j"and
"j+ 1," rather than between the "ends" of trajectories la-
beled as "1"and "J";"j" is chosen arbitrarily]; (3) ex-
change of a pair of particles within parts of trajectories
[q;(j)]~[qk(j)] for jp(j(j„under the condition that
W(q) is calculated between Points jp —1 and jp.

The latter transition yields as a rule an effective
rethrowing of the system "across the barrier" —to the re-
gion of states corresponding to the predominant contri-
bution of another diagram. Application of such an algo-
rithm provided a quite reliable sampling covering all
significant areas of the configurational space.

In our calculations standard estimators for potential
and kinetic energies were used:

J
E =—g U[q;(j)],

3JXEk= —
2 g g [q, (J') —q, (J'+1)]

pA,

To obtain quantities determined by spin we calculated
contributions to the partition functions from each dia-
gram:

Z„(6)
P(6)= z '+z fQ dq, (j)exp[ p(Hr(q)+H, „(q,6) )—](z++z )xJ3J" W+ q

exp[ PH, „(q,6)]-
W+ (q)

(25)
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where n (G) and K(G) are taken from Table III, W+ is
expressed as (22) with omitted sgn(G) and ( ) + is averag-
ing with the non-negative weight function

g n (G)K ( G)exp[ —P(HT(q)+ H,„(q,G) ) ]/(Z+ +Z ),
G

and Z,i(G) is the "classical" partition function for the di-
agram G [see (11)]. Now using Table III it is easy to cal-
culate contributions to states with given values of the to-
tal spin S:

p(S)=g sgn(G)n (G)(2S+1)A(S,G)p(G) . (26)

p(S) can then be used to calculate the average square of
the spin operator (S ) and the zero-field spin magnetic
susceptibility (we do not touch upon the question of the
orbital momentum):

(S'& =y S(S+1)p(S),
S

y=p(s') .

To test the program we repeated some results for a sys-
tem of two electrons in a spherical cavity of the same ra-
dius (1 nm) obtained earlier in [7] with the aid of another
algorithm. For T=439 K values of the potential and
kinetic energies E =1.25+0.01 eV and Ek =0.75+0.01

eV were obtained, coincident with those of [7].
Results for the four-electron system [potential and

kinetic energies, diagram contribution p(G), and some
others] are given in Table IV. Radial distributions of
electron density at different temperatures are shown in
Fig. 3.

Lengths of Markov chains were (30—60) X 10 MC
steps (see Table IV; a MC step is either an attempt to
move a single vertex of any trajectory or a special step of
the type 1 —3). The first 10 steps were excluded from
averaging. After that each 100th configuration was aver-
aged. The statistical error was determined from the
dispersion of results averaged over Markov chain inter-
vals of 5X10 steps.

To possibly achieve faster equilibrium of the system,
the initial trajectories were created in the manner of the
Rosenbluth algorithm [15] for polymer simulations: each
vertex q, (j+1) was obtained by addition of a vector dq
to the point q;(j), the length of dq being made equal to
the average distance between neighboring vertices for
free particles at a given temperature:

dq =A, /(2~1) .

The most accurate results were obtained for the energy
(error 2 —3%). Radial distribution functions are less ac-
curate, especially for low temperatures (error 15—20%).

TABLE IV. Results of PIMC simulation of the four-electron system in the spherical cavity.

Ek /(31VkT/2)
U =Ep+Ek

(4,0,0,0)

(2, 1,0,0)
(0,2,0,0)
(1,0,1,0)
(0,0,0,1)

300

7.5+0.2
2.2+0.2
14

9.7+0.3

0.0117
0.0082
0.0065
0.008
0.0074

500

Energies (eV)
7.81+0.1

2.34+0. 1

9
10.15+0.10

Diagram contribution p(G)
0.0185
0.0071
0.005
0.0071
0.0062

1000

7.89+0. 1

2.88+0. 1

5.8
10.77+0. 10

0.035
0.0061
0.0025
0.0026
0.003

2000

8.24+0.07
3.32+0.2

3.1

11.56+0.20

0.051
0.0036
0.0002
0.0003
0

Classical
limit

1

16

(4,0,0,0)
(2, 1,0,0)
(0,2,0,0)
(1,0,1,0)
(0,0,0, 1)

Weighted diagram contributions
0.18 0.30
0.39 0.34
0.078 0.06
0.26 0.23
0.09 0.075

n (G)K(G)p(G)
0.56
0.29 .

0.03
0.085
0.036

0.82
0.17
0.002
0.008
0

p(0)
p(1)
p(2)
(s')

0.8+0.2
0.2+0.2

2.8

0.65+0. 15

0.30+0.15
0.7+0. 1

0.10+0.15

2.3

Contribution to spin states p(S)
0.0+0.2 0.05+0. 15 0.2+0. 1 0.15+0.05

0.60+0.05
0.25+0.05

2
16
9
16
5
16

(sgn[ Wlq)])
Total MC
steps in units of 10

0.04+0.02

60

Other quantities
0.19+0.03

50

0.31+0.05

30

0.68+0.05

30
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Even greater is the error for the spin distribution p(S)
since it is a result of a very delicate balance of various di-
agram contributions. Still, it can be noted that with de-
creasing of temperature the proportion of states with to-
tal spin S =1 grows. It could probably indicate that the
ground state of the system has such a total spin.

At the highest temperature (2000 K) the first diagram
(identical permutation) makes the main contribution to
the partition function (more than 80%). The spin contri-
bution p(S) becomes close to the classical one as well as
the mean square of spin: (S ) =4X —,'. One can say that
electrons in the cavity at this temperature behave almost
as distinguishable particles. However, quantum efFects
are still strong: the kinetic energy per particle remains
much higher than 3kT/2; the radial distribution function
falls near the wall of the sphere (in the classical limit it
must be maximum at the wall due to repulsion of elec-
trons). An analogous behavior was observed also for two
electrons in [7].

The radial distribution function appears to be very
weakly dependent on temperature: an almost sevenfold
decrease of temperature yields a rather weak shift of the
maximum toward the wall. It can be explained by the
fact that two factors —Coulomb repulsion and quantum
effects ("exchange forces") —act in opposite manner with
changing temperature.

V. CONCLUSION

Calculations performed above demonstrate the possi-
bility of ab initio simulation of a many-electron system
with strict account of permutation symmetry and spin
statistics, though our hopes to resolve the sign problem
by summing the diagrams at each configuration in (23)
were justified only partially. As a rule in the sum (23) for
8'(q) only one term dominates and there occurs no
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FIG. 3. Radial distribution of the electron density for vari-
ous temperatures: , T =300 K; (3, T =500 K; 0, T =2000 K.

efFective contraction of different diagram contributions.
However, the proper algorithm (inclusion of steps 1 —3)
still makes it possible to simulate such systems up to
comparatively low temperatures even on a personal com-
puter.

The proposed method can be applied without consider-
able increase of computer time to an electron system in a
weak external field, e.g., free or weakly coupled external
electrons of atoms and molecules in the effective field of
the remaining ions, electron component in electrides and
alkalides [16],etc. The simulation of the complete set of
electrons in an atom or a molecule would require essen-
tially greater efforts, in the strong field of a nucleus one
should account for a very great number of vertices:
thousands or maybe more. Moreover, strongly coupled
states imply an effective decrease of temperature that
makes the sign problem even more serious.
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