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Canonical quantization of four- and five-dimensional U(1) gauge theories
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We discuss the canonical quantization of an interacting massless U(l) gauge field using a bosonic
gauge-fixing method. %'e present a way to make the transformation between the Lorentz and the
Coulomb gauge of such theories, without using an explicit representation of the fields in terms of
creation-annihilation operators. We demonstrate this method in the case of Maxwell photons interact-
ing with Schrodinger electrons and then we treat, with the same methods, a system of higher-
dimensional equations appearing in the framework of a manifestly covariant relativistic quantum theory.
The nonrelativistic limit of the Coulomb term for such a theory is discussed and compared to the Fokker
action appearing in the Wheeler-Feynman action-at-a-distance theory for electromagnetic interactions.

PACS number(s): 12.20.—m, 11.10.Kk, 11.10.Ef, 11.10.Qr

I. INTRODUCTION

The canonical quantization of a massless gauge vector
field contains difhculties due to the fact that not all the
components of the vector field correspond to real physi-
cal degrees of freedom of the system. Instead, the gauge
freedom of the field implies that the Hilbert space of such
a system admits an equivalence relation. In the canonical
quantization process these problems appear in the fact
that there are no canonically conjugate momenta for
some of the field components. The usual way to deal with
this problem is to add to the Lagrangian "gauge fixing"
terms. The method of bosonic gauge fixing (BGF) has
been applied by many authors [1—5] to quantum electro-
dynamics (QED). In addition, Hailer and co-workers [1]
constructed a unitary transformation which takes the
Hamiltonian from Lorentz gauge to the form of Coulomb
gauge, and they use this to explain the detailed structure
of QED and related theories [1—4]. In his works, Hailer
uses an explicit representation of the fields A" and its
conjugate momenta H" in terms of creation and annihila-
tion operators, which is somewhat complicated by the
fact that the fields in such a theory satisfy the dipole-

ghost equation [6], (1"tl„t) t), A =0; the At' field, there-
fore, has no natural separation into negative and positive
frequency parts. The Hamiltonian is, in this case, not di-
agonal in the photon-number representation; Hailer has
taken this into account by defining additional fields
[1—4]. In this paper, we shall present a method to carry
out the transformation of the Hamiltonian from the
Lorentz gauge form to the Coulomb gauge form using
only the algebraic properties of the fields, without
recourse to their representation in terms of creation and
annihilation operators. %'e then apply, in Sec. III, this
method to a five-dimensional pre-Maxwell field theory
[7—11] coupled to a spinless particle and discuss the de-
tails of the corresponding quantized theory. The relation
between the quantized form of the higher-dimensional
theory and that of the Maxwell theory, and to the
%'heeler-Feynman theory are discussed in Sec. IV. The
conclusion and further discussion are given in Sec. V.

II. CANGNICAL QUANTIZATION
OF THK INTERACTING MAXWELL FIELD

Let us begin with the BGF action for 3+1 Maxwell
photons interacting with Schrodinger electrons [2],

S=I d4x —'F" (x)F„(x)—G(x)—[t)„A"(x)]+—,'(1 —y)G (x)

+inst(x) + Pf(x) [t)' ie A '(x) ][t);—ie A;(x—) ]g(x)+eg (x)A &&(x)g(x)
tl (x) 1

Bt 2m
(2.1)

This action contains a gauge-fixing term—G(x)[t)&A "(x)]+—,'(1 —y)G (x). In a path-integral
method, for example, it provides a gaussian factor that
approaches a "|ifunction" 5(B„A (x)) in the limit y~ l.
For our purposes, we need this term in order to supply a
canonically conjugate momentum to the A field, which
has no conjugate momentum in the naive Lagrangian.
One can see that for this modified Lagrangian [we use the

metric (+———)],

(2.2)
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we can impose the canonical equal-time commutation re-
lation (ETCR) for the fields,

is, J'= —i ay'= —i [H,J'] (2.10)

[m"(x), A „(y)]= —i5"5(x —y),
[t'1t (x), 1((y))= —i5(x —y) (2.3)

and

a, = d'x —
—,'~'~, +-,'I"&r,, +~' a, a,

—~ (8;A') —
—,'(1—y)m. m. ],

d' ptas, q,2m —oo

H, =f d'x eg'A, g—+ 1('[2A'a, +(a, A')]1(

2

P fA'A
2m

(2.5)

Of course, the fictitious field m. (or G) must have a zero
expectation value in the physical Hilbert space, i.e., we
shall take at the end of the calculation, (v~m ~v') =0,
where [ ~v), ~v') C&~i,„,j. This condition is easy to satis-
fy because (as one can see from the Euler-Lagrange equa-
tions of this action) G is a free field which satisfies the
massless Klein-Gordon equation. It therefore admits a
natural decomposition into negative and positive frequen-
cies, and the physical Hilbert space is defined by the sub-
sidiary condition G'+)~v) =0. In order to stabilize this
condition, i.e., to ensure that the S matrix does not mix
the physical Hilbert space with the nonphysical com-
ponents, one must satisfy the condition,

or

G")lv& =0

[H, ~']'+)~v& =i(B,1T'+J')(+'~v&=0,

(2.6)

(2.7)

where J (x)—:eg (x)f(x). It follows from (2.6) that
(v~8;rr'+ J ~v') =0. Clearly, this condition is exactly the
Gauss law, satisfied in this quantized electromagnetism in
terms of matrix elements in physical states and not as an
operator identity. The stability of the Gauss law itself is,
in fact, self-consistent with the previous assumptions, i.e.,

[H, a, ~']=i (a'a, ~'+a, J') (2.8)

where J' is the spatial part of the conserved (Noether)
current, i.e.,

[yt(x) [(a' —ie A ')1((x)]2m
—[(8' ie A ')g(x) ] —f(x) ] . (2.9)

Using the continuity equation for the current, one finds
that

so that we can consider n"(x) as a translation generator
for the wave functional which defined over the A space,
i.e., n (x)= i—5/5A„(x) The Hamiltonian, defined by
Legendre transformation, is

H= f" d'x[ '(B,A;)+ '(B,A, )+ g BgP X]—
=H +H +0 (2.4)

so that the expectation value of the commutator of the
Hamiltonian with the Gauss law operator vanishes in the
physical Hilbert space in which (m ) =0.

For what follows, let us separate the spatial part of A
into longitudinal and transverse parts,

A= A, + A„= A, +~A(x) (2.11)

where A(x) is a scalar operator valued function. We can
now define a unitary operator transformation which
makes the wave functional @ independent of A

~~,

C(A„A„Q)=e'rC'(A~~, A„A„1() (2.12)

that is,
r

e'z=exp i f d x A(x)[B;m'(x)+ J (x)], (2.13)

where m', J are operator valued [and here A(x) is the c-
number field which is the spectrum of A(x), i.e., one
should consider the representation of N in the basis
which diagonalizes the operator A(x)]. One finds that
this transformation corresponds to

A At, Ao Ao, J J+F(Mo)A

[Jk(x),J (y)]=iBk5(x —y)F(Mo),
where

2

F(M )=f dM

(2.15)

(2.16)

and Mo is the infrared cutofF [12]. The part of the
transformed current proportional to A~~ does not contrib-
ute to the Hamiltonian, since it occurs in scalar product
with A, which has been truncated to 3~. '

The new Hamiltonian then takes the form

H=Hi ,H= H( jiA, A—o,Ji)—
—,
' f d xmii~ii;,

where

(2.17)

H, = f" d'x ~ ,'~',~„+-,'F'JF„——A,(a, ~'+J')—
—

—,'(1—y)m m.
o
— g "r)'8;g JiAt-

m

2m
AAiAi ' (2.18)

'The proof of the stability of the Cxauss law [Eqs. (2.8) —(2.10)]
is not effected by the introduction of Schwinger terms, since it is
based on the current continuity equation which is necessarily
compatible with their existence. In fact, one assumes the
current continuity in order to derive the Schwinger terms [12].

J (2.14)

and it commutes with the Hamiltonian in the physical
subspace. F(Mo) is part of the Schwinger term from the
current commutation relations. It arises from the com-
mutator of the time component of the current in the gen-
erator y with the space component of the current in the
Hamiltonian and has the form
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where the last term is the seagull term. This form of the
Hamiltonian is stable in the physical subspace. Since Ao
commutes with

G'=e'+Ge '+=G =8 m'+ J
the condition

where ~V) =e' r~ v) ensures that there is no contribution
to the matrix elements of Mi from the term 3o(B;m'+ J )

in the physical subspace. One can verify also that after
the transformation, Ao commutes with the Hamiltonian
in the physical subspace. Furthermore, all matrix ele-
ments of m vanish in physical states, so that m is not an
observable; hence Ao commutes with all observables it is
therefore a c number, which we shall take to be zero.
The Lorentz gauge condition ( Ao = &

~~

) is then satisfied
in the physical subspace as well.

We can see also that the expectation value of the part
H, in the physical Hilbert space is exactly the Coulomb
interaction term. In order to do that, let us define
G(x —y) as the Careen's function of the operator V .
Then (using the Gauss law),

( H ) =(——' fd'x~ (x)vr(((x))

—
—,
' Jd'xd ye~(~(*)(( G( —y( ((y))

=
—,
' Jd'xd'y (J (x)G(x —y)J (y))+const .

(2.19)

The correlation terms in H, give just a constant expecta-
tion value in the physical Hilbert space under the as-
sumption that the equal-time commutator of the positive
frequency part of V ~ and its negative frequency part is a
c number; this, in turn, is a necessary condition for the
definition of the asymptotic states in terms of free
fields. Since G +'~v) =0, (v~G(x)G(y) v') =0. It then
follows, from this condition, that (v Vir(x)Vn(y)~v')

I

=(V~J (x)J (y)~v')+const. This Coulomb term comes
from the longitudinal part of ~; there is no dependence of
the Hamiltonian on the momentum conjugate to ~~I and,
hence, it does not occur as a dynamical variable. The
transformation which eliminates the longitudinal part of
the electromagnetic field eA'ectively replaces ~~~ by the
charge-density operator, eliminating reference to those
independent-field degrees of freedom. We conclude that
by this unitary transformation we have shown that the
Lorentz gauge Hamiltonian for such a theory is, in any
specific inertial frame, a sum of the Coulomb gauge Ham-
iltonian and a part of the operator with zero expectation
value in the physical Hilbert space. Thus, this physical
Hilbert space is stable under the time evolution of the
system and the theory is well defined in both gauges.

III. CANONICAI. QUANTIZATION
OF THE HIGHER-DIMENSIONAI. THEORY

Let us consider now the five-dimensional theory of
electromagnetism defined by Saad, Horwitz, and Arshan-
sky [11]in order to create a theory which is gauge covari-
ant and provides integrable equation of motion in the
framework of the relativistic quantum mechanics dis-
cussed, for example, in Refs. [7,15,16].

In this theory the system develops on the four-
dimensional manifold x, t according to an evolution pa-
rameter ("universal time") r. Since the Schrodinger type
of equation for the evolution of the states contains a
derivative with respect to r (first order) as well as deriva-
tives with respect to x, t, the gauge compensation fields
are five dimensional. The signature of the five-
dimensional metric may be (3,2) or (4,1). We shall adopt
the notation where the indices a, P, etc. , run over the five

components x, t, v., and where the indices p, v, etc. run
over the four space-time components only. We take the
metric for this theory to be [a+ ———], where a. , the
g" term, is + for the O(3,2) theory and —for the O(4, 1)
theory.

The action for either signature is defined as,

S=I d x — f ~(x)f &(x) G—(x)[B a (x)]+— G (x)

gt(x)[B" ie'a "(x)][8„——ie'a„(x)]P(x)+e'g (x)a, (x)it((x) ', (3.1)

= —o.G, (3.2)

where A, is a quantity with dimension of length (as we ex-
plain later, this quantity corresponds to the ~-correlation
length of the wave function in the Maxwell limit). The
constant e' is the coupling constant of the theory, which
also.has dimensions of length. The canonically conjugate
momenta are

where a, is the fifth component of the five-vector a and
f'" is the antisymmetric form 8'a" —B&a'. We now im-

pose equal r commutation relations (ErCR)

~F. Rohrlich [13],has pointed out that the X-body problem for
X + 2 is intrinsically unstable in the Maxwell theory. This fol-
lows from the fact that the conserved currents are defined by in-

tegrals over the world lines. A problem with radiation reaction
must therefore be treated as a self-consistency problem. The
problem of the "runaway electron" [13,14] seems to as to be of
the same type, where the lowest-order approximation is not
stable.
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[m (x),ati(y)) = i—5tt5(x —y),
[iP (x),g(y)]= —i5(x —y) . (3.3)

=K +E +K (3.4)

where

4 XoE = d x — mi'ir — f" fP 4 P&

+ir"(B a') —m'(8 a")— m'ir
2A.

SC. = f" d'x y'a~a„q,

and

~ t

K =o f d "x ~ e'g a„P— g[—2a "d +(B„a")]P

&2

2M /tuba "a„ (3.5)

The subsidiary condition (the stability condition for the
restriction (m') =0 on the physical Hilbert space) is now

(B„i''+j') =0 (3.6)

which is the new "Gauss law. " It is obvious that one can
eliminate the longitudinal part of the field a" (the part
parallel to k") by the same procedure defined above. It is
convenient to discuss three cases:

Case 2. The four-vector k" is timelike, for which the
(4, 1) theory is the stable solution. In this case, if one
boosts the system into a frame in which k" is (1,0,0,0),
one sees that he can eliminate, by a unitary transforma-
tion (as in the Maxwell case), the time component of a".
The remaining degrees of freedom contain, except for the
Coulomb term, three spacelike polarization components
a', and the Hilbert space has positive norm.

Case 2. The four-vector k" is spacelike, for which the
(3,2) theory is the stable solution. By the same method
used for the Maxwell field, one can eliminate, in this case,
a space component of a" (the part parallel to k"); in the
frame for which k =0. This leaves three degrees of free-
dom, which now transform under O(2, 1). The Fock
space for the one-photon polarization states for given k"
is three dimensional, but must transform under O(2, 1);
the representation is therefore nonunitary. The indefinite
metric preserves the norm under such transformations.
We may therefore choose a sector of the polarization
space with a non-negative norm; clearly this sector is
preserved under the O(2, 1) subgroup of O(3, 1). The ac-
tion of O(3, 1) is represented by the polarization states as
an induced representation, for which the O(2, 1) little
group is the stabilizer of k" in O(3, 1). Transformations
of O(3, 1) therefore also preserve the non-negative norm
sector. Furthermore, since the dynamical evolution

The Hamiltonian (the r translation generator K) takes
the form

K =a' f d x [n "(B~„)+sr"(B~,)+i PtB,Q

(3.7)

where p=g, (x)g,(x) [we use the notation g„(x) with the
implication that g has a measure on the four-dimensional
manifold (x, t) only] and G (x —y) is a Green's function of
the d'Alembertian operator 8"B„G(x—y) =5(x —y). It is
natural, for this theory, to take this Green's-function
symmetric between past and future so we may take it as
half the sum of the advanced and retarded Green's func-
tions.

IV. RELATION BET%'EEN THE FIVE-DIMENSIONAL
AND THE MAXWELL THEORY:

THE MASS-SHELL LIMIT

To see how the term (3.7) can be put into correspon-
dence with some applications of the electrodynamic
theory formulated as an "action-at-a-distance" theory,
such as the Fokker action appearing in the Wheeler-
Feynman treatment [17],we first remark that the interac-
tion with the apparatus, or some macroscopically defined
object, corresponds to an interaction with a morldline
[18]. The correlation in r between the microscopic sys-
tem and the macroscopic may be destroyed by the struc-
ture of the macroscopic object. For example, the con-
served current associated with the Steueckelberg action
(3.1) satisfies,

a~~(x)+ a,~'(x) =0,
where

(4.1)

j",(x) = [p,(x)[(8"—ie'a")g, (x)]

—[(a~—ie'a~)q, (x) ]'q,(x) } . (4.2)

Integrating over all w, and assuming that the limit of
j'(x) as ~~+ ao, is pointwise zero [8,15], one obtains,
from (4.1),

B„J"(x)=0, (4.3)

operator E is I.orentz invariant, it is also invariant under
O(2, 1). It therefore commutes with the O(2, 1) Casimir
operator N= Moi MO2+M, 2 which is then a con-
stant of the motion. The expectation value of the
Casimir operator N is states of positive norm is positive
and in states of negative norm, it is negative. Since these
signs are preserved under the evolution as well as under
the action of O(3, 1), the space of polarization states with
negative norm states removed is a stable invariant sub-
space. The zero norm states are treated in case 3.

Case 3. The four-vector k" is lightlike. The elimina-
tion of the longitudinal modes corresponds exactly to the
elimination of both ao and a~~ and there are then only two
physical degrees of freedom, as in the usual (on-shell)
Maxwell theory.

The "Coulomb" term of these theories is (in close ana-
log to the Maxwell case),

1

2~ fd d y B" „( ). GI—y)B',(y))
&2

f d x d y(p'(x)G(x —y)p'(y) )+const,
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where

1J"(x)=—f de ", (x)
Qo

(4.4)

is a four-dimensional conserved current which is
identified with the macroscopic Maxwell current, in
agreement with standard covariant classical formula [19].
Note that j", is proportional to e; defining the dimension-
less charge e =e'/A, we see that J" is proportional to e,
which we then identify as the Maxwell electric charge.
This relation follows in the classical theory [11]from the
equation of motion

s =0, then j, (x) contributes to the action only in this
neighborhood as well. If we define [20]

g,(x)= f —e ' 'g (x),
2rr

then the current has the form

~ p r x le ~ dO do 7'(o —u')we
2M — v'2m. V2m

X 1('.(x)[a~y.,(x)]—[a~q'. (x)]y.,(x)

Xa~ I'=j I' (4.5)
(4.14)

Consider the 13=p components; (4.5) then becomes

(4.6)

Integrating over ~ from —~ to ~, and assuming that
f""(x) +0 for r +—+ ao —one obtains

(4.7)

where

and therefore, if the matter field has support in the 1/k
neighborhood of the mass-shell, then the photon coupling
to it is also in the 1/A. neighborhood of zero mass. Con-
versely, the restriction of s to a 1/A, neighborhood of zero
implies that only equal mass components (as for a Leh-
mann distribution) in the wave function contribute to the
interaction.

The Lagrangian of the usual Maxwell theory may be
cast into the form of that of the pre-Maxwell theory fol-
lowing this idea. In fact,

~~ =fdrjv J"A„=—fde ", fdr'a„, ,
1

(4.15)

and, hence, we infer that the Maxwell potential is given
by

A"= f dna", (x) . (4.9)

We may understand the construction of a particle with
a well-defined mass (on mass shell), as a wave packet
f,(x) for which the Fourier transform g (x) of the wave
function g,(x) is sharply peaked about some definite o.,
where cr=m /2M, corresponding to the Klein-Gordon
mass squared. On the other hand, the zero-mass photons
are recognized as a states of the field a" (x) for which the
Fourier transform has support near o =0. We shall call
this limit the mass-shell limit of the theory.

Let us take, for example, the interaction term in the
covariant theory

fdrd xj, (x)a (x)= f ds d xj, (x)a, (x) . (4.10)

The condition for the mass-shell limit is

and if we assume that j", and a„are uncorrelated for
~
z—r'

~

~ A, , then (in expectation value)

J"A„—fde",a„, . (4.16)

I2

2k fdrd x d y(p'(x)G(x —y)p'(y) )

and the mass-shell limit of this term is

—2

fd,d, d x d'y(p '(x)G(x —y)p '(y)) .

(4.17)

(4.18)

In the classical limit,

These arguments provide an interpretation for the scale A,

which relates the dimensional charge of the pre-Maxwell
theory and the dimensionless Maxwell charge.

If we take, then, the Coulomb term (3.7) in the Hamil-
tonian back to the action by integration over ~, we find
that it contribute in the form

1
ds d x j, (x)a, (x) ——jo(x)a 0, (4.11) p'(x) —g 5 (x —x;(r)), (4.19)

where 1/A, is the width of the mass distribution in the
field a, around zero. We therefore obtain

fdad xj,(x)a,(x) ——fdade'd xj,(x)a, (x) .
1

and (4.18) becomes
2

g f dridr2o([x;(ri) —xj(r2)] ) .
17J

(4.20)

(4.12)

Using (4.4), (4.9), and the definition of the dimensionless
charge, we get in the mass-shell limit from (4.10)

dxJ" x A„x (4.13)

To understand this result physically, we remark that ifa, has support only in a bs —1/A, neighborhood of

The classical limit of the vector current density takes the
form

dxt'(r)j"(x) —e g 5 (x —x, (r)) .
d~

(4.21)

Let us consider a theory in which instead of the scalar
charge densities of (4.18), we use the vector densities of
(4.21), which carry the sign of the flow of events in space
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time, thus taking into account explicitly the distinction
between particles and antiparticles. We then obtain

e de'(r, ) dx„~(rz)
g J dr, dred x d y

" 5 (x —x, (r, ))
2 T$ 7p

X5 (y x~(—rz))5((x —y) ), (4.22)

where we have chosen the half-advanced, half-retarded
Careen's function. The terms for which i =j do not a6'ect
the dynamical evolution of particles with nonzero mass
since 5[(x —y) ] has support only on the light cone. The
result

2

g Jdxt'dx„5((x; —x ) )
2 ~J

(4.23) FIG. 2. World lines for particle-antiparticle interaction.

dx,~
p, ,O

(4.24)

both theories coincide; only the scalar part of the vector
field of the Wheeler-Feynman theory contributes [as for
the scalar field in (4.18)], and the propagator goes to the
Coulomb form 1/R where R =

~x&
—xz~.

Let us discuss now how the distinction between parti-
cles and antiparticles manifests itself in the mass-shell
limit (4.18) of the pre-Maxwell theory. Antiparticles are
events which Aow in time from the future to the past, i.e.,
they propagate in the negative direction of the time as ~
increases. We know from quantum field theory that such
a particle (e.g., the positron), carry an opposite charge
and then, in the static (Coulomb) limit, they attract the
forward going (in time) particles such as the electrons.
On the other hand, the expression (3.7) seems not to dis-

tinguish between these two cases.
To resolve this problem, let us consider the semistatic

collision of two charged particles described by Fig. 1. In
the mass-shell (decorrelation) limit, the action for this sit-
uation is given approximately by the expression (4.20).
We can treat, then, each of the particles separately, as-
suming a knowledge of the other particle world line. For

FIG. 1. 'World lines for particle-particle interaction.

is the Fokker action term [16]. In the frame in which
both particles velocities are small, dx,~dx „approximated
(on shell) by dr;dr, and one recovered (4.20) to second
order. The Fokker action (4.23) can therefore be under-
stood as on-mass shell covariant form of (4.20) when the
relative motion of the particles is small. In fact, the non-
relativistic limit for the particle motion,

each point on the particle (a) world line, we get, accord-
ing to (4.20), two contributions from the points on the
world line of (b), lying in the light cone of this point. One
can see that the contribution to the action, which is pro-
portional, in that limit, to 1/R, is greater in its absolute
value at x'(r') than at x(r), i.e., the particle tends to
move as r increases from the space-time point x'(r') to
the point x (r). The time, t(r), is measured by the labo-
ratory clock when the laboratory records the signal at t
emitted by the particle at (universal time) r; so that, if the
particle (a) has positive energy, t increases with r, and
one sees the particle go from x to x'; the process has the
form of Fig. 1. On the other hand, if the particle (a) has
negative energy, we see it in the laboratory going from x'
to x, and the whole process has the form of Fig. 2. We,
therefore, see that the direction of evolution along the
world line, combine with formula for the energy of the
system, provides a dynamical framework in which the
charge of the particle becomes evident.

V. CQNCI. USIONS AND DISCUSSION

We have shown that canonical quantization of the
Maxwell field in interaction with the Schrodinger elec-
trons can be carried out in the algebraic framework of the
quantum fields. The results are in precise correspondence
with those of Hailer and co-workers [2], who introduced
an explicit representation of the operators in terms of an-
nihilation creation operators in the momentum represen-
tation for the fields. The algebraic method was extended
to treat the five-dimensional field necessary for the con-
sistent treatment of the interacting covariant dynamic of
quantized Stueckelberg-type fields.

The coupling constant for the higher-dimensional
theory has the dimension of length I., and the potentials
are of dimension I . The kinetic terms in the Lagrang-
ian carry a scale which is consistent with the classical re-
lation between the higher dimensional and the Maxwell
field obtained by integration of the linear field equations
over r. In the quantized form of the theory, the scale can
be related to a correlation length in the structure of the
Maxwell field. We find that, in terms of this interpreta-
tion, the Maxwell theory emerges from the higher-
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dimensional theory when the higher-dimensional fields
and currents are incoherent beyond the correlation length

The relation between the pre-Maxwell and Maxwell
theories can therefore be thought of as follows:

An examination of the action of the higher-
dimensional theory implies a relation to the Maxwell
theory which is controlled by a correlation length related
to the effective mass width of the off-shell photon field.
The pre-Maxwell theory contains two-dimensional pa-
rameters, a coupling constant for the potential, and a
scale parameter for the field strength. The equations of
motion for the field strengths (4.5), imply, due to the rela-
tions (4.4) and (4.9), that e'Ik. =e, the dimensionless
Maxwell charge. The Ward identities, implied by gauge
invariance, of the pre-Maxwell as well as for the Maxwell
theory, imply a consistent universal renormalization for
e', A, , and e.

The Maxwell Lagrangian and, hence, the quantitative
predictions of the Maxwell electrodynamics, can coincide
with those of the pre-Maxwell theory when, as we have
seen, the latter becomes incoherent over a world time
scale of the order of A. (in fact, the renormalized value of
A, , which should be consistent with the effective decoher-
ence of the theory on a larger scale), coinciding with the
measure of the mean fluctuations of the radiation field
from its classical (zero) mass-shell value. In the decoher-
ence, or mass-shell limit, the third component of the po-
larization disappeared, and only the usual transverse po-
larization of the Maxwell field remain.

One can understand the physical meaning of the coher-
ence length A, as the length for which two relatively time-
like, or spacelike, events can exchange an ofF-shell photon
[21]; such an off-shell photon should satisfy b,mb&~ 1

where 6m —1/A, . For such a case, the Coulomb term
(3.7) gives no contribution to the Hamiltonian because it
contains 5((x —y) ) which is nonvanishing only when the
two particles are on their relative light cone of each oth-
er, and the whole system can be considered as an extend-

ed object, free of the self energy divergences of the
Coulomb term. On the other hand, when the separation
between the particles become larger than A, , the motion
may become uncorrelated, and the equal ~ lines Inay then
cross the light cone many times, so that the Coulomb
term (4.17) contributes. Under these conditions, the con-
tribution to the action

e' J drd x j,(x)a,(x) e—Jd x J"(x)A„(x),

where j,J"defined as the quantum current density, i.e.,
e'j =—j, eJ"=—J", and J"(x),A„(x) are the usual
Maxwell currents and fields [we do not, in this discussion,
distinguish the e parameter occurring in the internal
structure of j",(x) to ensure gauge invariance, but assume
its effective replacement by e in this limit as well; the
mechanism, due to the bilinear form of the current, is
precisely the same].

With the formation of this decoherence mechanism,
the Coulomb term (3.7) of the Hamiltonian goes over to
the form (4.20) which is similar to the Fokker action
studied by Wheeler and Feynman [17]. The Coulomb
term corresponds (in the nonrelativistic approximation)
to the dynamics of classical electromagnetic theory;
quantum radiative effects are accounted for by the physi-
cal polarization degrees of freedom of the quantized field.
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