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Scattering on two solenoids
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Starting from the previously derived scattering matrix [P. Stovicek, Phys. Lett. A 161, 13
(1991)] the differential cross section is calculated for electrons scattering on two infinitely thin
parallel solenoids. The magnetic Buxes are arbitrary. The wave vector is assumed to lie in the
asymptotic domain kp )) 1 with p being the distance of the solenoids.
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The Aharonov-Bohm efFect has attracted a great deal
of interest beginning with the original paper [1] and con-
tinuing up to now. Scattering on one solenoid (in the ide-
alized setup) has been investigated theoretically already
in [1]. But the situation changes drastically for two and
more solenoids as the rotational symmetry is lost. This
fact makes any computation much more difricult. The
present paper aims to fill in this void and presents a for-
mula for the difFerential cross section for plane-wave scat-
tering on two solenoids. This is done with the assumption
that kp &) 1, where A: is the length of the wave vector and
p is the distance between the solenoids. In this way the
paper extends the results from [2] where a formula for
the S matrix has been obtained. However, as explained
below, unfortunately it is only of theoretical importance.
Here we are going to derive a simplified formula, more
appropriate for numerical evaluation. As one can intu-
itively expect, scattering on two targets should exhibit
some sort of interference. The numerical results confirm
this assumption. It is worth noting that an AB efFect is
presented also for two equal but opposite fluxes. This is
the limiting case for the two-cylinder problem which has
been suggested and treated, at least on the qualitative
level, very early [3]. This situation is physically more
consistent since the total flux is zero. It turns out that
this is the only case when the difFerential cross section
does not diverge for forward scattering.

The two-solenoid AB efFect is considered here in the
idealized setup, i.e. , the solenoids are assumed to be in-
finite, infinitely thin, and parallel. As usual, m, e, and
E designate the mass, the elelctric charge, and the en-
ergy of the scatering electron, respectively, and we set
k = (2mE/h2) ~ . Denote by n, P p [0, 1) are those
numbers for which exp(2vria) = exp( —ice~/hc) and siin-
ilarly for P and 4ii, where C'~ and C'~ are the magni-
tudes of the corresponding two magnetic fluxes. The ge-
ometry is arranged in such a way that the solenoids are
parallel with the z-coordinate axis and intersect the x-
coordinate axis in the points (a, 0, 0) and (b, 0, 0), respec-
tively, p = 6 —a. But clearly, the problem can be reduced
to a two-dimensional one and so we are going to consider
the scattering in the plane. The wave vectors for the in-
coming and outcoming particle are ko ——k(cos go, singe)
and k = k(cos8, sino), respectively. Besides, we assume
that the incoming plane wave is entering from the upper

half plane and so Oo E (vr, 27r).
In the paper [2] the scattering matrix S(0, Oo) has been

presented in a suitable gauge. The choice of the gauge
was discussed in the same paper, but one can consult
also [4—6]. Here we recall brie8y that usually one works
with the vector potential A = (hc/e) grad(o. P~ + PP~),
with P~ (P~) being the angle for the polar coordinates
centered in the first (second) target. The Hamiltonian
is given by H' = —(h /2m)[V' + i(tie/e)A]2. In our
gauge, we first cut the plane along the first coordi-
nate axis and then transform ofF the potential A with
the help of the unitary mapping U = U Up, Ug
exp(in/~) exp(iPP~) g. The gauge-transformed Hamil-
tonian H = UH'U = —(5 /2m) A does not contain the
potential A directly, but it is now hidden in the bound-
ary conditions on the cut. Using the standard scattering
theory [7] one can verify a relation between the scattering
operators, namely

S' = V SV+, V~ = lim exp(yitHo) U+ exp(+itHo),t—++oo

where Ho is the free Hamiltonian. Since U = U Up, the
limits V~ can be obtained from the corresponding one-
solenoid cases. An explicit calculation has been done
in [2]. An important conclusion is that V~ amount
to multiplication by some unimodular factors and so
~S'(0, Hp)

~

= ~S(0, go)
~

and the difFerential cross section
remains unaltered.

The derivation of S(0, 8p) was based on the knowledge
of the Green's function obtained in [8,9]. The resulting
formula is rather cumbersome. It is expressed as an infi-
nite series, the summands are multiple integrals, and the
dimension of the integration domain increases with the
summand's order. One can interpret each summand as
being related to a diagram which presents a ray coming
in from the infinity, hitting one of the solenoids, oscil-
lating between the solenoids several times, and escaping
to infinity afterwards. The number n of solenoids being
entered by the ray varies from zero to infinity (a solenoid
can be entered by the ray several times during the oscil-
lations). The case n = 0 corresponds to an unscattered
wave, the case n = 1 corresponds to a wave scattered by
one of the solenoids with an appropriate phase shift, and
so on:
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S(0, Hp) = ) Sl"l (0, Hp),
n=O

S~ l(0, Hp) = —(1+exp[2vri(a. + P)]) b(0 —Hp),
2 (2)

l 1 exp [in (0 —Hp) ]S~ (0, Hp) = —[1 —exp(2vrin)] exp[ —ika(cos 0 —cos Hp)]
27r 1 —exp[i(0 —Hp)]

1 exp [iP(0 —0p)]+ exp[(7r ~ a)in][1 —exp(27riP)] exp[ —ikb(cos 0 —cos Hp)]27' 1 —exp[i(0 —Hp)]
'

S (0, Hp) = —( ——) exp[(vr / n)in]
2 7r

(Cn ).. .iC2 )Cl )

exp( —ikc cos 0 + ikci cos Hp)

d"7 exp(pr + capri)

n n 1

K,(. . .)(—ikp),.-" sin[sr(o. + n. )] ..-. * '+'
j=l 2 2 j=l

(4)

where (c, . . . , c2, ci) = (. . . , a, b, a), (. . . , b, a, b) is a fi-
nite sequence oscillating between the values a and 6

(n ) 2). In these formulas, o~ = n (o~ = P) if ci = a
(c& = b), I'pp = 7r —Hp (I'pp = 27I —Hp) for ci ——a (ci ——b),
&p = 0 —7r + 7r (p = 0 —vr) for c„= a (c„= b), the
upper (lower) sign corresponds to the case 0 g (0, vr)

[0 E (n, 2vr)], and K„(z) is the Macdonald function.
The differential cross section do. (0) for the scattering

in the plane equals (27r/k) ~S(0, Hp)
~

dH (0 g Hp). But the
complexity of the complete formula for S(0, Hp) makes the
numerical evaluation diKcult. Fortunately, the asymp-
totic behavior of the Macdonald function

exp(io p) I where

exp —o+iv s
ds exp(iz cosh s ) 1+exp(-s + ip)

'

Provided p is not very close to the border values +sr, the
stationary phase method yields

I = (1 + e'~) g2n/z exp iz + i
4)

To get the correct behavior in the vicinity of the values
+sr one can employ the extended Sochocki formula

K;„(—iz) = ga/2z exp iz+i [1+O(z )]—')
for z i +oo (5)

opens the way to the asymptotic domain kp )) 1. We are
going to calculate 2vr~S(0, Hp)

~

retaining the terms up to
the order O((kp i) and so the error is going to be of the
order O((kp) ). In what follows we assume that Hp is
not very close to the values 7r and 27r. Provided 0 is also
separated enough from the critical values 0, vr, and 2',
one can simply replace the Macdonald functions by the
leading term in (5) and perform the integration explicitly
with the help of the identity

exp(ww) exp(iosu)
d7 =2

sin[a(o + ir)] 1 + exp(iw)
'

valid for o E (0, 1) and ~cu~ & vr. The situation is more
delicate when 0 tends to one of the critical values since
in that case p can tend to +7r and the integral in the
variable w fails to converge rapidly enough to allow this
asymptotic.

To understand this problem better let us consider sep-
arately the integral

(7)

in the asymptotic domain z )) 1 (~y~ & vr). With the
help of the Fourier transform we find that (7) equals

1 (, d li= P ——i~ (sgn e) 8 + e (sgn e) yah' + i P—
lx dx x)

(9)

Here the symbol P indicates the regularizataion in the
sense of Cauchy principal value. Finally one finds that

I [~i7r + g 2vriz(1+ e'~)] e" fo—r p m kn,

Note that the Fresnel integral, written with the help of
the error function

C (x) = (2/ver) exp( —s ) ds,

for z )) 1. (10)

It is so because

1 —(1/~vox) exp( —x ) for x —
& +oo(*) = (2/W). f...~o.

From this analysis it is clear that starting from the
value n = 5, S~ ~(0, Hp) will not contribute to the retained
leading terms in any asymptotic domain. The sum

yields a suitable interpolating function involving both
asymptotic regions,

( 1I —u exp ~
i &p i z cos p (1—4[e —* —i/—2z cos(p/2)])
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[S (0, Oo) + S (0, Oo) + S (0, Oo)] exp[ikb(cos 0 —cos Oo) + i 2 (0 —Oo)]

can be replaced with the error of order O((kp) s~2) by the expression

( exp[i(2' ~ vr —Oo) n + z(0 —vr)P]—sin pro. sin aP exp [ikp(cos 0 —cos Oo)]
27t sin(0o/2)

p sin ~p
exp z(vr ~ m)n + i(7r + 0 —Oo)P+ ikp(1+ cos0) —i

cos(0o/2) 4

x (1 —C'[e * ~ /2kp sin(0/2)])

Z Sln 7t'A Sln &+-
2vr +2~kp

x (1 —C[e ' ~ /2kp sin(0/2)])

expi 27r —Oo P+ iOn I ( i
(1 —4[e ' ~ /2kp /cos(0/2)]]) [ 1+ sin~n si nor pe' "~

[

cos(0o/2) ) ( 2vrkp )

sin 7t o.' .7r —im 4exp i(vr + 0 —Oo)n+ ikp(1 —cosOo) —i (1——C'[e ' ~ /2kp
~
cos(0/2)~])

sin(0o/2) 4

Let us now turn to the numerical analysis. For the sake of convenience, in the presented graphs the function
27r~S(0, 0o)~ depends on the variable 8 E (—vr, a), 0 = 0 —Oo + a (mod 2vr), rather than on 0. Hence the values
0 = 0 and 0 = +vr correspond to the backward and forward scattering, respectively. The graphs have oscillatory
character and thus exhibit an interference between the solenoids. This behavior can be understood already from the
first-order approximation (valid outside of the values 8 = n —Oo and 8 = 27r —Oo),

2 ~S('&(0, 0,)~' = 1
(sin era + sin m P + 2 sin acr sin srP

271

x cos[(+~+ 0 —Oo)(n —P) —(~ P ~)P
. —21

+kp(cos 0 —cos Oo)]) sin —(0 —Oo).
2

The oscillations of the difI'erential cross section are caused
by the appearance of the term kp cos 0 in the argument
of cosinus in (12). One can estimate the number of nodes
roughly by the integer part of 2kp/vr.

Another feature should be mentioned. As in the one-
solenoid case, 2m~S(0, 0o)

~

diverges for 8 tending to
+7r forward scattering . This happens due to the term
sin [2 (0 —Hp)] in (12). The only exception is the case
o. + P = 1. Then the expression (12) remains finite for
0 m Oo (note that the lower sign should be accounted).
Figure 1 depicts the graph for cr. = P = 0.5, Oo ——3vr/2,
and kp = 8. It should be emphasized that this case
is also rather special and important from the point of
view of physical interpretation. Recall that the difI'eren-
tial cross section depends on the quantities exp(2vria) =

40

exp( —ieC'~/hc) and exp(2niP) = exp( —ieC'~/hc) rather
than directly on 4~ and 4~. To be specific in the per-
formed calculations, we have chosen o. , p g (0, 1). Thus
the case P = 1 —a involves equal and opposite fluxes, i.e. ,

C~ ———C~. This is a limiting case to the two-cylinder
problem [3]. Since the total flux passing through the
plane is zero, some difFiculties with the physical interpre-
tation occurring in the one-cylinder case are removed.
The numerical results derived in the present paper con-
firm the existence of an AB efI'ect also in this special
case.

Concerning the dependence of the graph on the pa-
rameters, it turns out that the change of 00 distorts the
graph somewhat while the change of cr and p in a rather
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FIG. 1. Dependence of 2vr~S(O, Oo)
~

on O—:H —Oo

+sr(mod 2vr) for cr = P = 0.5, Oo = 3vr/2, and kp = 8.

FIG. 2. Dependence of 27r~S(O, Hp)
~

on 0—:O —Oo

+7r(mod 2vr) for n = 0.3, P = 0.3 and 0.7, Oo
——1.3 7r,

and kp = 20.
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wide range [say, in the interval (0.3, 0.7)] does not in-
huence the shape so strongly. Figure 2 depicts the case
n = 0.3, P = 0.3 and 0.7, Oo ——1.3 vr, and kp = 20.

It should be also observed that a tiny discontinu-
ity is still remaining in the points 0 = 7t —Oo and
0 = 27t —00. But it is of the order of the allowed er-
ror, namely O((kp) I ). On the other hand, this dis-
continuity provides a numerical test and according to it

one can judge that the results are reasonable, starting
already from the value kp = 5. But it is also worth re-
calling that the scattering matrix S(9, Oo) describes the
scattering of plane waves. In the case of a wave packet
the di8'erential cross section obtained is still realistic only
provided the width Lx of the packet is large if compared
with the distance of solenoids.
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