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Frequency conversion and amplification of photon-number detection
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We present a comparative analysis of trilinear parametric processes for photon-number detection.
Attention is focused on those processes that correspond to constituent devices in optical networks,
such as second- and subharmonic sum- and difference-frequency generation and phase-sensitive and
insensitive amplification and attenuation. Gains, output Fano factors, and noise figures are given for
input in both coherent and number eigenstates. The fully quantum processes (i.e., with no classical
pump) are evaluated numerically. It is shown that the depletion of the quantum pump is never
complete and this accounts for additional noise at the output. Second-harmonic and sum-frequency
generation turn out to be more efBcient and less noisy than the respective down-conversion processes.
Ideal behaviors are also reported for comparison and the results are discussed with a brief parallel
analysis of the various devices.

PACS number(s): 42.50.Dv, 42.65.Ky, 42.79.Nv

I. INTRODUCTION

Nonlinear optical processes have attracted much at-
tention in recent years, mostly in view of the potentially
unlimited spectrum of nonclassical features that can be
exhibited (see, for example, Ref. [1] and references quoted
therein). Processes with multilinear Hamiltonians in field
operators also describe the basic dynamics of all building-
block devices in optical networks and thus are interesting
for analyzing the ultimate network performance in the
quantum-limited regime. Simple models of amplifiers,
both analytical [2—4] and numerical [5] have been studied,
whereas the bases of the quantum communication and
detection theory have been established [6]. However, a
thorough analysis of many nonlinear devices is still lack-
ing, mostly due to the computational effort needed for
evaluating the field dynamics in the truly quantum case.

The simplest nonlinear processes that describe a wide
class of optical devices are the parametric trilinear ones,
as, for example, second- and subharmonic and sum- and
difference-frequency generation. Here the term paramet-
ric is used to denote those nonlinear processes that in-
volve only nonresonant (i.e. , virtual) excitations of the
medium, and hence satisfy the Manley-Rowe relations.
Conversely, those processes that involve resonant transi-
tions at the frequencies of the medium are termed non-
parametric (see Ref. [7] for anomalies in this classifica-
tion). The parametric processes involve only photon (i.e.,
boson) operators in the eff'ective interaction Hamiltonian,
whereas the nonparametric ones involve also matter (i.e.,
fermion) degrees of freedom. In this sense the laser tran-
sition itself and the stimulated Raman scattering are ex-
amples of nonparametric processes.

Depending on the input state of the field modes in-
volved in the process, the same multilinear Hamiltonians
lead either to amplification or to frequency conversion.
In the parametric amplifier there is a classical highly ex-
cited pump, which essentially remains undepleted during
the process, whereas a signal mode, which initially car-
ries the input photons, gains many additional photons

during the process. A third idler mode is also needed
for matching frequencies: this mode is initially empty
and gets some photons at the output, which become the
main source of added noise for the amplifier. Frequency
conversion occurs when some initially empty modes are
filling up with photons, to the detriment of a deplet-
ing quantum pump. (Eventually an additional classical
pump can be considered in order to have more freedom
in choosing frequencies. ) Notice that the total number
of photons is generally not conserved: one has instead
constants of motion in the form of linear combinations
of the photon numbers of the modes with integer coefFi-
cients. These conserved quantities are the quantum ana-
log of the Manley-Rowe relations. Nonconservation of
the total photon number leads to amplification or atten-
uation of the photon number also in the case of frequency
conversion.

The performance of the optical device is conveniently
described by the (effective) gain Q and the noise figure
'R

(s']N)
8 ' (8'/JV) „,

(1)

Typically, for on-off modulation 8;„denotes the peak en-
semble average (0) of the detected observable 0 at the
input, 8 „t is the difference between the output mean val-
ues in the presence and absence of input, and A' = (AO )
represents the noise. g ( 1 describes attenuation. In the
ideal case the device is linear and noiseless, namely, Q
does not depend on 8;„and the noise figure is minimum,
i.e. , 7Z = 1. For real devices g and 7Z depend in general
on both the input state and on the particular detection
scheme. In practice, for input coherent states and any
kind of detection the minimum attainable noise figure is
7Z 2 (namely, 3 dB) for optical derivations and conven-
tional amplifiers [8, 9].

For direct detection (0 = n) the noise figure is rnean-
ingless when using input number eigenstates: in this case
the performance of the device can be described by the
output Fano factor T „t, where
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(n)
We remark that the ultimate performance of an optical
network is basically limited by noise of quantum origin,
which arises at the detection stage as the signature of the
Heisenberg uncertainty principle and makes all the noise
figures depend on both the detection mode and the radia-
tion state. Apart from technical reasons, which may sug-
gest a particular detection scheme (direct, homodyne, or
heterodyne) depending on the actual performances of the
currently available devices, in the ideal limit the best op-
eration is attained using direct detection and coding in-
formation on number eigenstates. In fact, number eigen-
states achieve the channel capacity of the field and allow
complete reduction of the bit-error rate without the need
of increasing the power along the line. Moreover, due to
their peculiar property of being an orthogonal set, they
also allow photon duplication (ideal photon splitting), a
tool suited to attain perfect optical transceivers [10—15].

In this paper we present an analysis for direct detection
with coherent and number input states, of the paramet-
ric trilinear Hamiltonians corresponding to second- and
subharmonic and sum- and difFerence-frequency genera-
tion. We analyze separately the various cases describing
difFerent devices: phase-sensitive and -insensitive ampli-
fiers or attenuators and frequency-converting devices. In
the fully quantum cases we solve the dynamics numeri-
cally through block diagonalization of the Hamiltonians.
The results are schematically presented in the form of
plots for gains, noise Ggures, and output Pano-factors,
comparing them with the corresponding ideal behavior.

II. ANALYSIS OF THE TRILINEAR
PARAMETRIC PROCESSES

ric). In this case v = g( ) ~I„, I„being the pump in-
tensity, whereas the frequencies now satisfy the relation

—~b —u = +~„. Using a y process instead of a(3)

yC ~—may be convenient in practice because the y~ ~ sus-
ceptibility is zero for cubic symmetry, and thus materials
with sizeable y~ ~ are more commonly available. More-
over, the pump mode allows more freedom for matching
wave vectors and frequencies of the modes in the medium,
and can be used to tune the coupling K and the rela-
tive phases between the modes. (The pump mode, how-
ever, should be kept very stable with respect to the other
modes. )

For degenerate b and c, the Hamiltonian (3) takes the
form

bt' tb
~

2

(4)

whereas when one of the three modes is classical unde-
pleted the Hamiltonian becomes efFectively bilinear. In
Table I all the possible trilinear parametric processes are
summarized. The processes difI'er from each other either
in initial conditions or in the eventual occurrence of a
classical pump. In the following we analyze in detail all
the devices corresponding to such processes: the three-
wave mixing processes (with all the modes a, b, and c
initially nonvacuum) are not considered, as they do not
correspond to elementary optical devices.

A. Phase-sensitive amplifier

When mode a in the Hamiltonian (4) can be consid-
ered as a classical pump, one obtains a generation of
squeezed states in b, starting from coherent input. The
corresponding amplifier is the so-called phase-sensitive
amplifier, with effective Hamiltonian

The trilinear parametric processes are described by the
efFective interaction Hamiltonian H=. ~b+bt ~. (5)

H=K ab c +a bc

The coupling r is the nonlinear second-order suscepti-
bility y~ ~ of the medium at the given frequencies and

ub + u . Also a third-order susceptibility y~ ~

can correspond to an efI'ective Hamiltonian of the tri-
linear form (3) when the fourth mode at frequency cu„
is a classical pump which remains essentially undepleted
during the process (such approximation of classical un-
depleted pump is also usually referred to as paramet-

The coupling constant now is K = y(2) ~I. All quantities
can be analytically evaluated from the evolution of the
field in a medium of length L

; cosh(2r L)b + sinh(2IcL) b t .

For input number state ~n) the following gain and output
Fano factor are obtained:

g = cosh(4~L),

TABLE I. Summary of parametric trilinear processes for direct detection (three-wave mixing is not considered).

Process
Phase-sensitive amplifier
Subharmonic generation
Second-harmonic generation
Phase-insensitive amplifier
Simple frequency conversion
Difference-frequency generation
Sum-frequency generation

+a in

Classical
0
QO
Classical
g 0
+0
0

~b in

QO
g 0
0
+0
0
0
QO

~c 1n

0
Classical
0
g 0

8;„
~b in

~b in

+a in

+b in

&a in

+a in
'+b in —&c in

S„t
&b out

+a out

&b out

(nb)o t —(g —1)
b out

~b out —~c out
+a out
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I sinh (4rL) (n + n + 1)
2 cosh(4rL)n + sinh (21cL)

The gain is exponentially increasing versus pump inten-
sity (in practice it is unlimited as long as the signal is
much less intense than the pump). The Fano factor in-
creases versus input signal and is asymptotically linear
for large signals. Such enhanced noise is due to the fact
that this amplifier is sensitive to the phase of the signal,
and thus works very ineKciently with phaseless states
like the number eigenstates. On the contrary, it is well
adapted to input coherent states, with gain strongly de-
pendent on the phase of the input relative to that of the
pump. When both are in phase the maximum gain is
obtained,

g = exp(4KL), (9)

whereas when in quadrature the amplifier actually works
as an attenuator, with gain

g = exp( —41cL) .

where 8;„ is the average photon number of the input co-
herent state. For large vL the gain (9) for coherent input
is almost twice that for number eigenstates. With co-
herent inputs the noise figure approaches the ideal unit
value asymptotically for large input signals, both in the
amplifying and attenuating cases. In Sec. III the above
features will be compared with those of other parametric
devices and with the ideal cases.

For both cases (9) and (10) the noise figure is given by

—2)2

which is suited to numerical diagonalization.
The performance of the two processes has been an-

alyzed through numerical diagonalization of the block
Hamiltonians (15) (as a check, some numerical results
presented in Ref. [16] have been reproduced). A sample
of the evolution of the output signal and noise for source
mode in a number eigenstate is given in Fig. 1, for initial
photon number n;„= 20. By varying n;„one could see
that the time dependence is periodic or quasiperiodic for
very low n;„, whereas it becomes more and more irregu-
lar and irreversible for increasing n;„[17]. Qualitative
di8'erences between subharmonic and second-harmonic
generation are evident. In the former the output sig-
nal exhibits maxima corresponding to a high noise level,
and low noise occurs only for a depleted signal. In the
latter, on the contrary, the first occurrence of a local
maximum of the output signal coincides with the abso-
lute maximum, and the corresponding noise is always
well below all the subsequent values (and decreases ver-
sus n;„). Conversion is never complete in both cases;
however, it is more efBcient for second-harmonic than for
subharmonic generation, due to the low noise at the out-
put. The conversion length L has been identified as that
corresponding to the first local maximum of the signal: a
quantum mean-field approach [17] leads to a dependence

L, (I/2v)n, „ inn;„, in agreement with the numerical
—1/2

evaluation.

B. Second- and subharmonic generation

These processes are described by the Hamiltonian (4).
In particular, second-harmonic generation ~b ~ w cor-
responds to (n );„=0, and the number of photons cre-
ated at u is equal to half the photons annihilated at

Conversely, subharmonic generation u ~ ub corre-
sponds to (nb);„= 0 and the number of photons created
at ~b is twice those annihilated at u .

The Hamiltonian (4) has the following constant of mo-
tion:

lO
%el

II uu
- oa

2n +nb ——C, (12)

which splits the Hilbert space into subspaces correspond-
ing to fixed eigenvalues C of C. These subspaces are
spanned by the vectors

~n)c; = ~n, C —2n), n = 0, 1, . . . , [C/2],

H~ri)c = h,„~ri —1)c+~„+i~re+ 1)c,

h = gn(C —2n + 1)(C —2n + 2),

(14)

(15)

where [x] denotes the integer part of x. In the basis (13)
the Hamiltonian (4) takes the tridiagonal form

FIG. 1. Time evolution of output signal 8 „~ and noise
A „~ for parametric subharmonic and second-harmonic gen-
eration [Hamiltonian (4)]. In all plots the input state of the
source mode is a number eigenstates with n = 20. Circles
enclose the conversion point. (Legend: SUH, subharmonic
generation; SEH, second-harmonic generation; SUM, sum-
frequency generation; DIF, difFerence-frequency generation;
PIA, phase-insensitive amplifier; PSA, phase-sensitive ampli-
fier. )
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modes g = cosh (KL), (18)

b„s —g/b .+(g —1)/c

(g 1)l/2b + gl/2

where the gain g is given by

(17)

for interaction length L. (In evaluating the gain one
should keep in mind that the incoherent threshold g —1
for zero input has to be subtracted from the output level

(b b) „s.) The amplifier is linear, namely, the effective
gain g does not depend on the input signal. From Eqs.
(17) one also obtains the evolution of the noise,

~ „s—:(Dn&) „s ——g(ng);„+ (g —1)(n + 1);„+2g(g —1)(n~),„(n + 1);„+(g —1) (2n, + 1);„

2 2
+g (ng);„[(Xg);„—1] + (g —1) (n, );„[(W,);„—1] + g(g —1) (b );„(c );„+H.c.

s s s s s s ss s s s s ~ s ~ sI s s s s s sssI s ~ s ~ s sss
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F1C. 3. Gain g an& noise figure 7Z for parametric subharmonic and second-harmonic generation, for input coherent states
at the source mode. Comparison with other devices operating at the same gain and with ideal behavior (see legend in Fig. 1).
The ideal limits are evaluated according to the analytical results given in Refs. [10—12].
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The various contributions to the noise are usually re-
ferred to as [following the same order in Eq. (19)]: (i)
quantum fluctuations of the amplified signal; (ii) ampli-
fied parametric spontaneous emission (the first two terms
are the so-called shot noise [2]); (iii) quantum beat be-
tween the first and second terms; (iv) self-beat of para-
metric spontaneous emission; (v) excess noise of the sig-
nal and (vi) of the idler; (vii) coherent terms. For the vac-
uum idler (n, );„=0 and large input signals (nb),„))g
one has the asymptotic noise figure

—1

&(&b) - ' (2o)

D. Simple conversion between two frequencies
(at tenuat ion)

When mode c is a classical pump, the interaction
Hamiltonian (3) is equivalent to the following:

which for coherent inputs and large gains g )) 1 leads
to the customary 3-dB threshold due only to the term
(iii). A comparison with the characteristics of the other
devices is discussed in Sec. III.

The same performance of the phase-insensitive ampli-
Ger can be obtained with a two level-medium nonpara-
metric amplifier, as, for example, an erbium-doped active
amplifier. In a simple two-level-atom model, which does
not take into account saturation effects (this approxi-
mation is analogous to that of undepleted pump for the
parametric amplifier), the noise still has a form very sim-
ilar to Eq. (19), but now with the spontaneous emission
playing the role of the idler mode.

II=v a b+ab (21)

with v = yl2l ~I. Such a Hamiltonian is that of an ideal
frequency converter between two modes (ideal processes
are treated in Refs. [10—12]). Ideal conversion between
two frequencies can thus be attained in practice only by
using a trilinear process with a very strong pump. The
conversion length is I, =

2 . For generic length L gI Hamiltonian (21) leads to linear attenuation of the
photon number, with gain

g = cos (Lk) ( 1 . (22)

a.„,= g'~2a;„+ (1 —g)'~26;„,

lo.i = —(1 —O) ~ a; +O'' &,

From Eqs. (23) one obtains the output noise

The device converts the signal towards higher frequen-
cies when the source mode is b (and conversely when the
source is a). The present device could also be viewed as
a completely passive one as, for example, in the case of
a beam splitter with no pump mode c and no frequency
change from a to 6.

The evolution of the field modes is

A'~„t = (An )0„&
——Q(n );„+(1 —Q)(nb);„+ 2g(1 —g)(n~);„(nb);„

2 2

+g (n );„[(X);„—1] + (1 —Q) (nb);„[(Xb);„—1] + Q(1 —Q) (a );„(b );„+H.c. (24)

The various contributions are similar to those for the
amplifying case in Eq. (19). Noise is minimized for
(nb);„= 0. For large signals the noise-figure becomes

1—
&(&-) - ' (25)

which for g = 1j2 (for example, a 50-50 beam splitter)
and coherent input leads to the customary 3-dB degra-
dation. Comparisons with other devices are discussed in
Sec. III.

E. Sum- and difFerence-frequency generation

These processes are described by the Hamiltonian (3)
and are distinguished by diferent initial conditions. For
sum-frequency generation one has (n );„=0, and the
number of photons created at the sum frequency w is
equal to the number of photons annihilated. at each of
the two source frequencies ub and w . For difference-

frequency generation, on the contrary, (nb),„=(n, );„=
0 and the number of photons created at each of the two
difIerence frequencies wb is equal to the number of pho-
tons annihilated at the source frequency w .

Hamiltonian (3) has the following constants of motion:

8 = — 2ata y b~b+ a~a)
2

D = dt —ctc.
(26)

(27)

The Hilbert subspace of interest for applications is that
corresponding to the eigenvalue D = 0. The subspaces
for axed eigenvalues S are spanned by the eigenvectors

ln)s = ln, S —n, S —n), (28)

Hlri)s = h~ )ln, —1)s+ 6 +iln+ 1)s
h, l'l = ~~(S n+1) . —

(29)

(3o)

and for fixed S the Hamiltonian (3) takes the tridiagonal
form
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lyzed the processes for input number states as well as
for coherent superpositions. We showed that the deple-
tion of the quantum pump is never complete and the
unconverted photons account for additional noise at the
output: this phenomenon is the parametric counterpart
of the customary spontaneous emission that occurs in the
nonparametric processes (and is usually termed sponta
neous parametric emission [20]). A comparison of the fre
quency generation processes shows that second-harmonic
and sum-frequency generation are more efBcient than the
respective down-conversion processes: the former achieve
ideal gains and low output noise for high input signals,
the latter exhibit gains below the ideal values, whereas
the noise figures increase with the input signals. Thus,
due to spontaneous parametric emission and contrarily
to what was suggested in Ref. [14], subharmonic genera-
tion does not attain the gain g = 2 number amplification,
and, analogously, difference frequency does not perform
as an ideal photon-number duplicator.

In Figs. 2(c), 2(d) and 3(c), 3(d) the output noises of
the frequency generation processes are compared with

those of the customary phase-sensitive and insensitive
amplifiers operating at the same gain: such a parallel
analysis is interesting for applications using these de-
vices in cascades. For input number states the best per-
formance is achieved by the phase-insensitive amplifier,
whereas for input coherent states by the phase-sensitive,
the latter being essentially ideal for high input signals
(taking into account the saturation effects would lead to
improved noise figures for the phase-insensitive amplifier
working at such low gains [5]). Subharmonic generation
is the most noisy process for both coherent and num-
ber input states, whereas second-harmonic generation is
better than the phase-insensitive amplification, and even
better than the phase-sensitive for low input signals.
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