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Multichannel resonance processes: Theory and application to the Auger spectra
of the CO molecule
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A general expression for predicting vibrational profiles of a molecular Auger spectrum is derived. The
relationship between a "theoretical" cross section and an experimental spectrum is discussed and specific
procedures for implementing cross-section calculations in the Born-Oppenheimer approximation are
proposed. The carbon and oxygen K-LL Auger spectra of CO are reproduced on the entire energy
range of interest and specific spectral regions are analyzed in greater detail. The results are compared
with experimental data.

PACS number(s): 31.15.+q, 33.10.—n, 33.70.Jg, 33.80.Eh

I. INTRODUCTION

High-resolution electron spectroscopies involving core
electrons are becoming more and more available both in
molecular and in solid-state physics [1—4]. This fact
makes it possible to resolve —both in emission and in ab-
sorption spectra —fine-structure details which are due to
the nuclear motion, thus providing a fundamental contri-
bution to the understanding of the electronic and vibra-
tional structure of various systems.

Among these spectroscopies, those involving emission
or excitation of core electrons —such as Auger or
autoionization —are of special interest when applied to
rnolecules since, in this case, the vibrational effects do not
merely produce a broadening of the observed bands, but
quite often introduce asymmetric and complicated struc-
tures due to the combined efFects of different intermediate
and final states. The key point that characterizes the
Auger and autoionization processes is, in fact, the pres-
ence of short-lived intermediate states which are, in the
molecular context, vibronic levels belonging to the core-
hole states produced in the initial ionization process.
These levels are populated with different probabilities and
decay with different lifetimes to final vibronic states
which are grouped in various vibrational progressions
often overlapping because of small spacings among the
electronic states.

All of these facts, on the one hand, confirm the irnpor-
tance of having a clear theoretical instrument with which
to interpret the molecular Auger spectra, an instrument
that should necessarily take into account the effects of the
nuclear motion for rationalizing the fine-structure details
and the distinct features of these spectra. On the other
hand, one can understand why very few detailed theoreti-
cal studies have been carried out in molecules, when one
realizes the difhculties associated with a quantitative,
nonempirical prediction of the characteristic features of
these spectra, namely position, width, intensity and shape

of the bands on an energy range of the order of 50—100
eV.

The great majority of these studies analyze the Auger
spectra only in terms of vertical electronic transitions
[5—8], while a few of them construct the vibrational
profile of selected bands [9,10] or use approximate tech-
niques for reproducing the main features of the whole
spectrum [11—13]—see Ref. [14] for a general overview.
Almost all the authors who calculate the vibrational
structure of a given electronic band make use of the same
approximate equation, derived by different authors in
various contexts [15—17,10]. This formula, when applied
to the vibronic profile of a given band —e.g. , that relative
to the electronic state

~f &
—can be written as follows:

2

where ~0& represents the ground vibrational state of the
neutral molecule, I ~n, & ] are the intermediate vibrational
states of the core-ionized molecule, each with energy E„

C

and linewidth I „,and P' and P'are the coupling opera-
C

tors that govern the transitions, respectively, from the
ground to the intermediate and from the intermediate to
the final vibronic states t ~nf & ] having energies t E„].In"f
the specific molecular applications of Eq. (1) the depen-
dence of Pand P' on'the on the internuclear coordinates
is usually ignored ("crude adiabatic" approximation) and
the lifetime of the intermediate states is assumed indepen-
dent of the energy and the internuclear dynamics
("constant-resonance-width" approximation), thereby
I „-I . Note that by applying these approximations to
Eq. (1) one gets a simplified expression that can
equivalently be derived also from a time-dependent for-
mulation of the problem and which has been used for es-
tirnating "center of gravity" and width of the bands —see
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Refs. [9,11].
The aim of this paper is to derive a general expression

for predicting the experimental profile of a given molecu-
lar Auger spectrum without introducing any specific as-
sumption either on the number or type of the resonances
or on the internuclear coordinate dependence of the wave
functions and spectral parameters that are involved. To
this end we have applied Fano's theory [18] for the in-
teraction among a number of discrete states and several
continua since, using this scheme, one obtains a simple
expression for the cross section of each decay process
that can be analyzed in its difl'erent physical contribu-
tions. By estimating the relative importance of these con-
tributions one can also introduce the approximations
necessary to simplify the computational problem and
produce a working equation that is more general than Eq.
(1) and does not require the use of non-Hermitian opera-
tors with complex, energy-dependent, nonlocal potentials
such as that proposed in Ref. [10].

The method presented in this paper is the
generalization —to include the vibrational efl'ects —of the
approach recently proposed by us [12,13] for the study of
the electronic decay processes in molecules. This ap-
proach allows one to obtain the electronic quantities—
such as continuum wave functions, energy shifts,
linewidths, etc.—that are implied in the calculation of
the vibrational cross sections and that determine,
through their dependence on the internuclear coordi-
nates, the spectral profile of the various bands.

In Sec. II A we derive a general expression for the cross
section of an Auger decay process. In Sec. II B we pro-
pose a procedure for constructing the discrete and con-
tinuum functions and for calculating the matrix elements
that are involved in the cross-section calculations. This
procedure makes use of the Born-Oppenheimer (BO) ap-
proximation, an assumption that is quite appropriate in
usual cases where both the intermediate and the final
electronic states of the ionized molecule are well separat-
ed in energy.

In Sec. III we apply our method to the calculation of
the carbon and oxygen K-LL Auger spectra of CO, a
molecule for which accurate experimental results
[9,19—21] and several theoretical investigations
[8,9,11,22,23] are available. Carbon monoxide has been
chosen since its Auger spectrum presents very distinct
features that constitute a crucial test of any theoretical
method. Previous calculations on this molecu1e either
reproduce a few vibrational progressions by fitting energy
shifts and total intensities to the experimental data [9] or
give the global spectral profile but neglect the fine-
structure details [11].

Using our ab initio approach we reproduce not only
the experimental profile of the whole spectrum by convo-
luting the various band profiles with a spectrometer
broadening function, but we give also the details of the
vibrational structure underlying the experimental spec-
trum over the entire energy range of interest. Further-
more, by enlarging the energy scale, we analyze the de-
tails of a few interesting spectral regions and relate their
main features to the nuclear coordinate dependence of
the matrix elements implied in the calculation of the

spectral parameters and to the form of the potential-
energy surfaces that govern the decay process.

II. THEORY

It is well established that the Auger process can be
studied as a multichannel resonant scattering process in
which the intermediate states are bound states of the
core-ionized molecule embedded in continua that are
open channels classified according to the state of the dou-
bly ionized molecule and to the kinetic energy of the
Auger electron. This model is based on the assumption
that the primary photoelectron carries enough energy to
prevent any appreciable post-collisional interaction with
the core-ionized molecule, an assumption that is quite
reasonable because, in a typical Auger experiment, the
energy of the photon that produces the primary ioniza-
tion is much bigger than the kinetic energy of the emitted
Auger electron.

Starting from this assumption and making use of a
time-independent scheme, one can reasonably approxi-
mate the state vector for the iV-electron molecule as an
antisymmetrized product of two strong-orthogonal vec-
tors, i.e., ~%' ) =A. [ @ ') g, )], where ~%' ')
represents a possible state of the (X —1)-electron system,
~q, ) one of the primary photoelectrons and A is the

1

operator that antisymmetrizes the state and includes the
normalization constant. The problem is thereby reduced
to the determination of the eigenstates of the Hamiltoni-
an (0 ') of the (X—1)-electron system at energies
near the resonances. The latter, in a molecular Auger
problem, correspond to rotovibrational levels pertaining
to the electronic core-hole state(s) produced in the initial
ionization process. Note that, in principle, one should
consider the rotovibrational levels of the molecule, since
the emission cross section is relative to transitions be-
tween states that are classified according to their elec-
tronic, vibrational, and rotational quantum numbers.
However, due to the finite-resolution power of the spec-
trometer, it is reasonable to ignore the details of the rota-
tional structure and assume, as we did in the specific ap-
plications of our method, that only one rotational level is
populated for each electronic and vibrational state, and
precisely that level which has the highest probability of
occupation at room temperature and according to the
Boltzmann distribution function.

A. A general expression for the cross section
of an Auger decay process

In order to construct the eigenfunctions of the molecu-
lar Hamiltonian describing the electronic and nuclear
motion of the (%—1)-electron system, we follow the
time-independent approach proposed by Fano [18] to
treat the case of a number (md) of discrete states I @ ] in-
teracting with several (m, ) continua [y&zJ. We use the
formalism of Refs. [12,13] and impose the ingoing wave
boundary condition "(—)" on the continuum functions.
This choice derives from the fact that we are interested in
a problem where the electron is released from within the
scatterer and travels away from the doubly ionized mole-
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(2)

In Eq. (2) the symmetry-adapted wave function 0
represents an electronic and vibrational state of the dou-
bly ionized molecule and f p(r, k ) gives the probability
amplitude of channel y.

Let us now construct the eigenfunction %' of H ' at
the energy E=E + —,'p, which is the sum of the energies
of the two separate fragments, i.e., of the doubly ionized
molecule in the state

I
a & and of the Auger electron hav-

ing asymptotically energy c, =—,'p . This eigenfunction,
which satisfies the "ingoing-wave" boundary condition,
can be expressed in terms of the discrete intermediate
states {4 I and of the decay channels I yp z I as follows:

dk= g@,a, (p)+ g J,ypjPp (k, p),p, (2m)'

with the normalization condition

I+.,&=5.(2 )'5(k —p) .

(3)

(4)

The elements of the Hamiltonian matrix constructed
using the discrete and continuum wave functions are as
follows:

(5)

cule following a specific direction (k) and with a specific
kinetic energy (E =

—,
' k ). In our approximate

treatment —see Refs. [12,13]—the long-range potential
that governs the dynamic of the Auger electron is well
reproduced inside the molecular volume, but reduces to
the centrifugal potential outside this region. Because of
this fact we can use the wave vector k as a good quantum
number in the asymptotic limit and define the corre-
sponding behavior of the continuum function as follows:

dk
(EI E—)ai (p)+ g f 3M(p(E, k)bp (k, p)=0,

p= i (2m. )

(9a)

mg

g Mt (r, E).a. (p)
j=1

bz (r, p)=lim
v~0 E E ———iv-r 2

+5 p(2m. ) 5(r —p) .

(10)

By inserting Eq. (10) into Eq. (9a) and taking into account
the following identity, which is valid for every holo-
morphic function f(k):

dk f(
(2m )'

k)
k
2

dk
(2m )

f(k)
kE—Er 2

k+i vrf (k)5 E E—r 2

one gets the expression for the coefficients of the discrete
states in Eq. (3):

d

g M (~,E)a (p)+ E + E—b (r,p)=0, (9b)
2

where M~j=M*. Following Fano's approach we re-
move the singularity at E=E + —,'r in Eq. (9b) by means
of coe%cients that allow one to satisfy the ingoing wave
boundary condition:

&X,.IB E IX~& = E—,+ E5,p(2~)'5—(r—k),
2

a,.(p)= y A;, 'M,.(E,p) .
1=1

(12)

Ey~ & =MIp(—E,k),

Note that in (11) P indicates the principal part of the in-
tegral over [E Er —(k l2)]—', while A ' in (12) is the
inverse of the following matrix:

A( =(E E()5(.—b, (. i— — (13)
where IEI I are the discrete energy levels that lie within
the continuous range of interest and M is the matrix that
couples bound and continuum states. Note that Eqs. (5)
and (6) imply that two submatrices, belonging, respective-
ly, to one set of discrete states and to another of continu-
um states, have been separately diagonalized in a previ-
ous step. The resulting eigenfunctions I@.I and Iyp&I
represent states that are, respectively, bound and un-
bound as regards the electronic motion, while they corre-
spond to specific vibrational levels as to the nuclear
motion.

The expansion coefficients in Eq. (3) can be determined
from the requirement

EIq'.p&=&yy, l& —EI+.p&=0, 't'ai, y—, ~

and the solution of the following set of equations:

with

Mip(E, k)Mp (k,E)
5(.= gp

p ) (2'�) k
P

(14)

and

dkI =2m g f M p(E, k)Mpt (k,E).
(2m )

kX5 E—E-
P (15)

From Eqs. (14) and (15) one can easily prove that 6
and I are Hermitian matrices and I is positive definite.
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where

+ g 4 A .('M. i (E,p),
j,1=1

(16)

=4&+ g lim f (2'�)'
(k, E)
k
2

represents the state 4& ) modified by an admixture of
continuum states.

We observe that, from the knowledge of 4, one can
also construct a representation of the X-electron state
corresponding asymptotically to a channel in which the
primary electron is emitted with kinetic energy c.1=—,'p,
and the ionized system is described by 4 . This repre-
sentation simply consists of an antisymmetrized product
of the type e (p, p, )=A[% il»] which ignores post-
collisional efFects and describes the primary electron by
means of a wave function g 1 obtainable, for example,
through the solution of a Lippmann-Schwinger equation
with an effective potential, as suggested in Ref. [12].

Since we are interested in the global process, which
consists of core photoionization plus Auger decay, we
have to consider the interaction between molecule and ra-
diation field. This process can be described in a number
of diff'erent ways [24,25], which, however, give the same
final expression for the transition rate from the ground
state

l
0 ) of the neutral molecule to the final state

e (p, p, ). This expression can be written as follows:

~p (p, pi)= Idaho JdSl g op (p, p, ;co, A, )Fi(pi, fl),

where we have separated the spectral function
2

Fi (co, 0)= ni (co,0),
(2ir) c

(18)

from the cross section cro of the transition process. In
Eq. (18) Fi„(co,Q) represents the fiux of photons, i.e., the
number (ni ) of photons per unit time and unit area that
have angular frequency co, direction 0, and polarization

As for the cross section one can use the following ex-
pression derived from the first-order perturbation theory:

crp (p, pi co A)=5 '(Ep+Aci))

+71+

x l(olo, le.(p, p, )) l'

It follows that A can be inverted, and the total wave
function 4 unambiguously defined as follows:

md

the vibrational levels pertaining to a specific electronic
state a of the doubly ionized molecule. This can be per-
formed by separating in the wave functions that describe
the various channels the vibrational part from the elec-
tronic part, as will be shown in the next section. The re-
sulting spectral profile can be expressed as a sum of
terms, each of which —obtained by inserting Eqs. (16)
and (17) into Eq. (20)—is constituted by the following
three difFerent contributions:

ol o, lg.—,g„&

& 0
l o, lx- n„)r (k, p)+ g lim (2'�) kP= E—E — —ivP

md

+ g &0loi. lc, gpi&A, ('&+'il& —Elx.p&l'

+5'1
X5 (Ep+A'co) — E +

2

with
(21)

md

I p (k, p)= g Mp (k, E)A i'Mi (E,p)

md

Elc, )w;—, '(c, l8 Ey.—,) .—

&j,~,p, (23)

Eq. (21) can be approximated using only the third terin,
i.e.,

md

y &olO&l+, g„&~„'Mi.(E,p)

P +PiX5 (E +Ap'co) — E +

md

y (olo, le, q„)~;, '(e, lA —Ely.—,)

(22)

The first two terms on the right-hand side of Eq. (21)
are due to the direct, double ionization process from the
ground state l0) to the final decay channel lg ~rj»).
The third term, instead, gives the resonant contribution,
i.e., that due to the decay process via intermediate bound
states [ 4, ) ].

From the inspection of Eq. (21) one can also see that
the first two terms contain matrix elements that connect
one bound state (the ground) with continua having two
unbound electrons. The third term is characterized in-
stead by matrix elements that connect discrete states with
one electron continua. Since one can reasonably predict
that

where Oi =ei gjq~r. is the component of the dipolar
operator in the polarization direction A, .

The knowledge of o.o allows one to construct the
band profile for the transitions from the ground state to

X5 (Ep+irico) — E + 7 +71
2

(24)
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Equation (24) represents an approximation of Eq. (21)
and corresponds to the assumption that each transition
from the ground to a specific state of the doubly ionized
molecule takes place only via intermediate discrete states.
If the sum is performed over those terms that correspond
to transitions from the ground to vibrational levels per-
taining to the same electronic state, one obtains an ex-
pression that corresponds to that given in Eq. (1). A de-
tailed comparison between Eq. (1) and the expression ob-
tained by adding terms of the type given in (24) will be
performed in the next section, where the vibrational con-
tributions to the cross section wi11 be made evident. At
this stage, however, we point out that the main difference
between the two expressions consists of the presence of
the out-diagonal elements of the matrix A ' in Eq. (24).
Apparently these elements could be eliminated by di-
agonalizing A ' and redefining the intermediate bound
states { ~@ )]; however, we observe that this matrix is
non-Hermitian and, therefore, in general, nondiagonaliz-
able. Furthermore, if it is diagonalizable its eigenvectors
are nonorthogona1 with respect to the Hermitian scalar
product. It follows that equations —like Eq. (18) of Ref.
[10]—that are based on the use of eigenvectors of a non-
Hermitian matrix are nonunivocally defined, or at least
require the definition of a different type of scalar product.
We conclude that the use of Eq. (1) instead of a sum of
terms defined as in Eq. (24) is, in general, equivalent to
disregarding interference effects due to the nondiagonal
terms of A '. Finally, we observe that the cross sections
defined in Eqs. (21) and (24) depend on the directions of
the emitted electrons and, therefore, if the angular distri-
bution of these electrons is not detected in the experi-
ment, one has to average the cross sections over the
directions of emission, a process that can be performed
using the procedures explained in Sec. III.

B. Construction of {NJ.] and {y~]
and evaluation of the matrix elements

(25)

where TR is the nuclear kinetic-energy operator and
H, &

' is the electronic Hamiltonian in which —following
the method proposed in Refs. [12,13]—the potential-
energy operator has been substituted by its projection
onto a multicenter L basis set.

The molecular wave functions {4 ] chosen to
represent the intermediate states are made up as follows:

N (r, R)=p'(r, R)v~. (R), (26)

where the electronic part y"—which depends parametri-
cally on the ensemble of the nuclear coordinates (R)—is

Let us now describe the procedures to construct {@J.]
and {g~]—see Eqs. (3)—(7)—starting from a given set
of discrete and continuum functions. We consider here
the typical case, i.e., one isolated discrete electronic state
(closed channel) supporting a number of vibrational levels
and several electronic continua (open channels) with their
vibrational levels. The molecular Hamiltonian can be
written as follows:

y q(r, R) =y"j,(r, R)8„(R), (28)

y"z(r, R) =A [ili,(r„R)cr(s, )e (2, . . . , N 1;R)]—, (29)

[T +E"(R)]8 =@ 0
a

(30)

where A is the antisymmetrizer that includes also the
normalization constant, cr is the spin function, and the
following relationships are satisfied:

(31)

(qi, (r, )~e (1, . . . , N —2)) =0, Vaj, k,

(i)„gp)=(2m. ) 5(k —p) .

(32)

(33)

In Eqs. (31)—(33) ( ~ ) indicates the integration over the
electronic coordinates; furthermore, the wave functions
{e ], which represent discrete electronic states of the
doubly ionized molecules, are linear combinations of
Slater determinants made up, in our procedure, by or-
thogonal orbitals that are eigenfunctions of the same
effective Hartree-Fock operator. The number and type of
determinants used for the expansion of e depend on the
required accuracy of the calculation. The continuum or-
bital g&, which is orthogonal to the space of the bound
orbitals, is obtained by solving a Lippmann-Schwinger
equation as suggested in Refs. [12,13].

Using Eqs. (28)—(30) and neglecting the effects of the
nuclear kinetic-energy operator on the electronic wave
functions, one obtains the following expression for the
matrix elements that couple the continuum functions:

a linear combination of Slater determinants constructed
using one of the standard techniques [Hartree-Fock
(HF), many-configuration self-consistent-field (MC-SCF),
configuration-interaction (CI)] for bound-state calcula-
tions. The vibrational functions {vJ ] that classify the in-
termediate states can be obtained through the solution of
the following differential equation:

[TR+E"(R) ]u, =6'.u (27)

where E"(R)=(y"~8,i
'

~q&") is the electronic
potential-energy surface relative to the intermediate
bound state. Note that to improve the representation one
can also take into account the matrix eleinent (p~ 1'R ~y),
which, in the case of an isolated electronic state, simply
introduces a local correction to E~ (R). In the most gen-
eral case, when several discrete electronic states are
present, one can proceed either in the context of the BO
approximation, i.e., treating each channel separately, or
through the inclusion of the couplings due to the nuclear
motion and the diagonalization of H ' in the subspace
of the intermediate discrete states. This second alterna-
tive is usually required only if the electronic states are not
well separated in energy.

Regarding the open channels, we adopt the procedure
of Ref. [13] and construct a set of functions made up as
follows:
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&x I&" ' —Elx.,&

=&ei.' l(x~1@: —E"(R)+8."i ' —Elx". )Ie: & .

(34)

X i,(r, R) =X"q (r, R)e„(R), (36)

which diagonalize the molecular Hamiltonian in the BO
approximation

&x~l& ' E lx.,&
—=(&„—+,'p' E)5-.,(2—~)'

In Ref. [13] we have proposed a procedure for obtaining
eigenfunctions {X~& j, which present the correct asymp-
totic behavior and diagonalize the electronic matrix
(xg, l8,i

' E lx"—) to give

(x" Iu, i
' E lx"—

) = [E"(R)+—'p —E]
X5 p(2m ) 5(k —p) .

Using these functions instead of the {X"i,j in Eq. (28)
we obtain a set of wave functions

approximation one gets

M,p(E, k)=&@,la~ ' —Elx
= & Uil(q "I@' —E"(R)

np P

+8„'—E-lx~-)Ie~ &

= ( uilM& (E,k;R)lei„), (38)

where M&', implicitly defined through Eq. (38), represents
the electronic coupling between the discrete state and the
continuum state (P). For calculating the spectral parame-
ters {Iij j and {bijj from the knowledge of {M& j one
has simply to apply the previous definitions. In particu-
lar, using the following resolution of the identity:
I=+„ I

e~ ) ( e~ I, given in terms of the vibrational

functions of the electronic state P, one gets from Eq. (15)

1„=&V,II "(E;R)IU, &,

where

X5(k—p)5„„ (37)
dkI '(E;R)=2~ g M"(E,k;R)M"+(R;k, E)

p=l (2~)3 p ' ' p

and present the correct asymptotic behavior. We observe
that the use of the BO approximation is less justified
when the electronic levels of the doubly ionized molecule
are close in energy. In these cases, the quality of the rep-
resentation can be improved by including in the pro-
cedures of Ref. [13] the couplings among electronic func-
tions that are due to the nuclear kinetic-energy operator.

After the construction of the two subsets of discrete
and continuum functions one has simply to evaluate their
coupling matrix elements {Mi&(E,k) j in order to obtain
the eigenfunction 4 z of 8 ' at the energy
E=C„+—,'p . From Eq. (7) and making use of the BO

kX5 E
2

(40)

The integrals in Eq. (40) can be calculated analytically us-
ing the procedures explained in Refs. [26,27], and this
fact allows one to obtain an em.cient and accurate evalua-
tiOn Of I 1..

A similar approach can be used also for 61 . However,
in this case, an approximation has to be introduced in or-
der to perform analytically the integration over k in Eq.
(14), that is,

&U, IMPi(E, k;R)lei„' )(e~ IM +(R;k,E)IU, )P & & Ilp tip P I & 1

2
M"(E,k; R)M"+ (R;k, E )p ~ i p

p=i (2m)
( )

k
P

=&v, lb (E;R)lv, & . (41)

Such an approximation is equivalent to neglecting the ki-
netic energy of the nuclei with respect to their potential
energy at each internuclear distance, a fact that allows
one to use the analytical procedures of Refs. [26,27] for
the evaluation of 6"(E,R).

From the knowledge of {Ii~ j and {b,i~ j and of the vi-
brational functions defined in Eqs. (26) and (36) one can
use Eq. (24) to calculate the band profile for the transi-
tions from the ground to the vibrational levels of the elec-

tronic state Ix'i, ). The resulting equation is

P7l b
2

~„) „.i-) g g &U{)I~'IU, &&Ji'&Uilt le: &

n j1=1

P +P&
X 5 (ED+Kiri) ) 8„+—
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where

P'=(yg ~O&~y"i)»), O'=M"(E, p;R), (43)

III. THE AUGER SPECTRA
OF CARBON MONOXIDE

Using the procedures explained in Sec. IIB we have
reproduced the Auger spectra of the CO molecule ionized
in its deepest shells, i.e., in the 1s core orbital of the oxy-
gen and carbon atoms. Our attention has been focused
on the vibrational analysis of the Auger bands that we
have calculated ab initio over the entire energy range of
interest and compared with the experimental spectra
recorded by Moddeman et al. [19]. Interesting regions of
these spectra have been analyzed in more detail, like that
between 249 and 257 eV in the carbon spectrum where
the very narrow B 'X+ band and those originating from
the superposition of the vibrational progressions of A 'll
and X 'X+ are located. These two bands have also been
considered in the oxygen spectrum and the corresponding
region between 497 and 506 eV has been analyzed in de-
tail. The results obtained from the application of our
method have been compared with the high-resolution
spectra recorded by Correia et al. [9].

The calculations described in the present paper have
been carried out using a basis set [28] of [9s/5p] modified
Gaussian functions [29] contracted to [4s/2p] on each
atomic center. This basis set has been extended through
the inclusion of four s-, p-, and d-type functions both
on the carbon atom with orbital exponents (a)
respectively given by (a, = 1.9-0.9S-0.1011-0.0449,
a =6.5-3.0-1.85-0.0721 ad =3.978-1.7145-1.17-0.772)
and on the oxygen atom (a, =l.2-0.60-0.2614-0. 1334,
a =7.0-3.8-1.80-0. 1179 ad =3.838-1.717-1.212-0.808).
The exponents of these functions have been optimized
following the procedures of Ref. [12]. The electronic
wave functions at each internuclear distance have been
calculated using a two-step process: (a) SCF optimization
of the molecular orbitals; (b) a CI calculation performed
including all the single and double excitations in a given
active space.

As for the ground state, we have optimized first in a
self-consistent way the occupied and first virtual orbitals
of the o. and ~ symmetries. Secondly, we have construct-
ed the correlated wave function through the diagonaliza-
tion of the Hamiltonian matrix in the space of the elec-
tronic configurations that can be obtained using

and the ground state in its lowest vibrational state is
represented by

4& (r, R)=ps'(r, R)UIW(R) .

Equation (42) is the correct generalization of Eq. (1),
since it takes into account the interference efFects due to
the out-diagonal elements of the matrix A ' and does not
introduce any problems related to the diagonalization of
non-Hermitian matrices. If one is interested in also
evaluating the contributions to the cross section due to
the direct double ionization process, one should start
from Eq. (21) instead of Eq. (24) while keeping the other
procedures exactly the same.

(3cr, . . . , 6cr, lm. , 2n.) as active orbitals and considering all
the possible single and double excitations in this space.

As for the two resonant Auger states, we have per-
formed first separate restricted Hartree-Fock calculations
for the two doublet states having, respectively, the 1o.
and 20. orbitals half-occupied and then optimized the first
virtual orbital of the cr and ~ symmetries. Secondly, we
have constructed the correlated wave functions by di-
agonalizing the Hamiltonian matrix in the space of the
configurations that can be obtained using (So,6cr, 1~,2m)
as active orbitals and considering all the possible single
and double excitations in this space (while keeping the lo
or 2o orbital half-filled).

Finally, the electronic states of the doubly ionized tar-
get have been represented using a set of molecular orbit-
als obtained as eigenfunctions of the following Fock-type
operator: P=f+g a (2J k. ~), w—here a is the average
occupation number of the orbital j obtained from the
average of its occupation numbers in the final dicationic
states. The correlated wave functions derive from the di-
agonalization of the Hamiltonian matrix in the space of
the electronic configurations that can be constructed by
considering all the possible single and double excitations
in the space of the (3o,4cr, .Scr, 6o, 1sr, 2ir) orbitals.

It is well known that in this type of problem the use of
correlated wave functions is essential, since one needs to
have the correct ordering of the states and suKciently ac-
curate potential-energy curves and matrix elements in the
relevant regions. This is particularly true for the three
lowest singlet states (X 'X+, A 'II, B 'X+) of the doubly
ionized molecule, the curves of which present a compli-
cated behavior between 1.5 and 3 a.u. that is due to
avoided crossings of the two 'X+ states, crossing of
X'X and A 'H in the vicinity of the neutral ground-
state equilibrium distance, crossing of B 'X+ and A 'H at
shorter distance, and the presence of two minima in the
curve of B 'X+. The behavior of these curves —already
discussed in previous papers [9,11,23]—is correctly
reproduced by our correlated wave functions, as shown in
Fig. 1. We observe that, even if the energies calculated in
these papers are higher than those obtained in Ref. [23]
through a more sophisticated CI calculation, the form of
our curves and the values obtained for the corresponding
spectroscopic constants —see Table I—agree very well

R,q 1.171
1.170

1959
1899

0.27
0.25

1.090
1.097

2440
2492

4.51
4.37

1.257
1.264

1546
1449

0.38
0.52

TABLE I. The first three singlet states of CO +: equilibrium
0

positions (R q) in A, vibrational frequencies (co, ) in cm, and
vertical excitation energies ( T, ) in eV, these last calculated with
respect to the energy of the lowest ( H) electronic state of CO +

at its equilibrium position (R =1.261 A). The results of this
work are reported in the first row of each entry, while those of
Ref. [23] are given in the second row.

Quantity
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FIG. 1. Behavior with the internuclear distance of the energy
curves of the first three singlet states of the doubly ionized mol-
ecule. All the quantities are given in a.u.

with those reported in Ref. [23].
Since in this type of problem the role of the spectral

parameters is decisive, we present in Fig. 2 for the same
three electronic states the behavior with the internuclear
distance of the square modulus of the electronic matrix
elements [MP —see Eq. (38)—averaged over the direc-
tions (k) of the Auger electron. We see that these matrix
elements vary quite rapidly with the internuclear distance
because of the changes in the structure of the wave func-
tions, and therefore the "constant resonance width" ap-

0.5

BiZ

0.2

0.1

s r I I t s i i I & t t r I & i s & I s s i t I t r i t I i s I ~, I0
1.6 1.8 2 2.2 2.4 2.5 2.8 3

R (a u. )

FIG. 2. Behavior with the internuclear distance of the square
modulus of the matrix elements —defined in Eq. (38) and aver-
aged over the directions of the Auger electron —for the first
three singlet states of the doubly ionized molecule. All the
quantities are given in a.u.

proximation, used in previous calculations [9,11], is not
appropriate in this case.

Finally, we observe that, even if our wave functions are
correlated enough to produce energy curves of the proper
form and with the correct ordering at each internuclear
distance, errors can be introduced when energy
differences are considered. These errors, which can be
even of the order of 1 —2 eV, are due to the unbalanced
introduction of the correlation effects in the representa-
tion of different states. On the other hand, a certain de-
gree of uncertainty is also present in the experimental
determination of the kinetic energy of the Auger elec-
trons, as one can see, for example, by comparing the car-
bon Auger spectrum recorded in the region between 249
and 257 eV by Moddeman et al. [19] with that recorded
by Correia et al. [9]. To correct this deficiency in the
simplest way without increasing the computational effort
we have used two parameters. One is a global shift of the
energies performed in such a way as to center the exact
position of a specific band in the spectrum of interest.
The other is an energy scale factor that corrects the pro-
gressive worsening of the state representation when the
degree of excitation is increased. The use of these two
simple parameters —applied to energy values that are al-
ready close to the exact ones —allows us to obtain a very
satisfactory correspondence between experimental and
calculated energies and therefore to compare in a con-
sistent way experimental and "theoretical" Auger spec-
tra.

As regards the construction of the vibrational eigen-
functions, we have solved the problem by expanding each
of them in terms of a basis set of Gaussian functions. In
our procedure the electronic curves have been interpolat-
ed by means of polynomials of various degree, and several
Gaussian functions have been centered at equally spaced
positions along each curve in order to represent the vi-
brational functions. This type of approach allows us to
reduce the problem of solving the differential equations
defined in Eqs. (27) and (30) to that of diagonalizing ma-
trices, the elements of which are integrals that can be per-
formed analytically because of the representation chosen
for the potential. The stability of the solutions obtained
in this way has been checked by increasing the degree of
the polynomials used for the interpolations and the num-
ber of Gaussians used for the expansions.

Let us now construct the "theoretical" carbon and ox-
ygen Auger spectra. As already explained in the previous
sections, we reproduce the experimental spectrum by su-
perposing contributions of the type given in Eq. (18),
each one corresponding to the decay rate of a specific
process. We assume that the molecule interacts with a
monochromatic, linearly polarized radiation, and there-
fore we put in Eq. (19) ni, =nod(co —coo)5(Q —Qo)5& i .

Furthermore, since each molecule is randomly oriented
in the space, we use in Eq. (18) a cross section that is the
average of those obtained by choosing A, , in Eq. (20),
equal, respectively, to x, y, and z, i.e., by averaging the
three cross sections relative to the three dipole com-
poner. ts.

Finally, we observe that in the experiments of interest
the Auger electrons are collected by recording only their



RENATO COLLE AND STEFANO SIMONUCCI

kinetic energy (e=p /2) and not the direction of emis-
sion and that, furthermore, no information is given on
the primary electrons. It follows that, to reproduce the
experimental profiles starting from the cross section
defined in Eq. (42), one has to average over the directions
p of the Auger electron and to integrate over the momen-
tum p, of the primary electron. The resulting expression
is, thereby, the following

(x,y, z)

oo (ohio'e) g f dp f dpio'~o& ~r«- &(p~pii~o~~o) ~

a
0

(45)

600

500

Q

j 400

IQ

g

0o zoo—

where the integration over p, is really performed only
over the directions of p&, since its modulus is fixed
at p, (e)= [2[(Eo+fico) (8„—+e)] I'~2 by the $ func-

tion in Eq. (42). Note that using the procedures ex-
plained in Refs. [26,27] one can evaluate Eq. (45)
directly and without repeating the calculations of
o

~

&, «&(p, p„coo, k,o) at various directions of p and p, .» Ix'

The final expression used for reproducing the whole ex-
perimental spectrum is, therefore, the following:

I(co oe) ~ g 0'o (coo'E') (46)

where the sum is over the final electronic states of the
doubly ionized molecule and the intensity is given as a
function of the energy of the Auger electron.

Note that the "theoretical" spectrum I(coo', e), defined
in Eq. (46), is proportional to the sum of the cross sec-
tions, since the absolute intensities of the lines depend on
the characteristics of the specific experiment. Finally, it
should be remembered that the finite-resolution power of
the spectrometer introduces an "instrumental" width
that adds up to the intrinsic width of the lines. In order
to take into account this effect, we make a convolution of
the cross sections in Eq. (46) with a normalized Gaussian
function having a width that is inversely proportional to
the experimental resolution. The resulting formula for
the experimental spectrum is thus given by

100
I

r ~ ~

(I,
200

I(

210 220
i l I i... . „. I i .. . I,i~ ~

230 240 250 260

Energy {eV)

FIG. 3. Carbon Auger spectrum (lower) obtained by consid-
ering only the electronic decay processes and compared with the
experimental spectrum (upper). In abscissas the kinetic energies
of the Auger electron are given in eV, while in ordinates the
spectral intensities are in arbitrary units.

24

20

ic, vibrational, and instrumental effects evident, we have
produced three spectra, shown, respectively, in Figs. 3—5.
In the first we have considered only the electronic transi-
tions. This is equivalent to assuming that these processes
are much faster than the nuclear motion and, therefore,
that the vibrational effects are negligible. For calculating
this spectrum, the molecule has been frozen at its

I (v p)2y 2]I,„p,(coo', e) ~ g —f pro (coo, r)e( ' ' r )dr,
77 h

(47)

where y is an empirical parameter that depends on the
specific experiment.

In this paper we have used for I,„, the cross-section
expression given in Eq. (42); this means that we have
disregarded the contributions to the spectral profile that
are due to the direct double ionization processes and ap-
pear in the more general definition of the cross section
given in Eq. (21). Furthermore, we have applied the pro-
cedures explained in Sec. II B, thereby assuming the va-
lidity of the BO approximation and Eq. (41). The quality
of these approximations can be judged by looking at the
results obtained from our calculations.

Let us consider first the carbon K-LL Auger spectrum.
In order to make the relative importance of the electron-

I

(

l
I

0
U

I r
~ I l

y

. ..LQLwkll~ .
200 210 220 230 240 250

Energy {eV)
260

FIG. 4. Carbon Auger spectrum (lower) obtained by consid-
ering the vibrational transitions and compared with the experi-
mental spectrum (upper). In abscissas the kinetic energies of the
Auger electron are given in eV, while in ordinates the spectral
intensities are in arbitrary units.
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ground-state equilibrium geometry and only transitions
to final electronic states through the isolated electronic
resonance have been taken into account.

The resulting spectrum, compared in Fig. 3 with the
experimental one, shows that the electronic transitions
are, in general, shifted with respect to the maximum of
the corresponding experimental bands, a fact that
confirms the presence of important vibrational effects.
Furthermore, one can observe that the number of
relevant electronic transitions is much larger than that
(18) allowed by the independent-particle model, a fact
that indicates the importance of the correlation effects.
From this comparison one can conclude that a purely
electronic spectrum gives only a rough representation of
the experimental one and, in particular, that it does not
allow one to reproduce the specific features of the spec-
trum, e.g., in this case, the isolated, very narrow band
around 250 eV.

When the vibrational effects are taken into account,
i.e., all the transitions that connect intermediate and final
vibrational levels are included in the calculations, one ob-
tains a quantitative agreement between theory and exper-
iment over the entire energy range of interest —see Fig.
4. This agreement becomes even more striking —see Fig.
5—when the instrumental broadening is included in the
calculations through the use of Eq. (47) with y =0. 1 eV.

In order to test the ability of our method to predict the
details of a particular spectral region, we have repro-
duced the band profiles in the region between 249 and
257 eV where the vibrational progressions pertaining to
the first three singlet states of the doubly ionized mole-
cule are located and accurate experimental data are
available —see Ref. [9]. A comparison between the re-
sults obtained using Eq. (47) and the experimental

Energy (eV)

FIG. 5. Carbon Auger spectrum (lower) obtained by consid-
ering the vibrational transitions plus the instrumental broaden-
ing and compared with the experimental spectrum (upper). In
abscissas the kinetic energies of the Auger electron are given in
eV, while in ordinates the spectral intensities are in arbitrary
units.

spectrum —see Fig. 6—confirms that this method
represents an efficient tool for also analyzing the fine-
structure details in a small spectral region. Furthermore,
a careful analysis of the results obtained from our calcu-
lations shows that the vibrational levels of the B 'X+
state that give rise to transitions of appreciable intensity
are only three, much fewer than in the case of the other
electronic states. Among these three levels, the intensity
of the second one is greater, in an order of magnitude,
than those of the other two levels. These facts —which
are due to the predissociative character of the B 'X+
curve having its first minimum near to that of the carbon
Auger state C( ls ')—produce the isolated, very narrow
band characteristic of the spectrum.

The same type of analysis also has been performed on
the oxygen K-LL Auger spectrum. In Fig. 7 we compare
the electronic spectrum with the experimental one and
observe that, also in this case, there is no simple
correspondence between electronic transitions and spec-
tral profile because of the presence of other important
effects. Furthermore, the number and relative intensities
of the various transitions are quite different as compared
with those in the carbon Auger spectrum, a fact that can
be ascribed to the different nature of the intermediate
electronic states. By taking into account both vibrational
transitions and instrumental broadening, this last
through Eq. (47) with @=0.2 eV, we have produced two
spectra —shown, respectively, in Figs. 8 and 9—which
compare very satisfactorily with the experimental one.
The only appreciable difference with respect to the exper-
imental data is found in the region between 482 and 489
eV, where the relative intensity of the first band is lower
than that of the second one, a result obtained also by
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FICx. 6. Selected band profiles in the carbon Auger spectrum
(lower) obtained considering vibrational transitions plus instru-
mental broadening and compared with the experimental spec-
trum (upper). In abscissas the kinetic energies of the Auger
electron are given in eV, while in ordinates the spectral intensi-
ties are in arbitrary units.
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FIG. 7. Oxygen Auger spectrum (lower) obtained by consid-
ering only the electronic decay processes and compared with the
experimental spectrum (upper). In abscissas the kinetic energies
of the Auger electron are given in eV, while in ordinates the
spectral intensities are in arbitrary units.
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F&'G. 9. Oxygen gauger spectrum iloweri obtained by consid-
ering the vibrational transitions plus the instrumental broaden-
ing and compared with the experimental spectrum (upper). In
abscissas the kinetic energies of the Auger electron are given in
eV, while in ordinates the spectral intensities are in arbitrary
units.

Cederbaum et al. Ref. [11].
Finally, we have analyzed in greater detail the spectral

region between 497 and 506 eV, which corresponds to
that between 249 and 257 eV in the carbon spectrum.
Also, in this case the calculated spectral profile, shown in
Fig. 10, reproduces very accurately the details of the
high-resolution spectrum reported in Ref. [9]. From the

analysis of our data we have also found that the small
bump around 498.8 eV is produced by transitions to vi-
brational levels that are supported by a X+ electronic
state, as suggested in Ref. [11], and not by the 8 'X+
state, as proposed in Ref. [9]. We conclude this section
by pointing out that the comparison between carbon and
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FIG. 8. Oxygen Auger spectrum (lower) obtained by consid-
ering the vibrational transitions and compared with the experi-
mental spectrum (upper). In abscissas the kinetic energies of the
Auger electron are given in eV, while in ordinates the spectral
intensities are in arbitrary units.

FIG. 10. Selected band profile in the oxygen Auger spectrum
(lower) obtained by considering the vibrational transitions plus
the instrumental broadening and compared with the experimen-
tal data (upper). In abscissas the kinetic energies of the Auger
electron are given in eV, while in ordinates the spectral intensi-
ties are in arbitrary units.
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oxygen spectra confirms that, although the final dication-
ic states are the same, the profile of the two spectra are
completely different, a fact which can be ascribed to the
local character both of the intermediate electronic states
and of several final states of the doubly ionized molecule.

IV. CONCLUSIONS

A general expression for predicting the vibrational
profile of a molecular Auger spectrum has been derived.
The validity of this expression is not limited by any par-
ticular assumption either on the number or the type of
resonances or on the internuclear coordinate dependence
of the various spectral parameters. In deriving this ex-
pression the problems related to the use of non-Hermitian
matrices have been explicitly taken into account and

solved unambiguously.
Specific procedures for implementing cross-section cal-

culations in the BO approximation have been proposed
and the relationship between the "theoretical" cross sec-
tion and the experimental spectrum has been discussed.
Very satisfactory results have been obtained in reproduc-
ing the carbon and oxygen K-I.I. Auger spectra over the
whole energy range of interest. Specific spectral regions
of small extension have also been reproduced in greater
detail.
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