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The evolution of squeezed and displaced number states in the free and dissipative third-order non-
linear oscillator is investigated from the point of view of nonclassical phenomena as the number squeez-
ing in both the strong and the weak sense, the principal squeezing of vacuum fluctuations, and the gen-
eration of superposition states. A destructive effect of losses on quantum coherence is demonstrated.
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I. INTRODUCTION

An immense effort has been devoted to the study of the
relation of a Kerr medium, modeled as the third-order
nonlinear oscillator in quantum optics, to nonclassical
states of radiation (see [1] for a review). The quantum
dynamics of statistical properties of the dissipative third-
order nonlinear oscillator has been investigated for a
coherent state, Gaussian pure and mixed states, a dis-
placed number state, and a squeezed and displaced num-
ber state as initial states.

Squeezed and displaced number states [2] have been
studied from the viewpoint of the standard and principal
squeezing of vacuum fluctuations and of the photon
statistics; dissipation has been included. These states
generalize two-photon coherent states [3], squeezed num-
ber states [4—9], and displaced number states [7,10—14].
They exhibit both number squeezing in the strong sense
and the quadrature squeezing of vacuum fluctuations.
This motivated the use of squeezed and displaced number
states as the initial states for the third-order nonlinear os-
cillator [15]. In this paper we will follow their free and
dissipative evolution with regard to the number squeez-
ing in both the strong and the weak sense, the principal
squeezing of vacuum fiuctuations, and the generation of
superposition states. We will take account of phase prop-
erties of the resulting states. We would like to complete
results obtained in [15].

II. QUANTUM DYNAMICS

Incorporating dissipation to the third-order nonlinear
oscillator, we can write the Hamiltonian [16]

H=R co(& d+ —,')+tea &

+ gg (c c .+—,
' )+ g (ri cI& +H. c. ) . .

J J
(2.1)

@~(ct,t)=exp( —
~a~ ) g g a a "f „(t), (22)

m=0 n=O

where

Here & (a ) is the photon annihilation (creation) operator
describing the radiation field of the frequency ~, ~ is a
real constant for the intensity dependence, c (c ) are the
boson annihilation (creation) operators of the reservoir
oscillators with the frequencies f, and g are the cou-
pling constants of the radiation to the reservoir. The dy-
namics of the compound optical system is described by
the reduced density operator p, fulfilling the master equa-
tion in the interaction representation derived in the stan-
dard treatments of the quantum theory of dissipation
[17], in which the reservoir is characterized by the damp-
ing constant y and the number of quanta nd. Using the
classical-quantum correspondence C@~=n 'p„, related
to the quantum correspondence C '(a a ')=a"a*' [lg],
where the complex amplitude a corresponds to the opera-
tor exp(icot)a, we obtain the generalized Fokker-Planck
equation for the quasidistribution @~(a,t) related to the
antinormal ordering of field operators. This quasidistri-
bution can be expressed in the form [16]

f „(t)=exp
min(m, n) 1 g (t )

„(t)
1(nd+1) (m —j+i).(n —j+i)X g — g „(t), '

. , t
fm 1+t „J+t(0),

I=O (m —j ! n —j)! (2.3)
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g, (t)=

Ei(t)=

2fl d

n, +a,coth
2

AI sinh AI t +61cosh AI t
2 2

(2.4)

&alp& = —exp ——lal' ——Ipl'
v'p 2 2

a*~+ P +—a*P . (2.10)
2p 2p p

HM(x ) is the Hermite polynomial. The appropriate
quasidistribution for the antinormal ordering of field
operators reads

Qi =1+2nz+i ~1, bi =+AD 4nz—(nz+1); (2.5)
e (a, o)= —I&alp, M&, l'.1

(2.1 1)

f „(0) are the coefficients of the expansion of @~(a,O)

characterizing an initial state,

The number state representation of the initial state under
study

1/2
gm +1lf .(o)=,„[exp(la ')e~(a, t)]l (nlP, M), = n!M!

exp ——Ip + p
2 2p

(2.6)

The matrix elements of the reduced density operator are
related to the coefficients f „(t),

min(n, M)

j=O j!(n —j )!(M—j )!

p„(t)=(n p„m ) =~v'n!m!f „(t) . (2.7)

The exact formula for the quasidistribution N& (a, t) is

highly instructive for revealing specific quantum features
of the evolution. An analysis of N~(a, t) for the free
nonlinear oscillator provides an explanation of the origin
of the periodicity of an initial state. All relevant quan-
tum statistics repeat after the time interval m. /i~. The
quantum coherence is sensitive to dissipation. On incor-
porating the damping (n&=0), a quasiperiodic behavior
develops from the original periodic recurrences of the ini-
tial state. The initial state undergoes nonlinear oscilla-
tions without losses for a time 1/y. The intermediate
state is then attenuated during a time kyar/x and this state
undergoes time-reversed lossless nonlinear oscillations
during a time 1/y. For y))0 or n&))0, the periodic
behavior of the system is destroyed.

Using the quasidistribution C&~(a, t ), we can write the
moments of the antinormally ordered field operators in
the form [19]

where for k ) l we consider the complex-conjugate quan-
tity. On substitution of the functions f „(t) from (2.3)
into (2.8), we obtain an explicit formula for the moments
( 0"d '), which can be simplified in the cases k =0, l &0
and k =1, I = 1 [16].

The squeezed and displaced number states [2] Ip, M )s,
p=pg(0)+vg'(0), lpl

—Ivl =1 have the coherent-state
representation

& Ip, M&, = gH '
& Ip&, ,&M! 2 p

(2.9)

where g='!/ —v*/2p, Ip) = lp, O)s, the Craussian pure
state, and [3]

(d"a ') =(a"a"')~=sr g (n+l)!f„+i k „(t), k ~l,
n=O

(2.8)

XHM
g*(0)

(2.12)

where y=&v/2p. The initial values of f „(t) are of the
form

f „(0)= &nip, M&s &p, Mlm & .
vr n!m!

(2.13)

III. NUMBER SQUEEZING

The photon-number distribution reads [19]

p(n, t)=n!f„„(t)
and its factorial moments

(3.1)

=( W"(t))~= g '
p(n, t), (3.2)

n=k

where ( W "(t ) )~ is the kth moment of the integrated in-

tensity.
For the third-order nonlinear oscillator as well as for

the linear one the formulas (2.3) and (3.1) in the "diago-

The statistical properties of the squeezed and displaced
number states propagating in a lossy Kerr medium have
been studied by Kral [15]. For a lossless medium the
quasidistribution 4~ ( a, L), where L is the propagation
length, has been determined and the computation of the
photon-number distribution p(n, t) and its factorial mo-
ments ( W" )~ has been outlined. The behavior of the
phase quasidistribution

4(y, L)= J 4~[r e px(iq&), L]r dr (2.14)

has been investigated in the dependence on the displace-
ment g(0). The effect of quantum fluctuations has been
involved in the quasidistribution 4~(a, L) only approxi-
mately (as in the linear oscillator case).
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nal" limit provide [19]

1 min(m, n) (m +n J )i
p(n, t)= g P(m, O)[n(t)+ I] g, , ,

( —1)J[n(t) —exp( yt—))j
n(t)+1 =0 j!(n—j )!(m —j )!

X [n (t )+ 1 —exp( y—t ) ]

where

n(t)
n(t)+1

,
n —j

(3.3)

n(t ) =nd [1—exp( y t ) ]—.
The formula (3.2) simplifies then to the form

(3.4)

oo min(k, m )

( W'"(t))~=a. g p(m, O)
m=0

T

(m+k —j)!
J (m —j)!

'
( —1)J[n(t ) —exp( y t ) P[n

—(t )]" (3.5)

As for the asymptotic behavior, the formulas (3.3) and
(3.5) take on the simple forms

—n
nd

p(n, ~ )=
+ 1 )n+1

( W'"( oo ))~=k!nd,

(3.6)

(3.7)

respectively, and characterize the Bose-Einstein statistics
of the reservoir.

Phase properties of this single-mode optical field will
be studied with the aid of the operators [20,21]

u =e@(iy), u =e@( i y)— (3.8)

P(y)= P(y, t)—= —,
' g g &m!n!exp[i(m n)—y]f „(t) .

m=0 n =0

(3.15)

Upon the computation of the average value of the opera-
tor 19, the phase distribution is used as follows:

(M ) =Tr[p„M] = J P(y)M(p)dy= (M(y) ), ,

(3.16)

where the subscript a indicates the antinormal ordering
of the operators u, u . The phase dispersion is measured
by the quantity V [24,22]

defined as

u =(tt+1) ' a u =a (ti+1)
V= 1 —~&e@(l'y))

~

(3.9)
and an appropriate uncertainty relation [25,22]

(3.17)

with the properties

uu =1, u u=l —~n=O)(n=O~ . (3.10)

M= J M(y) y)(y~dqr, (3.11)

based on the vectors

From the relations (3.8) it is evident that the requirement
of the unitarity for the phase operators can be attained
algebraically by using the antinormal ordering of the
operators u, u [22,23]. This is equivalent to the classical
quantum correspondence assigning to every phase func-
tion M(y) the operator

[&(~it )'&+ —,'][1—
l &e@(tq ) & ~'] ~ —,

' (3.18)

(3.19)

is respected.
In quantum optics it is recognized that a phase stretch-

ing leads to the number squeezing when some number-
phase intelligence is conserved. The corresponding state
is similar to a crescent one. The term number squeezed
state denotes any state whose variance of the photon
number is less than the mean photon number. Such a
state may be called a crescent state in the strong sense.
The deviation from the Poisson photon-number distribu-
tion is expressed by the Pano factor

~ q ) = g exp(in' )
~
n &,

n=0

which are approximately orthogonal

(y~y') =F6(qr y')+ [1—exp[ —i(y y'—)]]—

(3.12)

(3.13)

The normalized variance d is related to the second re-
duced factorial moment

(3.20)

The operator M does not depend on 0 when M(y) has a
2m-periodic continuation. For the phase distribution it
holds that

or equivalently

&(&W(t ))')
&W(t)&'

(t)= (3.21)

or equivalently in terms of the coefficients (2.3)

(3.14) For a coherent state it holds that d = 1, f=0. Nonclassi-
cal (sub-Poissonian) behavior occurs for d & 1,f & 0.

For the squeezed and displaced number states ~P, M )g



3884 V. PERINOVA AND J. KREPELKA 48

it holds that [2]

&R & =(Ipl'+ Ivl')M+ v '+ lg(O)I',

((bR') ) = ling(o) —vg*(0)l'(2M+1)

+2lpvl'(M'+M+I) .

(3.22)

These states exhibit number squeezing in the strong sense
dependent on the parameters g(0), v, and M. This non-
classical property is periodically revealed by the free non-
linear evolution and is smoothed out in the lossy case. In
Fig. 1 we can see the dissipative evolution of the second
reduced factorial moment in the dependence on
lvl E [0, 1] for fixed values of other parameters. On in-
creasing lvl, the sub-Poissonian behavior is changing to
the super-Poissonian one. The asymptotic behavior of f
is in accordance with the formula (3.7).

The nonlinear oscillator cannot produce crescent states
in the strong sense due to the conservation of the photon
number, but the crescent topography of the quasidistribu-
tion N~(a, t) suffices to an interferometric generation of
number squeezed states [26]. An investigation of crescent
states in the weak sense may be based upon the set of dis-
placed number operators [23]

6, =&,Q, , &, =8 —c1, (3.23)

where

we obtain a characteristics of the crescent shape. If the
sub-Poissonian behavior is obtained, d, ( 1, we can
characterize the states as crescent in the weak sense.

Another measure of the qualitative properties of cres-
cent states represents an uncertainty product. The opera-
tors 0, and

P, (r) = i—[exp( i r—)a, —exp(ir)d, ] (3.27)

are not correlated, which holds for R', P, (—r ) intelligent
states [27]. Because the parameter r is arbitrary, we
choose ~=y„where y, is the preferred phase,

g, =arg[(e@(iy, ))],
and we linearize the phase operator as

bP, (rp, )

(Q, (q, ))
'

where

(3.28)

(3.29)

Q, (r) =exp( —ir)it, +exp(i r)it, (3.30)

([~P,(g, )]')
((~p, )') =

Q, (g, )
' (3.31)

From (3.29) we obtain the measure of the phase disper-
sion

C=

with

(&~~'~a&+, )E—&(~~) )E*
((catha )+—,')' —l((ba) ) I'

(3.24)
which can be expressed explicitly in terms of the opera-
tors Q, Q, &„&, as follows:

E=—,'((b, Rb,a )+ (b,ab, R') ), (3.25)
((&a'&& &+-,') & d, & I' —Re[((&e)'& &&,'&']

&(~R, )')
d. = (3.26)

can be interpreted as the center of curvature of the corre-
sponding contour diagram. By comparing the photon-
number variance ((b,R, ) ) with the m'ean photon num-
ber (R, ),

(3.32)

The corresponding uncertainty product u, reads., = ((~R, )') ((~g, )'& &-,' . (3.33)

In analogy to (3.18) we derive the uncertainty relation

1.0

0.8

0.5

u, = [ ( ( b, R', ) ) + —,
'

] V(c ) ~
—,',

where

&(~~, )')V(c)=
1+&(~&, )'&

(3.34)

(3.35)

0.3

0.0
—0.2
—0.5

—0.8

. 0 I I I I
/

I 1 I I
f

I 1 I I
f

I I I I ( I t
—1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. jj. The evolution of the second reduced factorial mo-
ment (8' )~/( W)~ —1 for @=100, y=1, nd=1, Ig(0)l = ~,
/=0, M=1, 0=m/2, and lvl =0, 0.2, 0.4, 0.6, 0.8, 1 (curves
a, b, c,d, e,f, respectively).

limd, =2, lim u, =+ ~, lim u, = —,
'

t~O s~O t~O
(3.36)

The minimum value of the uncertainty products u, and

u, equal to —,
' is attained by the R', P, (y, ) intelligen—t

states. The uncertainty products u, and u, along with
the Fano factor d, contribute to an assessment of the
crescent shape of a state studied, because not only the
sub-Poissonian behavior but also the &, P, (y, ) intelli-—
gence characterizes the crescent property.

In the following we will apply the formulas (3.24),
(3.26), (3.33), and (3.34) to pictorialize the investigation of
crescent states in the weak sense. The limit values of d„
u„and u, for t tending to zero are
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The center of curvature c(t)I(&)(0)I ' [(a)(0)=g(0)],
(&)(t)I(&)(0)I ', and the rotating part of the complex
field amplitude

&&)„(t)=(d&(t)l&d &(t)I

as functions of t are demonstrated for chosen parameters
g(0), v, and M in Fig. 2. The points corresponding to
t, =1.644X10, t2=1.496X10, the end points of the
interval [t„t2 ] in which the field is sub-Poissonian are in-
dicated by the circles on the appropriate curves. The op-
timum situation occurs for t =to, to=7. 534X10, in

—4

this case c(to)= —0.764+i0 45.1. The value 2Kto corre-
sponds to the preferred phase on the output of the Kerr
nonlinear interferometer. In this picture the relationship
of the center of curvature c and the "center of gravity"
( d ) is also demonstrated. It holds that

I
c I

5
I ( & ) I. It is

possible to discern two cases. The case of inequality cor-
responds to a crescent shape. The case of the approxi-
mate equality seems to be related to a shape very similar
to that of the two-photon coherent state.

In Fig. 3 appropriate through the choice of the param-
eters g(0), v, and M to Fig. 2 we can observe the distance
from the center of curvature to the origin IcI Ig(0)I
and the output Fano factor d, . The curve of d, indicates
the sub-Poissonian behavior and attains a minimum at tp,
d, (to)=2.351X10 '. Further curve represents the out-
put uncertainty product u„which arrives at its minimum
for a value of t close to to. With respect to the length of
the period, the effect of the optimum lasts a very short
time; it is transient. The quasidistribution 4~(u, to) is
pictorialized in Fig. 4.

IV. QUADRATURE SQUEEZING

Investigating the squeezing of vacuum fluctuations, we
restrict ourselves to the principal squeezing [28,29],
which is advantageous in the nonlinear oscillator case be-
cause the free-field frequency is modified by self-
interaction here and depends on the intensity of the field.
The principal quadrature variance, which is phase in-
dependent, is not affected by the frequency changes of the

10

uc

10

10
10

I I

10 10 t, 10 ' 10

FIG. 3. The distance from the center of curvature to the ori-
gin IcI Ig(0)I ', the normalized photon-number variance d„
and the minimum-uncertainty products u„u, in the dependence
on t for K=100, y=0, nd =0, Ig'(0)I =4, /=0, M= 1, IvI =0.1,
and 0=u/2.

free field. The quadrature variance of principal squeezing
reads

((&g"')'& = —I+2[&&a&at& —
I &(&&)'& ] . (4.1)

For the squeezed and displaced Fock state IP, M ) the
principal squeezing variance is of a simple form

&(bg"')'& = —1+2[(1+2 vI )M+ Iv

+1—p'vI(2M+ I )) . (4.2)

The linear dependence of ((EQ ~') ) on M says that for
larger M squeezing is achieved for larger

I
vI. On increas-

ing IvI, we can arrive at squeezing until larger values of
M. The free evolution of the principal squeezing variance
for different values of the angle 8 (v= —IvIexp(i26),
OE [O, m. ]) and for the rest parameters fixed is pictorial-
ized in Figs. 5(a) and 5(b) in a neighborhood of the time
points t=0 and n. /2K, respectively. From Fig. 5(b) it is
obvious that in addition to the appearance at t =0 and
rr/K, the squeezing phenomenon also occurs at t =n /2K
and in its neighborhood. Similar is the dependence on
the angle of displacement g'(0) = If(0)Iexp(if) under the

Re

FIG. 2. The plot of curves for c(t)Ig(0)I ' (curve a),
( )(ta)Ig(0)I ' (curve b), and (a ),(t) (curve c) for K=100,
y=O, nd =O, Ig'(0)I =4, @=0,M= 1, IvI =0.1, and g=rr/2.

FIG. 4. The quasidistribution N~(a, to) for ~=100, y=0,
IPO) I

=4, @=0, M =1, Ivl =01, 0=~/2, and

to =7.534 X 10



3886 V. PERINOVA AND J. KREPELKA 48

1.0—

0.5—

0.0
0.0000 0.0001 Cg

9.0
q

8.0
(b)

C3

b~~
8/

a

FIG. 6. The eff'ect of ~g'(0)) E [0,2] on the free evolution of
the principal squeezing variance; s.=100, y=0, nd=0, /=0,
M= 1, ~v~ =&2, and 0=0.

1.0

0.0—
0.0156

I

0.0157 0.0158 0.0 159

fm„(t) =exp[i'(m —n )(m + n —1)t ]fm„(0),
we obtain for the complex Geld amplitude

(4.3)

FIG. 5. (a) and (b) The free evolution of the principal
squeezing variance in the dependence on OF[0,~/2]

y=O, nd=0, ~g'(0)(=&2, P=~/16, M= 1, and ~v~ =&2 in a
neighborhood of the time points: (a) t =0, (b) t =m/2~.

fixed values of other parameters. For g E [0,e) squeezing
can be observed in a neighborhood of t =7r/21r.

The dependence of the principal squeezing on the mag-
nitude of displacement g(0) and that of parameter v have
also been studied. The increase of ~g(0)~ leads to the
disappearance of squeezing. This tendency is obvious

squeezing is ~/2a, and the curves at t =n/41' and 3~/. 4a.
indicate the tendency of ((b,Q ~ ) ) to rise. An analo-
gous time dependence could be observed with the effect
of ~v~ included. For 8=0 the periodicity of the principal
squeezing variance is n. /21'. The case =0 dase v= corresponas
to the initial displaced Fock state ~g(0), M ), whose Kerr
evolution has been considered in [30]. No quadrature
squeezing in the standard sense has been predicted there,
which is in accordance with the observation of no princi-
pal squeezing. The amount of squeezing increases with
increasing ~v~. The infiuence of quantum fiuctuations on
squeezing is illustrated in Fig. 7. The quantum noise at-
tenuates squeezing continuously. In order to evidence all
these tendencies, the complementary dependence to the
maximum value of hof the principal squeezing variance is
chosen.

Taking into account the formula (2.8) and the
coefficients f „(t) in the lossless case

(a)(t)=n. g (n+1)!e px( ilr2nt)f„—*+, „(0) .
n=0

(4.4)

(C3'
O

CD

10—

FIG.G. 7. The attenuation of squeezing under the conditions
v=100, ~g'(0)~ =v'2, /=0, M= 1, ~v)=V2, 0=0, y P [0,2], and
nd=

From (4.4) it is obvious that (& )(t) is a (7rllr)-periodical
function of t for arbitrary initial state. Hence the magni-
tude of complex Geld amplitude collapses and revives
during the interaction with the nonlinear Kerr medium.
The revivals occur at the time points t =k~/~, with k an
integer. The effect of dissipation on the evolution of

a )(t) can be traced in Fig. 8. The quantum noise at-
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12
1 0
0 p

Oq
0 p
00

form 2¹yclic groups, and it holds that
2N —1

k
Ck har

k=0

where

e [1+( 1)k+L(x—i)]
k

X ~ exp ~ i —[Ll—(l —1)—kl]
I=o

(5.4)

(5.5)

FIG. 8. The effect of dissipation yG [0,2],
~ ~ ~

2~1 n =5 on the evo-
lg(O)1=&2, @=0, M=I,

tenuates the revivals analogously as squeezing (for com-
parison see Fig. 7).

V. GENERATION OF SUPERPOSITION STATES

lggt) &=&~lpgt) &,
Bt

(5.1)

The possibility of generating quantum-mechanical su-
perpositions of macroscopica y

' '
g

'
11 distin uishable states in

rse of evolution of the anharmonic oscillator as
been discussed for initial coherent lig t ,'
photon coherent state ~[35 36] an initial displaced number
state [30],and for a phase state [37].

From the Schrodinger equation for the free third-order
nonlinear oscillator

(5.6)

l yo), q'„k'&= g exp(iq(."))(nlgg0)& n &

n=0
(5.7)

with

'k'= ——kn .0'n (5.8)

Hence, every initia s a e1 t t evolves in the lossless Kerr
medium at a superposition

'

g
'

n of its eneralizations.
For the squeezed and displaced number state

att einpu on
' t of the nonlinear oscillator we have

This explicit expression (5.5) imp
'

im lies that for L(N —1),
0b 't holds that ck"%0 for k even and ck =an even num er, i o

it is valid thatfor k odd. For L (N —1), an odd number, it is va i a
ck =0 o k even an ckck — d 'WO for k odd. This means that

=(L /N )(~/~) the sum (5.4) reduces to N terms.for t=
er state basisExpan ing ed the initial state m the numbe

and applying (5.4), we obtain from (5.2

2N —1

where the genera ize1' d v~0) state is defined as follows:

d 'b' the evolution of the system inin the interactionescri ing
0)&picture, we obtain for an initial state (gg e (k)&lp M& t= ——= g ck pM~@„

N ~
(5.9)

l gQ t ) &
= exp [ —i ~t6(&—1 ) ] l ((ij+'0 ) & . (5.2)

It is possible to prove that for t =(L /N)(~/~), L and N
are prime integers, the operators

where the generalized squeezed an
'

pn dis laced number
states read

l,M, +„k &, = y exp(iq(k))(nip, M&, ln & .
~ ~

U =exp i R'(6' 1), Oh—ar
—exp— (5.3)

n=0

The quasidistribution

e~ a, t= =(alp, M&, t—=—
2

2N —1

=exp( —la ) g ck g — a*exp
k=o n=o

n

(n P, M&g (5.11)

~ ~1' ell the generation of superposition states. Itvisua izes we e
m onent states areexhibits regular structures when the componen

Fi . 9 where the evolutionentangled, as is obvious from ig. , w

9(b) an increasing effect of mterference ence terms can be ob-
served w en e nud h th number of component states is larger

than N, .
The phase distribution

p y)= P(y, t)= —,
' g g —+m!n!exp[i(m —n y]f „ t

m=0 n=o
(5.12)
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FIG. 12. The dissipative evolution of the phase distribution
P(tp t) for Jr=100, y= 1, nd =1, ~g(0)~ =2, /=0, M=2,
lvl =0.1, and 0=~/2

VI. CONCLUSION

The evolution of squeezed and displaced number states
in the free and dissipative third-order nonlinear oscillator
has been investigated. Statistical properties of resulting

states have been expressed in terms of the coe%cients of
the quasidistribution of the complex field amplitude relat-
ed to the antinormal ordering of field operators. A
thorough study of crescent states in both the strong and
the weak sense generated in this optical system has been
based not only on the Fano factor as a measure of the
sub-Poissonian behavior but also on a number-phase in-
telligence. The occurrence of the principal squeezing of
vacuum Auctuations and its dependence on the parame-
ters of the initial state have been discussed. The genera-
tion of superpositions of generalized squeezed and dis-
placed number states during the free evolution has been
studied and evidenced with the aid of the quasidistribu-
tion of the complex field amplitude related to the antinor-
mal ordering of field operators and of the phase distribu-
tion. A destructive e6'ect of losses on quantum coherence
has been demonstrated. The application of squeezed and
displaced number states at the input of the Kerr medium
reveals many nonclassical phenomena.
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