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The effect of amplitude-phase multistability in the Dicke model inside a coherently driven cavity is
discussed for the case of large Rabi frequencies and a small rate of atomic decay, compared with the de-
cay of the cavity mode. The quantum and semiclassical interpretations of the predicted effect are given
on the basis of the Tavis-Cummings model and a proposed model of weakly coupled harmonic oscilla-
tors. The analytical solution is obtained for a two-atom system. The possibility of observing amplitude-

phase multistability is also considered.

PACS number(s): 42.65.Pc, 42.50.Fx, 42.50.Hz

I. INTRODUCTION

Since the pioneering Dicke work [1], the problem of
collective effects continues to occupy one of the central
positions in quantum optics. The initial problem of the
decay of the collectively emitting atoms that are located
in a small volume compared with the wavelength has
been generalized to include collective decay (super-
radiation, superfluorescence) of an extended system (see,
for example, [2]).

The problem of resonance fluorescence in the Dicke
model excited by a strong optical radiation was con-
sidered in [3—7]. In particular, it has been shown that for
a certain value of the input field intensity, the nonequili-
brium phase transition analogous with the second-order
phase transition occurs [3,4]. When interatomic interac-
tions are taken into account, the considered system can
manifest the nonequilibrium phase transition of the first
order, the reason for which is connected with the
equivalence of the system and an anharmonic oscillator
in a driven coherent field [7].

On the other hand, as has been shown in [8], the sys-
tem of independent radiating atoms in an optical cavity
displays the effect of absorptive optical bistability, for
which the dependence of the output field on the input
pump is equivalent to the van der Waals isotherm
describing the phase transition ‘‘liquid—gas” of the first
order. However, the effect of optical bistability is not a
consequence of collective effects induced by coupling of
atoms via cavity mode field, as described in [8]. This
phenomenon is defined by a single-atom self-action effect
because of atomic-state dependence on the intracavity
field, which is the sum of the field created by an input
pump and the field reradiated by the atom. So, in the re-
cent publications [9—11], it has been demonstrated that a
single atom in a cavity strongly interacting with a cavity
mode field can display the bistable properties. Moreover,
besides the known absorptive bistability (or bistability of
the real part of the field amplitude) [9], a new effect of
phase optical bistability can be observed [10,11]. As has
been mentioned in [10], the effect of phase bistability has
a simple interpretation on the basis of representation of a
strongly coupled atom and an intracavity field as a single
quantum system.
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In the present article, we investigate an effect arising as
a mutual result both of the collective-atomic-emission na-
ture and of the atomic self-action effects in a high-Q cavi-
ty. For this purpose, we generalize a single-atom model
of quantum optics [10,11] for the case of a system of
two-level atoms located in a volume small compared with
the resonant wavelength.

The collection of atoms involved is placed in a
coherently driven high-quality optical cavity. An intra-
cavity field mode excited by the external optical field
strongly interacts with the system of atoms and decays
due to the partial mirror transmission. The decay of
atomic states arises from spontaneous emission into non-
cavity modes, which are considered here as modes of a
free space.

In the present paper, we demonstrate that, for the de-
scribed model (the Dicke model in driven high-Q cavity),
in the case of well-separated components (large Rabi fre-
quencies) [5] and small spontaneous transition rate com-
pared with the decay rate of the cavity field mode, the
amplitude-phase multistability takes place. The depen-
dence of the number of stable points in the phase space of
the model on the number of atoms and the spontaneous
atomic transition rate is analyzed, and the conditions un-
der which the predicted effect is observed are presented.

II. MODEL

The system of two-level atoms with resonance frequen-
cy o confined to a region whose linear dimensions are
small compared to wavelength is described by the collec-
tive Dicke operators J,=3,0;,4, J_=3,0,_,
J,=3,0,, (0,4, 0, are the single-atom operators) satis-
fying the commutation relations [J,,J_]=2J,,
[J,,J+]1==xJ .. The action of the operators J,J, on the
collective Dicke states |j,m ), where j is the maximum
“energy spin” value of the system of particles (j =N /2,
N is the number of atoms, m is the projection of “energy
spin” on the z axis, —j =<m =), is defined by the well-
known relations

J o ljim)Y=V§Gi+tm+10G—mljm+1), (1a)
J_lim)=V(iji+m)(j—m+1)|jm—1) . (1b)
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The collective Dicke states |j,m ) are eigenstates for
the operator J, and the operator of the total “energy
spin” J%

JlmYy=mljm), (2a)
Pljm)y=j(j+Dljm) . (2b)

The single-mode cavity field is represented by a harmonic
oscillator with frequency @, and boson creation and an-
nihilation operators a' and a. The cavity mode excita-
tion by the coherent pump with amplitude E is described
by the Hamiltonian i#AE (a'—a). The atomic system and
cavit¥ field interaction is realized via the Hamiltonian
#ig(a'J_ +aJ ). Taking into account the atomic and
the cavity field relaxation, the quantum-mechanical
description of the model in terms of the reduced density
matrix is given by the following master equations, written
in a rotating frame:

p=El[a'—a,pl—ibo[J,pl—igla"T_+aJ,p]
+k([a,pat)+[ap,a’ N +y /200 ,pJ ]
+[J_p,Ji D), (3)

where Aw=w—a, is the atom-field frequency detuning, g
is the atom-field coupling constant, ¥ is the rate of spon-
taneous emission into field modes other than the cavity
mode, k =7 /Fr, is the cavity decay rate, with 7,=2L /c
being the round-trip time, L is the cavity length, and F is
the cavity finesse. It should be noted that, for the model
(3), the conservation law of the total ‘““energy spin” square
takes place:

(I =(J T )Y HIE)V+HT) =i +1) . 4)

The same master equation as Eq. (3) has been used in
[12] for the discussions of the influence of collective
effects on absorptive optical bistability. This equation
has been solved in [12] in so-called decorrelation approxi-
mation when the averages like (aJ;) are factorized
({aJ;>=(a){J;)). But the atomic-field correlations
lead to new quantum effects. It has been shown in [10,11]
that these quantum correlations are the reason for the
predicted effect of a single-atom phase bistability. In this
paper, we solve Eq. (3) without applying for the decorre-
lation approximation.

In the absence of the atoms (g =7y =0), the steady state
of the intracavity field should be the coherent state with
amplitude E /k. Accordingly, it is very convenient
to pick it out in the explicit form from the density
matrix p, using the displacement operator D (E /k)
=exp[E (a'—a)/k],

p=D NE/k)pD (E /k) . (5)

As a result,’the equation for the transformed matrix p
takes the form

p=—2i9J,,pl—iAw[J,,p]—igla'T_+aJ . ,p]
+k([a,pa']+[ap,a"])

+y 20T, pT L 1 T_BT 2 1) s 6)
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where the first term describes the system evolution in-
duced by the coherent field E /k (3=gE /k is the Rabi
frequency), whereas the term E[at—a,p] corresponding
to the intracavity field excitation [see Eq. (3)] is absent.

Before solving Eq. (3), it is useful to note that the
operators depicting the atomic system and the single-
atom two-level system realize different irreducible repre-
sentations of the same group SU(2), but they satisfy the
identical commutation relations. Therefore, we can ap-
ply for the multiatomic system the same canonical trans-
formations that have been used in Ref. [8], where the
single-atom optical bistability has been considered. The
generalization is a simple substitution of the spin Pauli
operators o,, o4 for the collective Dicke operators J,,
J+ .

III. LARGE RABI FREQUENCIES

The exact equation (6) can be solved approximately in
the case with large generalized Rabi frequency
Q=[(29)+(Aw)?*]'”%. To obtain this solution, let us
make the rotation transformation in the space of the vec-
tors (J,,J,, J,)

x>Yy>
Ji=exp(—i@J,)J; explipJ,) , i=x,y,z, (7)
around the axis y on such an angle ¢ that
s=sing=23/Q, c=cosp=Aw/Q. The eigenstates

|j,m’) of the transformed operator J, are expressed
through the linear superposition of the old basis states
ljm )

j
liymD=3 di.(@lm), (8)
m=—j
where d},,.(¢)={(mlexp(—i@J,)|m’) is the Wigner d
function [13].

Assuming Q! as the shortest time scale of the prob-
lem comparing with (Ny ) !—the collective relaxation
time of the atoms, k ~!—the damping time of the intra-
cavity field, and [N /2(g?/k)] ' —the period of the Rabi
oscillations induced by the reradiated field

-1

Ne | ©)

Q l<<(Ny) ! k!
<<(Ny) ey

we can make the transformation to the dressed-state rep-
resentation for the density matrix p:

p=exp(—iQJ,t)p'exp(iQJ,t) , (10)

with temporal dependence of operators J;(¢)

J(0)=sJ+ lgcue"“‘— 1;cJ'_e”"“‘, (11a)

Jz(t)=ch'—%J;e"‘“—%f_e““", (11b)

and then average the master equation for the dressed den-
sity matrix p’ over the fast Rabi oscillations. As a result
of the averaging, we obtain the equation
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2
p'=—igs[(a"+a)} ,p'1+k([a,p'a" 1+ [ap"a D+ %([J;,p’JZ’H[JZ’p’Jz’])

d d
+—2‘i<[1'+,p',1'_ 1+ 1% 0T D+ %([J'_,p’.]ﬁr 1+ p 00 D), (12)

where d |, =[y(1—c)?]/4, dy; =[y(1+c¢)*]/4. This equation satisfies the law of the particle number conservation (4).
Following the equations for the diagonal elements of the transformed and averaged density matrix p’ (10)

. ! i -N ’ ’ ’ ’ ’
P =‘%‘[GT‘*“I’P—j'—j']‘*‘k([a,P~j'—j'aT]'*‘[“P—j'»j'saT])+d21NP—j'+1,—j'+1—dlzNP—j'—j ’

—j =

P =igm'[a T +a,p\ 0 1+ k([a,phma 1+ [apymsa’l)
+dpGtm)—m'+Dpp g o Fdy GHm DG —m )pr iy s
—(dp(+m' + )G —m" ) +dy G+m )G —m'+1))p

ot i N ’ ’ ’ !’ ’
pj,j,=—gT[aT+a,p,,j,]+k([a,pj,j,aT]+[apj,j,,a*])+d12ij,_Lj,_1—dﬂij,j, , (13)

the atoms belonging to the different eigenstates |j,m’) (8)
interact independently with the resonator field at small
values of the spontaneous transition probability into non-
cavity modes y (at small values of d;;). The equations for
the diagonal elements p,,.,. coincide with the equations
for damping harmonic oscillators excited by the coherent
radiation whose complex amplitude (~gm’) is varied for
the different oscillators. Therefore, at d,-j=0, the cavity
field will have 2j + 1 possible stationary values of the am-
plitude:

aomf:E/k+igm’/k (m'=—j,...,j). (14)

IV. INTERPRETATION ON THE BASIS
OF THE TAVIS-CUMMINGS MODEL

The possibility of the representation of the quantum
system, “field plus atoms,” in the form of weak-coupling
harmonic oscillators can be clarified on the basis of the
Tavis-Cummings model [14] (see Appendix and Fig. 1).
For this purpose, we will consider the excitation of the
eigenstates of the Tavis-Cummings model by an external
coherent radiation. The eigenstates of the Tavis-
Cummings Hamiltonian

H=t%wa'a+#w],+#g(a'T_+aJ,)

for the case of the exact resonance are presented in the
form (A2)

k
[2j,n,r)="3 af,,|n—j—m)f|m)a, (15)

m=—j

where indexes f and a mark the eigenstates of the intra-
cavity field and the atomic system, respectively. The
number 7 is equal to the number of the excitations in the
“field plus atoms” system. The number r enumerates the
eigenstates belonging to the state with the fixed excitation
number n. At n <2j, the number k is equal to n —j, and
r changes from —n /2 to (n/2). Atn =2j, we have k =,
and r changes from —j /2 to j/2. The eigenstates of the
Hamiltonian H are

6Zj,n,r=ha)(n—j)+E2j,n,r ’ (16)

where E,; , ., the eigenstates of the interaction Hamil-
tonian hg(aTJ _+aJ,), yields the energy spectrum of
the system. The latter can be presented as the levels of
noninteracting atoms and field split by their interaction
on the n +1 sublevel when n <2j and on the 2j +1 sub-
level when n > 2j (Fig. 1).

The external field perturbing the system “atoms plus
intracavity  field” [the interaction Hamiltonian
—iE(a —aT)] leads to the transitions between the eigen-
states |2j,n,7). The different paths of excitation for the
numerically calculated energy levels of the Tavis-
Cummings system are presented in Fig. 1(a) (N =2) and
Fig. 1(b) (N =3). The first two paths are starting from
the ground state with the equal probability (due to the
equality of frequency detunings |fiw—&,;,,,,| and
|fio— ;1 —11)  exciting the states [27,1,1) and
12,1, —1):

12j,1,4)
120:0:0)= 13,1, 1) -
The probability of excitation of the next states already
depends on the state from which the system starts. The
transitions

12, 1,3 —12j,2,1) ,

|2j,1, _‘%‘)_’|2]’21_1> >

are more probable because of smaller frequency detuning
compared with other transitions. With increasing n, the
situation is repeated. When n =2j, the most probable
transitions for these two paths are those made without
changing the number 7:

12j,n,j ) —12j,n +1,j) ,
|2j1n7 _]>—)12]’n +1,—]) .

From this point of view, the two first excitation paths can
be depicted as
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12,4, 1>
7 2,4,0>
B o 12,4,-1 >

-~

12,3, 1>
y N 12,3, 0>
o o 12,3,-1>

12,2, 1>
12,2, 0>
12,2,-1>

12,1, /2>
12,1,-1/2>

(a)

i 12,0,0>
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3,4, 372>
— i3,4,152>
‘} - 13,4.-1/2>
- - 13,4,-3/2>

13,3, 3/2>
13,3, 1/2>
13,3,-1/2>
13,3,-3/2>

— 13,2, 1>
* 13,2, 0>
15,72,-1>

13,1, 172>

13,1,-1/2>

2

(b)

— i 3,0,0>

FIG. 1. Forming of the independent excitation paths in the Tavis-Cummings model under the action of a resonant classic field.
Numerical calculations have been done on the basis of Egs. (A5)—(A7) when N is even [N =2 (a)], or odd [N =3 (b)].

12j,1,1)—12j,2,1)—>. .. —2j,n,j ) —>2j,n +1,j ) —. ..

[2,0,0) —

The next series is beginning from the state corresponding
to the two excitations in system (» =2) and number » =0:
|2/,2,0). The forming of one (at 2j =2 [Fig. 1(a)]) or two
(at 2j >2 [Fig. 1(b)]), new excitation paths started from
the state |2j,2,0) proceed analogously to the creation of
paths (17). Thus, every state |2j,21,0), where [ is integer
and 2/ <2j, gives rise to the new excitation paths. The
general number of excitation paths picked out in such a
way coincides with the maximum number of the split en-
ergy levels belonging to the same n and equals 2j + 1.

As shown in the Appendix, at the large excitation
numbers n >>2j, the eigenstates of the Tavis-Cummings
Hamiltonian can be represented in the factorized form

12j,m,r ) =In)slr )y, (18)

J .
where the states |r),= ¥ d}, (—7/2)|m), coincide
m=—j
with the “dressed” states (8) at ¢ = —m /2. Besides that,
in accordance with Eq. (16) and at n >>2j, the eigenstates

of energy are equal to

12/,1, = 1) —12j,2, = 1) —...—|2j,n,—j)—>[2j,n +1,—j)—. ..

(17)

[
Ejony =Ho(n—j)+2hgVnr (19)

i.e., the detuning of the transition frequency

[2j,n,r)—|2j,n +1,r)

is decreased for each chosen rth excitation path with the
increasing n.

Therefore, according to (18), the eigenstates of the
operator J, given by Eq. (8) are the dressed atomic states
defining, at n >>2j, the quasiclassical eigenstates of the
Tavis-Cummings Hamiltonian. Using these states as a
basis, we have obtained Egs. (13) representing the excita-
tion of the system “atoms plus intracavity field” as the
evolution of 2j +1 weakly coupled oscillators. This rep-
resentation is equivalent to the choosing of 2j +1 in-
dependent excitation paths at large »n in the Tavis-
Cummings model.

The atomic relaxation in this model results in the tran-
sitions from one chosen path to another. In Egs. (13),
these transitions are described by the terms containing
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the spontaneous transition rates d,;, d;,. In accordance
with Egs. (13), the random quantum jumps are allowed
between the states of neighbor harmonic oscillators with
the probabilities proportional to the quantities
dip(j+m')j—m'+1) and d,(j+m'+1)(j—m').
With the decreasing of the transition probabilities, the
cavity field will spend most of the time in the state with
one of the amplitudes (14) while the atomic system will be
at the corresponding state |j,m’). It enables us to de-
scribe the multistability effect in the considered system.
The quantitative estimation of the lifetime in the fixed
state will be given in Sec. VII.

. OF ' O8F '
F o = 18N A+ A*)F s — KA* ——— — KA

oA* oA

S. YA. KILIN AND T. B. KRINITSKAYA

V. NUMERICAL SOLUTION

To solve numerically Egs. (13), we use the characteris-
tic matrix

F,.=Splexp(Aa exp(—A*a)D (E /k)

XphD "UE /K)] . (20)

In the dressed-state basis, the system of equations for
F o= j,m'|F|j,n’) obtained from Egs. (13) breaks up
into two independent subsystems for the diagonal and
nondiagonal elements. The subsystem for the diagonal
elements has the form

+EA—A%F, .,

+d12(j+m')(j_m'+1)7m'—1,m'~1+d21(j+m'+1)(j_m')7m'+1,m'+1

—[dypGAm + 1D —m) +dyGAm)G—m'+1)]F e -

We have numerically solved the system (21) for the
fourth and eleventh atoms and calculated the probability
density distribution function P(a)=3,,, P, . (), where
Pl @)=(1/7%) [ d*L exp(A*a—Aa*)F,, ., (A1) is the
probability density of finding the field in the coherent
state with the amplitude a and the atom in the superposi-
tional state |j,m’) (8). The real part of the field ampli-
tude coincides with the steady-state amplitude E /k of the
empty cavity: 2, (a)=P,. . (y)8(x —E/k), where
a=x +iy, and therefore the distribution of the imaginary
part of the field is to be calculated. The results of the nu-
merical calculations are given in Fig. (2) (N =4) and Fig.
3 (N =11). The number of maxima of the distribution
function at the fixed values g /k and d /k coincides with
the number of independent excitation paths of the “quan-
tum molecule” atoms plus field. The positions of the
maxima coincide with the field amplitudes, which should
be established in the cavity at its pumping by a classical

(21)

[
field with the amplitude E +igm': a=E /k +igm'/k.
Since the imaginary part of the field amplitude cannot
exceed the value of gN /2k, then the distribution function
P(y) is located in the range [@pin,®max], Where
Amin=FE —igN /2k and a,,,=E +igN /2k. The charac-
ter of the probability distribution 7(y) does not depend
on the value of g /k; this parameter determines only the
scale of the imaginary part of the field amplitude [com-
pare Fig. 2(a) and Fig. 2(b)].

The “finesse” of the maxima of the distribution func-
tion connected with the field stability is symmetrically in-
creased from the center towards the ends of the range
[Fig. 2(a) and Fig. 3(a)], and at the fixed value d /k, it in-
creases with the decreasing of the particle number in the
system. When the ratio d /k is raised [Fig. 2(a) [3(a)] and
Fig. 2(b) [3(b)]], the distribution becomes more
widespread and above the critical value, depending on N,
the probability density function takes the form shown in

a, 08— 0.4 -
>,
E 0.6 ()] 0.3 (b))
L
=]
» 0.4 B 0.2 -
:E
® 0.2 4 0.1 e
o
AN L b A A l
-40  -20 0 20 40 —100  -50 0 50 a ;00 FIG. 2. ? function of the field steady-state
Imaginary part of field & Imaginary part of fie intracavity distribution for N =4 at (a)
g/k =10, d/k =0.05; (b) g/k =20,
o, 0.04 0.04 } d/k=0.05; (c) g/k=10, d/k=0.2; (d)
ey /k=10,d/k =0.6.
% 0.03 (e) 0.03 ‘ () g
< D
= 0.02 0.02 /
E
s 0.01p T 0.01}
2
&~ 0t ol "
-40 -20 0 20 40 —-40 —20 0 20 40
Imaginary part of field X

Imaginary part of field &
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>
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>
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0
-100

-50

0

50

100

0.3 -
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0
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Imaginary part of field o intracavity distribution for N =11 and
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0.015 d/k=0.1(c),d/k =0.15 (d).
(d)
0.01 E
0.005 |- i
o . . i
-100 -50 0 50 100

Imaginary part of field o

Imaginary part of field o

Fig. 2(d) and Fig. 3(d), with a single stable state at the
center of the range.

In order to find the critical value of d /k, let us assume
that, with the increasing of the transition probabilities be-
tween neighbor states of the “molecule,” all stable states
except those corresponding to the side excitation paths
disappear. In this case, it is possible to average the sys-
tem (21) over the fast movements and to obtain the equa-
tions for the probability densities equivalent to a single-
atom equation [8]:

OP_ . _ . d
F—j-y_ 9 — L
at ax X TEP ]
9 _8N
+ay 77 ?)_j'_j']
+d21N?jle‘—d12NPAjl_j' > (22)
0Py _ d N
JJ = — — 20 - L it
=k E)?’“]+ay[ ky+E5 12y,

—dy NPy ;+d ,NP_j_; .

Then the conditions of appearance of at least two stable
states in the system (21) are given by the inequality

y/4k <1/N .

Comparing this inequality with the single-atom optical
bistability inequality (y /4k <1), we find that the collec-
tive effects in the atomic emission weaken the phase sta-
bility proportionally to the number of atoms. The solu-
tion of Egs. (22) is given by the B-distribution law ob-
tained in [10], with the replacement k—k/N. Let us
note additionally that this solution is the distribution
P(y) averaged over all the intermediate states.

(23)

VI. ANALYTICAL SOLUTION FOR N =2

We successfully solved Egs. (21) for a three-level Dicke
system (two atoms in the cavity). In this case, the

steady-state equations for the probability density 7,,,, at
m =0, =1 are of the form

%[(ky — )P, ]+2dPoy—2dP_,_ =0,

%[ky?’oo]+2d(‘P_1_l+?”)—4d7P00=0 . Q4)

%[(ky +g)P,,]+2dPoy—2d Py, =0 .

It is very convenient for solving this problem to normal-
ize the imaginary part of the field amplitude
y [z=y/(g/k)]. The normalization removes the g/k
dependence in the system (24). The role of the parameter
g/k as a scale factor of the imaginary part of the field
amplitude could also be demonstrated in the case of arbi-
trary particle number [see Egs. (28)]. The independence
of the distribution function 7(y) on the ratio g /k is also
confirmed by the numerical solution of (5).

In order to obtain the equation for the distribution
function, it is necessary to take into account the follow-
ing equality

(ky —g)?_1_1+ky7)00+(ky +g)?11:0 )

which immediately results from Eq. (21) for the charac-
teristic functions F;(A,¢). The normalized distribution
function of the two-atom problem is found from the hy-
pergeometric equation

d*P

u(l—u) i’ +[c—(a +b+1)u]£—ab?=0
u

du

(u=2z2),

and expressed in the following manner:

?(X,Z):?O_la ‘x__% ]e(1_22)22(1'c)(1_22)c~a—b

X,Fi(1—a,1—b,c —a —b +1,1—22) , (25)
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where the constants a, b, ¢, and P, are given by the rela-
tions

a=3[1-22 |, (262)

—1—4

b=1 P (26b)

c=1 3_4% , (26¢)

Py 2kB(c a—b+1,2—c)
X,Fi(1—a,1—b,3—a—b;1) . (26d)

Here ,F, is the hypergeometric function, © is the Heavi-

side function, and B is the B-function.
J

E
x — =

P(x,2)=P; ' p

from which it follows that, for the values d /k > 1/N [see
Egs. (23)], the distribution 7(x,z) has one stable point, in
the middle of the range [ —1,1], being equal to zero on its
ends.

On the basis of Egs. (25)—(27), we have numerically
calculated the distribution ?(y) for the different values
d /k. The results are presented in Fig. 4.

VII. DISCUSSION

For the elucidation of the conditions for a new stable
state’s appearance, let us consider the equations for the
probability densities 7,,,,- in the "case" of the exact res-
onance (Aw=0):

O(1—z2)(1—2z2)°"* "% ,F (¢ —a,c —b,c —a —b +1,1—2?) ,
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The qualitative analysis of the distribution function
(25) is rather simple because the P(x,y) function is main-
ly defined by its behavior in the poles z =0,%1 [see Eq.
(25)], but not by the hypergeometric function ,F,. The
critical transition point for the side poles from unstable
to stable states is given by the value d /k =, which cor-
responds to the equality ¢ —a —b =0. The equality
1—c =0 (d/k=1) yields the critical ratio d /k for the
middle stable state appearance. When d/k <1, the dis-
tribution has three sharp maxima in the points with the
amplitudes a=FE /k tig /k and a=E /k (Fig. 4a).

Unfortunately, the solution in the form (25) contains
the hypergeometric series that converges well only at
d/k < (at d /k > %, it converges conditionally). For the
values d/k>1, the distribution function can be
represented in the following different form, equivalent to

{
87)m'm’

——_a_ — i '
3t ax (X TE P 1 o[ (ky +gm )Py ]

dy
—2d(j+j2=m"HP
+dG+m ) G—m' + 1Py

+dGAm DG —=m Py i1 s (28)

where d =v /4. The phase space of the model consists of
N +1 field phase planes that correspond to atoms being
in the dressed states (8) (Fig. 5). Equations (28) describe
the stochastic continuous-discontinuous Markovian pro-
cess defined by the motion on phase planes along the lines
y+gm’'/k=const(x —E /k) for the m’th plane towards
the pole x,, =E /k, y,,, =gm'/k and by the stochastic

o 3 0.3 r —
3 (2) (b)
§ 2t . 0.2} ]
o
£
= 1t . 0.1f -
©
£
: N
A 0 0 "
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Imaginary part of field ot Imaginary part of field o . FIG. 4 7 t,‘un?tlorl of the ﬁ.f:ld steady-state
intracavity distribution obtained from an
0.15 i . . 0.3 analytical solution of (25) and (27) for N =2
"; and g/k =10 at d/k =0.1 (a), d/k =0.4 (b),
7 (e) (d) d/k=0.5(c),d/k =4(d).
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FIG. 5. (a) Stochastic evolution of the system in the phase
space of the model for N =2. The motion on the definite plane
m’ corresponds to the atomic system being in the state |j,m’)
(and to the m'th excitation path on Fig. 1). (b) Stochastic reali-
zation of the intracavity field evolution.

jumps from one plane to another according to transition
probabilities. The continuous part of the Markov process
is determined by the terms of Eq. (28) containing partial
derivatives; the rest defines the discontinuous part of the
process. On the basis of the semi-Markov-process theory,
with the help of the Kolmogorov-Feller equations, one
can calculate the conditional probability density
Com'm',nn (£ +7[2) O the next transition (jump) at time ¢ +7
to state m’, provided that, at time ¢, the system was in
state n:

Comrn (T TI)=Cppr (T)=d,,exp(—y,, 7). (29)

Here d,,,,» denotes the transition probability from plane n
to the plane m’, and in our case it is not equal to zero
only for m'=n=+1:

dy i1 =d(GFn)jEn+1) . (30)

The quantity (y,,)” ' denotes the lifetime of the state
ljsn) (v, =3,d,) and, owing to the population balance
in the system involved, it equals v ,, =2d(j + j2—n?).
After the nth jump at time ¢, onto the m'th plane, the
field amplitude is changed in accordance with
k<t t")[a(tn)_a()m'] , 31)

where a,, =E /k +igm’'/k, and k ~! establishes the time
scale needed to achieve the steady-state point ag,,. Un-

a(t)—ao,n::e
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der the condition

kT l<<Ar<[2d(j+j*—m'™H] 7!, (32a)

the system should be observed during the time interval At
in the m’th, stationary state. As follows from inequality
(32), at m’=j the condition of the appearance of the
boundary stable states (maximum stable states) coincides
with (23). With decreasing m’, the stability of the corre-
sponding state is decreased, and the minimum stability is
observed for the states with m’=2] (odd number of
atoms) or with m’=0 (even number of atoms). The in-
equality (32) points out the relation between parameters
v and k for a stable-state observation. If the cavity
finesse is decreasing, starting from the critical value, new
stable states will consecutively appear; the overall num-
ber of stable states is limited (VN +1 states for N+1
atoms). The analytical solutions of a single-atom prob-
lem (critical point d /k =1 [10]) and a two-atom problem
(critical point d/k=1 for m'==x1, and d/k=1 for
m'=0 {6, present paper]), together with condition (21),
allows us to find the general condition for critical points -
at an arbitrary number of the atoms:

2d/k(G+jr—m')=1. (32b)

As seen from Eq. (31), the stochastic trajectory of the
Markov process after a few jumps will be restricted by
the range [, Amax] (see Fig. 6). When the condition
(32b) is not achieved, the system moves rapidly between
the poles that are nearest to the central one. Therefore, it
can be mainly found in the central point of the trajectory.
In the case of multistability, the system spends most of
the time near one of the poles. The values of the field am-
plitude corresponding to the stable states are presented in
Fig. 6. All points of the phase trajectory have the same
real part of the field amplitude E /k, and an imaginary
part increasing as the arithmetic series with the step g /k,
beginning from the minimum value — jg/k. Besides the
difference of phases between the input field and one of the
values of the output field

@, =arctan(gm'/E) , (33)

Reot 4

=i
t
ESio)
T

=T,

_ei g 0 g g

K K ImX

FIG. 6. Diagram of the stationary values of the intracavity
field complex amplitude for the even number of atoms.
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the difference in modulus
Ala,, |=E/k{[1+(m'g/E)*]"/?—1} (34)

appears, which permits us to refer to the predicted effect
as the amplitude-phase multistability. Note that, at
N — o, the maximum phase difference tends to 7 /2.

Thus, the predicted multistability may be experimen-
tally observed by comparison of the amplitudes and the
phases of the input and output fields, e.g., using the in-
terference phenomena. However, it should be taken into
account that, for observing all possible stable states, the
observation time AT~/ .__.[2d(j+j*—m'®)] ! is
needed.

VIII. POSSIBLE EXPERIMENT

The experimental conditions of the amplitude-phase
multistability observation are more accessible than those
of a single-atom bistability [10]. In the multiatom experi-
ment, the cavity finesse can be reduced in N times com-
pared with the single-atom case under the conditions of
high pump intensity, strong coupling for the execution of
inequality (9), and the conservation of the boundary-state
stability. The observed phase difference will surpass the
difference A@ for the single-atom problem in
[arctan(gN /2E)]/arctan(g /2E) times.

As was shown previously, two conditions [Eq. (9) and
Eq. (32)] should be fulfilled for an experimental realiza-
tion of the predicted effect. Both of them can be achieved
in the modern experimental devices. For example, in [15]
the effect of absorptive bistability has been investigated in
the case of strong interaction of the atomic Cs (A p, =852
nm) beam with the field of the high-quality cavity with
the transmitting coefficient T,=4X107° [k=cT,/2L
=2m(0.9+0.1) MHz, L =1 mm]. The coupling constant
go was of the same order as the spontaneous emission

probability y: [gq,¥7]=[27(3.2£0.2, 5+0.4)] MHz.
The normalized input pump intensity
Y=I,,/(I,T,)~10* (titanium—sapphire laser with

the beam waist w,=50 um), where I,=1 mW/cm?
I, /1,=(c /4)(#w /T3l ) E /k)*, gives the estimation of
the Rabi frequency of the atomic oscillations in experi-
ment [15] as Q ~ 10?g, that allows the conditions (9) to be
fulfilled. However, in this experiment, the inequality (32)
is not achieved due to the large value of the ratio y /k.
But this inequality can be easily satisfied. Therefore we
conclude that at least the effect of single-atom optical
phase bistability is realizable in the case of conditions
that are close to the conditions of experiment [15].

As for observing the effect of amplitude-phase multi-
stability, the atoms should be confined in the region small
compared with the resonant wavelength during the time
interval At defined by Eq. (32). This is a more complicat-
ed experimental problem. But some collectively radiating
systems can be proposed: a system of atoms in optical
traps, colliding beams of atoms, and a system of atoms
formed by a molecule dissociation (see, for example
[16,17]). Besides that, a molecule with a semiequidistant
energy spectrum could also be a candidate for the genera-
tion of amplitude-phase multistable light.
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In conclusion, it should be noted that the effect of
multistability of the two-level atomic system in a high-Q
cavity reflects the quantum character of the atomic in-
teraction with radiation to a larger extent than the effect
of a single-atom phase bistability considered in [10,11]. If
the effect of a single-atom phase bistability could be ex-
plained on the basis of the quasiclassical model by inter-
preting the creation of two stable states as an appearance
of stationary points on the Bloch sphere [10], then for the
explanation of the internal stability states in the case of
an atomic system, such an approach, based on the equa-
tions for the mean values {J; ), could not be used. On its
basis, one can only explain the existence of two boundary
stationary states. The appearance of the internal stable
states demands for their explanation the consistently
quantum approach, which is not restricted by the
lowest-order means (J; ).
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APPENDIX

Let us consider the structure of the energy levels for
the multiparticle analog of the Jaynes-Cummings Hamil-
tonian [14] in the case of exact resonance o =,

H=t%wa'a+#%wl,+#ga’J_+al,) . (A1)

The eigenvectors of the Hamiltonian (A1) can be ex-
pressed as |[n —j—m ) fIm ) » where indices f and a label
the eigenstates of the free resonator field and atomic sys-
tem, respectively. As shown in [14], the interaction
Hamiltonian ﬁg(aTJ_ +aJ ;) has the eigenstates
k
12j,n,r)="3 apln—j—m)sm),, (A2)
m=—j

where the number n =0, 1,2, . . . corresponds to the exci-
tation number in the system ‘““field plus atoms,”

j, whennz=2j,
k= n—j , when n<2j .
The number 7, varying from —n /2 to n/2 at n <2j and
from —j to j when n =2j, enumerates the eigenstates of
the Hamiltonian #g(a’J_ +aJ, ) belonging to the fixed
number of excitation n. The states |2j,n,7) are also the
eigenstates of the Hamiltonian H with the energy eigen-
values

€2j,n,r:ﬁw(n_j)+E2j,n,r , (A3)

where E,; , . are the eigenvalues of the interaction Ham-

iltonian
#ig(a'J_+al )2j,n,r)=E,;, 12jn,r) . (A4)

According to (A2) and (A4), the coefficients «a), satisfy
the recurrent equation

oy i Se—E, ah +al, Sk _,=0, (A5a)
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with the boundary conditions

n —_— n —_—
a’; =aj,=0,

y n=2j,

. ., ] (A5b)
al; 1=a,_j+1=0, n<2j,
and the eigenvalues E, are defined from the equation

—E S, 0

s", —E S";,
o — 0 S",., —E
et ;=
0 - S, —E S
0 S —E
=0, (A6)
where " =hgVin—j—m)j+m+1)j—m) and

E=E,;,,- The dimension of matrix (A6) sets the num-
ber of split sublevels of the free Hamiltonian energy level
E,, =#iw(n—j) at given n and j. The number of sublev-
els corresponding to the level E,, grows proportionally
to the excitation number n (Fig. 1). The maximum of
sublevels is restricted by the maximum dimension of ma-
trix (A6) and equals 2j +1. With further increasing of
the excitation number, only the distance between split
levels increases.

Using the recurrent equation for det” ; obtained by the
decomposition of the determinant (A6) on the element of
the first line

det” ;=E det” ; ;,— (S ;)’det” ; |, , (A7)
we obtain that, in the case of even dimension of matrix
(A6), the splitting on sublevels E, is symmetrical relative
to Eg,, but in the case of odd dimension, besides the
symmetrical sublevels, the level with E,; , ;=0 is avail-
able. The corresponding scheme of the energy levels for
the even (2j=N=2) or odd (2j=N=3) number of
atoms is presented in Fig. 1(a) [Fig. 1(b)].

In the case of large excitation number n, e.g., at the
large number of photons

(A8)
J

n>>2j,

i . _
(2j,n',r'lal2j,n,r)=(2j,n",r'| > di(—a/2Vn—j—m|n—j—m—1),Im)Vn8, ,_ 8, .

m=-—j

Consequently, at n >>2j, the transitions between the
states with the same quantum number r only are allowed.
This explains the existence of 2j + 1 independent excita-
tion paths. Moreover, taking into account that, for cal-
culating the mean values of field operators at n >>2j, one
can use the approximate matrix elements (A16), the
eigenstates (A15) can be represented in the factorized
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it is possible to obtain the approximate solution of Egs.
(A15) and (A16). Indeed, assuming in Egs. (A5a)
S, ~#gVnV(j+m+1)(j—m), we obtain that Egs.
(AS5a) are equivalent to the eigenvalue problem

#igVn (J,+J )Yp)=Elvg) , (A9)
where
J
lYe)= 3 alm),, (A10)

m=-—j

and |m ), are the eigenstates of operator J,. The solution
of Eq. (A9) is obvious. Performing the rotation transfor-
mation

J!=exp I%Jy J, exp i%Jy , (A11)

we obtain that, in the considered approximation, the
eigenstates E up to a factor coincide with the eigenstates
of the angular-momentum operator J,

Eyj,,=20gVnr (r=—j/2,...,j/2), (A12)

and eigenvectors |z ) are connected with eigenvectors
|[r)=|m’) of operator J, via the equation

exp |—i-J, |lgp)=Ir) . (A13)

According to the last equation, the coefficients a), are
defined by Wigner d functions and, at n >>2j, they are in-
dependent of the excitation number n:

al, =dj (—m/2). (A14)
Thus, the approximate eigenstates of the interaction
Hamiltonian at large n have the form

Jj .
12jn,rd= 3 di(—w/2)n—j—m);m),. (A15)

j
Under the action of the input field [the interaction Ham-
iltonian iE (aT—a)], the system ‘“‘atoms plus intracavity

field” can perform the transitions between the states
|2j,n,r ). The matrix transition elements are equal to

(A16)

[
form

12j,m,r)=[n);lr),, (A17)

where the states |r), =3/ __;d}, (—m/2)lm), coin-
cide with the dressed states (8) at p=1/2.
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