
PHYSICAL REVIEW A VOLUME 48, NUMBER 5 NOVEMBER 1993

Molecular photodissociation with diverging couplings: An application to H2+
in intense cw laser fields. I. The single-photon problem
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The photodissociation of homonuclear ions exposed to continuous-wave (cw) lasers gives rise to
asymptotically diverging couplings when approached in the electric-field gauge. Quantization of the
laser-induced resonances becomes possible by complex rotation, leading to accurate energies, widths,
and wave functions. A pseudoflux is endowed in the closed-channel component when calculated in the
diabatic frame and for.high laser intensities. A complex energy flux analysis performed in the adiabatic
representation is developed, replacing the standard Siegert analysis which is no longer adequate for the
extraction of the width from the asymptotic amplitude of the open-channel function. At the limit of
strong radiative couplings the remaining nonadiabatic couplings asymptotically vanish. In the special
case of constant potential couplings, the width is given by the asymptotic amplitude of the open-channel
function through a modified Siegert analysis. Application is made to H2, in laser frequency and intensi-
ty regimes where a single-photon description is sufficient.

PACS number(s): 33.80.Gj, 42.50.Hz, 34.50.Rk, 34.10.+x

I. INTRODUCTION

The quantitative study of photofragmentation dynam-
ics under strong radiation fields constitutes one of the
challenging problems of molecular physics. Optical non-
linearities and important distorsions of absorption line
shapes have been experimentally observed in dissociation
processes involving even a single photon [1]. A consider-
able amount of theoretical effort has recently been devot-
ed to the description and interpretation of the inherent
mechanisms leading to the aforementioned effects [2—8].
The field can no longer be considered as a perturbation,
and an exact treatment has to take properly into account
the molecule-plus-laser field system as a whole. Concep-
tually, this can be viewed in two different ways. The first
is within a time-dependent approach [9—11]. It offers
the possibility to study the realistic time-resolved dynam-
ics of the process basically driven by an intense elec-
tromagnetic field, which in general can only be achieved
using short laser pulses. The spreading of the wave pack-
et or the possible presence of long-lived resonances which
govern the process may, however, lead to hard computa-
tional tasks when this approach is addressed. For pulses
of long duration with respect to the time scale of the dy-
namics of the process, the laser field can be considered as
periodic, thus allowing the complete elimination of the
time variable through a full Floquet expansion of the
molecule-plus-field Hamiltonian. This gives rise to the
time-independent approach. This approach not only pro-
vides a more direct and accurate way to calculate the res-
onances involved in the process, but also offers a useful
and important interpretative tool in terms of the station-
ary field dressed molecular states [5,8, 12—14].

Within a time-independent approach, essential compli-
cations arise when referring to a continuous-wave (cw)
laser acting on homonuclear molecular ions. As is well

known, the radiative coupling within the dipole approxi-
mation may be introduced through two different gauges:
the radiative field (RF) gauge A p (i.e., the vector poten-
tial 3 times the momentum vector p), or the electric-field
(EF) gauge p, E (i.e., the transition dipole moment p,
times the electric-field vector E). Both are equivalent,
but present different pros and cons [15,16]. With respect
to the RF gauge, interchannel couplings dramatically in-
crease at short internuclear distances, thus requiring the
introduction of a considerable amount of excited elec-
tronic states for an appropriate description. This is basi-
cally why the present analysis is going to be held to the
EF gauge, which nevertheless presents another difficulty
related to a spatially diverging dipole transition moment.
In the case of H2+, the unique electron of the system is
equally shared between the two protons, leading at the
separated-atom limit to a configuration H+-electron-H+.
The dipole moment consequently acquires asymptotically
a diverging R/2 spatial dependence [17], giving rise to
so-called persistent effects. Such effects appear in various
contexts in atomic and molecular physics: Stark effect,
spin-orbit couplings, Coriolis or hyperfine interactions
[18—21]. They result from potential matrices which ei-
ther do not go to constant thresholds (persistent poten-
tials) or do not converge to diagonal forms at the separat-
ed fragment limit (persistent couplings). In the case of
the single-photon absorption of H2+ described by a single
Floquet block which involves one open and one closed
channel, a standard scattering theoretical approach in the
diabatic representation is no longer appropriate to de-
scribe experimental observations. This is due to the fact
that the fragments remain coupled at an infinite interpar-
ticle distance through a potential matrix having asymp-
totica)ly diverging off-diagonal elements (persistent cou-
plings). When inoving to the adiabatic representation,
the interchannel coupling is diagonalized, but the per-
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sistent effects are transferred into both nonadiabatic cou-
plings and adiabatic potentials which behave as +R /2 at
infinite interparticle distances (persistent potentials).
Moreover, a Siegert-type characterization for the reso-
nances [i.e., a regular solution of the Schrodinger equa-
tion with outgoing exp(ikR ) behavior in each open frag-
mentation channel] [22] is impossible: in the diabatic
frame this is due to asymptotically nonvanishing inter-
channel radiative couplings, and in the adiabatic frame to
asymptotically nonconstant potentials.

The complex-coordinate method has recently been
presented as a possible way to circumvent such
difficulties [8,21,23]. In particular, it has been shown that
by rotating the integration coordinate R into the complex
plane, even in cases where interchannel couplings and/or
channel potentials asymptotically diverge, resonances can
still be defined as solutions of an eigenvalue problem with
zero boundary conditions at the origin and at large inter-
particle separation [18,21]. These conditions give rise to
complex quantized energies providing the positions and
the total widths of the laser induced resonances. In the
case of H2+, they have been calculated for several wave-
length and intensity regimes. The aim of this paper is to
develop an alternative way to evaluate the same [8,23]
rates, but referring now to the open-channel component
of the resonance wave function in the adiabatic represen-
tation. The advantage of such a method is to provide ad-
ditional physical insight into the dynamics of the process
within an original R-dependent Aux analysis which is to
be developed (this paper), and the possibility, through a
following multichannel generalization (paper II) [24], to
calculate partial cruxes, .and branching ratios of multipho-
ton processes resulting into different fragment states.

Besides this quantal approach, we note that semiclassi-
cal treatments extensively developed in the literature [25]
also seem adequate for handling persistent effects, as they
rely upon adiabatic-potentials. Nevertheless, their use
presents some difficulties related to an accurate deter-
mination of phase correction factors which has to go
beyond an approximation of the Landau-Zener type.
This approximation is clearly no longer valid in the pres-
ence of persistent couplings, due to the fact that it as-
sumes that potential couplings are localized at the curve-
crossing position. As for the application of a multichan-
nel semiclassical approach, it becomes even harder since
it goes beyond standard curve-crossing situations.

II. THEORY

A. The width from energy quantization

The calculation of resonance energies and wave func-
tions can in principle be done with either a real or a com-
plex variable [26]. The latter choice turns out to be a
powerful tool for the accurate and easy localization of the
resonances even in cases deviating from the standard
scattering matrix analysis [27]. The coordinate R is ro-
tated into the complex plane as [28,29]

p=R for R ~RO
R

p=RO+(R —Ro)exp(iO) for R ~Ra .

d2

dp p

+ V;„,(p) U2(p) =0, (2)

+ V;„,(p)Ui(p)=0, (3)

where J denotes the rotation quantum number, while the
mass factor has been embodied in a properly scaled coor-
dinate p [30]. The quantities V and Vd denote the dia-
batic potentials corresponding to the ground 1so. 'X~
and excited 2po. „'X„+electronic states, respectively, of
H2+ given by Bunkin and Tugov [31]. Ui and Uz are the
open- and closed-channel components of the diabatic nu-
clear wave function. The interchannel coupling V;„,(R)
is given by [17]

V;„,(p) = 1. 17 X 10 &Ip(p), (4)

where p is in atomic units, and I the laser intensity in
W/cm, leading to V;„,in cm '. The functional form of
p corresponds to an asymptotically divergent transition
dipole [31]. In order to solve this system, the Fox-
Goodwin propagation algorithm is used in conjunction
with a properly chosen set of imposed boundary condi-
tions which accounts for the correct behavior of the
channel wave functions at short and large distances. The
algorithm consists in an iterating sequence of two steps
[30].

(i) Properly initialized 2X2 Fox-Goodwin matrices P
and P ' are constructed at each point I of a grid, in
terms of independent solution matrices U ' and U '.

P' =U' +,[U' ] P' =U', [U' ] (5)

and propagated along the grid inward (label i) and out-
ward (label o), respectively.

(ii) The criterion for convergence is a determinantal
condition which must be obeyed by the matrices at a
matching point chosen at will:

where index M labels the matching position on the grid.
For regular open-channel components with purely outgo-
ing asymptotic behavior, this condition is fulfilled only
for complex resonance energies E. Their real part E„cor-
responds to the position of the resonance, while their
imaginary part gives rise to the resonance width I .

As regards the problem of the boundary conditions to

The parameter Ro allows for a partially real integration
path to be constructed, which, in some cases, turns out to
be of decisive importance for the accurate localization of
the resonance wave functions. In a converged calculation
the resonance properties must remain, to some extent, in-
sensitive to changes of these parameters, thus forming
well-defined plateaus of stability.

The two-channel close-coupled equations are solved in
the diabatic representation. They read [5,8]

d2

dp p
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Ui(R)~A exp(ikR) as R —moo

where k =&E is the wave number in the open channel,
and A is the corresponding amplitude. Also, in cases
characterized by persistent efFects, the asymptotic form
of the open-channel function is difFerent from the stan-
dard Siegert, and depends on the form of the involved po-
tentials and couplings. It can, however, be shown [18]
that complex rotation of the coordinate may, even in
such situations, produce localized channel functions:

U, (p~ ~ ) = U2(p~ m) ) =0 .

As for the corresponding ratio matrix, recently Chrysos
and Lefebvre demonstrated that if complex rotation is
used then P ' initialized by zero for all the channels is able
to correctly build resonance wave functions even in cases
where the interchannel couplings persist at infinity [21].
The resonance solutions are as accurate as those obtained
by a real coordinate treatment, in which the correct out-
going asymptotic behavior of the open-channel com-
ponents has to be taken into account.

B. The width from the wave function

An appropriate asymptotic analysis of the resonance
wave function can also lead to accurate determination of
the width. The prerequisite for such an analysis is the
calculation of channel components U&(p) and U2(p). At
the matching position M the channel functions can be ob-
tained by solving the homogeneous set of equations

[PM (PM+ i) '] UM =0 (10)

where UM denotes the solution column vector with com-
ponents U at M. The channel functions at the other grid
points could in principle be constructed by making use of
the relations [32]

UM + 1
= ( PM + 1 ) UM ~ UM —i

—( PM —1 ) UM

However, when leaving the matching point, divergence of
the wave function is very likely toward classically forbid-
den regions where its components must tend to zero (i.e.,
toward small R for all channels or toward large R for
closed channels). A much more satisfactory computa-
tional procedure can be invoked that is based on the fol-

be imposed, it addresses the initialization of the Fox-
Goodwin matrices P ' and P '. Given that near the origin
both open and closed channels are classically forbidden,
regularity can be imposed for both channel functions:

Ui (p =0)= U2(p =0)=0 .

Therefore, the Fox-Goodwin matrix P ' can be safely ini-
tialized by zero for both the open and closed channels.
As for the boundary conditions for large interparticle dis-
tances, for standard situations, characterized by channel
potentials tending to constant thresholds and by asymp-
totically vanishing couplings, the potential matrix ac-
quires a constant diagonal form. The open-channel com-
ponent of the resonance wave function takes the well-
known Siegert form [22]:

lowing fact: once the iterative method giving the reso-
nance energy has converged, throughout the entire grid
we have

(P' +, ) '=P', (P', ) '=P' (12)

Provided that all these matrices have been stored, P ' can
be used to perform outward propagation of the vector
solution, while P' is used for inward propagation. This
procedure omits completely the instabilities which are
observed when P ' and P ' are used to perform outward
and inward propagations, respectively. The high reliabil-
ity of this technique has been recently demonstrated [33].

The computed channel functions U, (p) and U2(p) are
arbitrarily normalized. The correct normalization of the
wave function, however, remains a difficult task, and a
large part of the currently existing treatments of reso-
nances has been devoted to this problem ([34,35] and
references therein). Various methods of normalization of
open-channel functions exist. At least two of them
deserve special attention.

Norma1ization 1

The integration of the squares of the rotated channel
functions is carried out along a partially real path C
defined by Eq. (1) [34]:

f [U, (p)+ U (p)]dp

=f [U, (R)+U2(R)]dR
0

+exp(i8) f [U, (p)+U2(p)jdR . (13)
0

The integrand is square integrable and the integral con-
verges to a complex number. Both the modulus and
phase of the normalization coefficient have been stored in
this quantity. Let us further make the assumption that at
distance R0 the closed channels have already died, while
the open channels are just starting to acquire Siegert
asymptotic behavior. Then Eq. (13) via Eq. (8) takes the
form

& P +U2P dP

U)=Ui
1/2

f [v', (R)+ v,'(R)]dR+ v', (R, )
0 2k

Rof [U, (R)+U2(R)]dR+ Ui(RO)
0 2k

(15)
1/2

(16)

Normalized amplitudes for the channel functions can
also be defined. For the open-channel component it reads

[U, (R )+ U2(R )]dR+ Ui(RO) . (14)
0

2 2k 1 0

Although path C is 0 dependent, the latter expression
turns out to possess a basic property for a normalization
constant, namely the 0 invariance. Normalized channel
functions can be defined as
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j/2

f [U, (R)+ U~(R)]«+ U, (RO)
0

(17)

2
(18)

According to the theory of Fano [36], the total width of
the resonance can be written as

f [IU, (R )I'+IU, (R')I']dR'

1/2
IA l~ u, ~o

2k,
(21)

The normalized amplitude for the open-channel com-
ponent of the resonance wave function reads

Equations (14) and (18) are identical to those produced by
Hokkyo [37,35] and obtained from S-matrix considera-
tions.

Worma1ization 2

f '[IU, (R')I'+ IUD(R') ']«'
1/2

+ I
& I'(I 2k, &.

)
2k]

(22)

This refers to the square of the modulus of each chan-
nel function, integrated up to a certain distance R [38].
No complex rotation is assumed for this normalization,
and the quantity Ro ( (R ) is retained only to indicate a
certain posit'ion in the far asymptotic region. By making
the same assumptions as for normalization 1 with respect
to the asymptotic behavior of the channel functions, it
can be shown that the following diverging expression is
obtained:

f '[I U, (R') I'+
I
U (R') I']«'

Ul R 2+ U2R 'dR

+ (I U, «) I' —
I U, «.&I'&,

2 ]

where —k, ( (0) denotes the imaginary part of the wave
number k (its real part being ko)0). This behavior is
inappropriate for a normalization coefficient. The in-
dispensable R invariance emerges by extracting the
diverging asymptotic behavior of Eq. (19), thus giving
rise to normalized channel functions [21,38]:

The latter expression has been discussed by Humblet and
Rosenfeld [38], and leads to a total width

—=k IJ'.0 (23)

For narrow resonances and in the absence of any per-
sistent effects, Eqs. (18) and (23) are expected to be very
close to each other, reproducing to a very good approxi-
mation the width which is extracted from energy quanti-
zation. For H2 in a weak-intensity regime, this is exact-
ly the case. The approximation of asymptotically decou-
pled channels converging to constant thresholds is sti11
reasonable. As the intensity increases, the asymptotic
form of the open channel departs more and more from
the conventional Siegert form. For such intensities, both
Eqs. (18) and (23) are expected to fail.

A more general way of extracting the resonance prop-
erties, valid even for high intensities, is found in the con-
text of a complex-energy probability-Aux analysis and
does not assume any particular asymptotic behavior for
the open-channel component of the resonance wave func-
tion. To this purpose, let us multiply Eqs. (2) and (3) by
U& arid U2, respectively, and add them up. By subtract-
ing from the resulting expression its complex conjugate,
one gets

f [ I U)(R ') I'+
I U~(R '& I']dR '

1/2

(E E*)[lU, I
+

I

—U
I

]+[U*,U", —U, U',"]

+[U2 U2 —U~U~*]=0 . (24)
Zk, Z,

2k,
(20) Given that I = —Im(E E*), Eq. (24) —leads directly to

the following expression:

2
=Im[U& (R )U&'(R )+ U2 (R )U2'(R )]/[I U&(R )I +

I
U&(R )I ], R (Ro .

By integrating Eq. (25), a Jeux expression is obtained:

—=Im[U) (R )U~(R )+ U2 (R )U2(R )] f [ U~(R')I +
I
U2(R')I ]dR', R (Ro .

0

(25)

(26)

So far, the concept of probability Aux has been thorough-
ly examined in both time-dependent [39] and time-
independent approaches [40—42], and by treating either
real [40,41] or complex [42] energies. Nevertheless, all

the situations which have been studied refer to potential
matrices converging to constant and diagonal forms (see
for instance [41]). Both Eqs. (25) and (26) are R invari-
ant. For their derivation no approximation has been as-
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sumed. They are valid whatever the potential channels
or the interchannel couplings are. In addition, no specific
asymptotic form has been imposed on the behavior of the
channel functions. This fact makes them valid
throughout the entire real range of R.

For standard situations of potential channels converg-
ing to constant thresholds, and interchannel couplings
vanishing asymptotically, only the first term of Eq. (25)
survives asymptotically. The term which refers to the
closed-channel component vanishes at large interparticle
distances, and the corresponding flux to the closed chan-
nel asymptotically dies out as it has to (see also Fig. 1).
At large distances where U2 is expected to be vanishingly
small, the resonance width is merely given by

U", (R )—= Im
2 Ui(R)

(27)

Its energy position reads

U", (R )E„=V, (R )
—Re

U, (R )
(28)

In these expressions only the open-channel component is
involved [43]. For situations characterized by persistent
effects, this approximation is no longer valid. The
closed-channel component is strongly driven by the open
channel, thus endowing asymptotically a physically unac-
ceptable Aux. Another pair of channel functions is
sought, such that the information for both width and
shift is to be carried by only one of the new channels, the
other vanishing asymptotically. The linear combination
of U& and U2 which gives rise to channel functions with
the desired property will be shown to be the one which

Vi (R )
—V2(R ) + V;„,(R )

1/2

(29)

The corresponding adiabatic channel wave functions
U+(R ) are

U+ (R ) = U, (R )cosg(R ) —U2(R )sing(R ),
U (R ) = Ui(R )sing(R )+ U2(R )cosg(R ),

where P(R ) is defined as

V~„,(R )
tan R

V2(R )
—V+(R )

(30)

(31)

(32)

By expressing the diabatic functions in Eqs. (30) and (31)
as linear combinations of the adiabatic ones, and substi-
tuting the resulting expressions in both Eqs. (26) and (25),
two new expressions are obtained:

Im[U+(R )U'+(R )+ U* (R)U' (R )]

I [IU+(R')I + IU (R') ]dR'

Im[U+(R )U (R )P'(R )]+2
J [IU+(R') '+ IU (R')I']dR'

(33)

and

eliminates the persistent potential coupling. This com-
bination is determined by diagonalizing the potential ma-
trix V(R ), resulting in adiabatic eigenvalues V+ (R )

which are given by

Vi(R )+ V2(R )
V+(R )=

2

J.5 l.5
(b)

0.5 . 0.5 .

-0.5 -0.5

-J.5

l.5
(c)

3 4

R (bohr)

-J.5

1.5

3 4

R (bohr)

0.5

0.

0.5-

-0.5

- j.5
3 4

R (bohr)

- J.5 3 4

R (boh()

FIG. 1. Real (solid lines) and imaginary (dashed lines) parts of the channel components of the v =0 resonance wave function for
I=3.5 X 10' W/cm . The functions are normalized according to Eqs. (15) and (16), which preserve the phase factors. (a) Open chan-

nel in the diabatic frame. (b) Closed channel in the diabatic frame. (c) Open channel in the adiabatic frame. (d) Closed channel in the

adiabatic frame. Asymptotically the closed-channel components are vanishingly small in both diabatic and adiabatic frames, while

their imaginary part is negligible everywhere. The real and imaginary parts of the open-channel components differ asymptotically by
a phase approximately equal to m/2.
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Im[ U+ (R ) U'+ (R )+ U* (R ) U" (R ) ]

IU+(R)I'+IU (R) '
&I

%co Ac@
(37)

Im[U" U P'+U* U' P'+U* U P"]+2 IU+«)I'+ IU (R)I'
(34)

In these expressions, apart from the two single-channel
terms, interference terms appear, related to nonadiabatic
couplings which spring out once the potential couplings
are eliminated. In order to determine their dependence
as a function of increasing intensity, let us examine the
quantity P (R ) for interparticle distances at which the di-
abatic potentials have reached their threshold values. By
making use of Eq. (32), P'(R ) becomes

fled flCO

Although P increases with the intensity, its values are
vanishingly small throughout the entire zone of the frag-
mentation.

(ii) I V;„,/AcoI ))1: This regime corresponds to intensi-
ties which are prohibitively high. The state preparation
problem and the extremely strong resonance overlapping
are some of the severe complications that it addresses. In
this regime, more than one photon is exchanged, and its
study is out of the scope of the present paper. Neverthe-
less, within the single block description, it is important to
determine the behavior of the nonadiabatic couplings.
Equations (35) and (36) give

Vent

f
V;„,+ f

2 7 (35)
%co int

as V;„,~ oo,
4 Vent

or, by making use of Eq. (4),

(38)

where
2 1/2

%co

2 int (36)

Two extreme regimes of interchannel coupling V;„,can
be examined in the region where the fragmentation
occurs, as compared to the dressing energy Ace:

(i) IV;„,/A'coI «1: This is the regime to which the
present study refers. Even for the highest examined in-
tensity (I=1.4X10' W/cm ), the dressing energy which
corresponds to the selected wavelength (A'co=10 cm ')

by far dominates over the interchannel coupling
throughout the region which is important for the frag-
mentation to occur (e.g. , I V;„,/ficoI =0.14 at R =7 bohr).
The expression of Eq. (36) can be linearized, and Eq. (35)
becomes

%co 1 dP' —+ — lnV;„, as V;„,~oo .4p IdR (39)

This behavior assures vanishing nonadiabatic couplings
at the limit of either very high intensities or large inter-
particle distances [44]. As is seen from Eq. (38), this
behavior holds whatever the form of the divergence of
the potential coupling, since V;„,diverges faster than

IV;„,.
In the adiabatic frame both radiative and kinetic cou-

plings vanish asymptotically. No pseudoAux is expected
to be endowed in the closed-channel component U+, and
the entire width must be carried by the open-channel
component U only. This is illustrated in Figs. 1 and 2,
where both diabatic and adiabatic channel functions are
shown for two different intensities. For suKciently large
R, Eq. (34) reduces to the following expression:

TABLE I. Widths and shifts (in cm ' units) with respect to the corresponding zero coupling energy
(78701.56 cm ') of the U =0 resonance, for different intensities (in W/cm units), and for A, =100 nm

referring to crossing at the equilibrium position. Widths and/or shifts are calculated with the Fermi
golden rule (first row) and with energy quantization including one Floquet block (second row). They
are also extracted from an asymptotic analysis of the open-channel function: The Siegert analysis is

from Eq. (18); the diabatic Aux analysis is from Eqs. (27) and (28); the adiabatic Aux analysis is from

Eqs. (40) and (41). Comparison is made with the converged calculation of Ref. [23], involving many

Floquet blocks. The errors indicate the stability of the widths along the last 2000 points on the real

part of the grid.

Fermi golden rule
Energy quantization. One block

Siegert analysis: Eq. (18)
Diabatic: Eq. (27)
Eq. (28)
Adiabatic: Eq. (40)
Eq. (41)
Converged calculation (Ref. [23])

Property

width
width
shift
width
width
shift
width
shift
width
shift

I=3.5 X 10'

3.4222
3.4222
2.49

3.47+0.05
3.37+0.03
7.68+ 1.69

3.4222+0.0000
2.49+0.00

3.4295
2.18

I=3.5X10"

342.22
377.05
276.01
368+7
372+3
754+167

377.05+0.00
276.01+0.00

380.48
217.31

I=1.4 X 10"

1368.88
1787.94
558.05

1565+85
1770+10
2557+648

1787.94+0.00
558.05+0.00

1782.70
447.74
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TABLE II. Widths and shifts (in cm ' units) with respect to the corresponding zero coupling energy
(95487.76 cm ') of the v =10 resonance, for same laser parameters as in Table I.

v =10

Fermi golden rule
Energy quantization. One block

Adiabatic: Eq. (40)
Eq. (41)

Property

width
width
shift
width
shift

I=3.5X 10'

0.2239
0.2239
0.292

0.2239+0.0000
0.292+0.000

I=3.5X 10'

22.39
26.83

234.346
26.83+0.00

234.346+0.000

I= 1.4X 10'

89.56
176.07
966.951

176.07+0.00
966.951+0.000

Z. U" (R)
2 U (R)

(40)
open channel, and A the corresponding amplitude.
Equations (18) and (23), respectively, are modified into

(43)
where only a single channel is involved. The correspond-
ing expression for the resonance position reads and

U" (R)E„=V (R)—Re (41) (44)

U (R )~A exp(i%'R ), (42)

where %=QE I is the wa—ve number of the adiabatic

These expressions offer the possibility to check the accu-
racy within which the diabatic channel functions are
computed and, therefore, the efficiency of complex rota-
tion to localize resonances for divergent potential cou-
plings. They also offer the means to measure the degree
of the asymptotic decoupling of the adiabatic channels
and, consequently, the quality of the adiabatic represen-
tation to describe laboratory observations for all the ex-
amined intensities. In the specia1 case of asymptotically
constant persistent couplings [21], the nonadiabatic terms
are zero, due to the fact that P'=P" =0. The adiabatic
potentials converge to constant thresholds I+, and the
open-channel component of the wave function, U, ac-
quires a modified Siegert form:

where A denotes the normalized amplitude of the open
adiabatic channel and A'0 the real part of the wave num-
ber A, respectively.

III. RESULTS

Calculations are done for three laser intensities corre-
sponding to different field regimes and with a wavelength
X=100 nm, which is close to the maximum of the single-
photon absorption line shape of the vibrationless state.
Two laser induced resonances are studied, representing a
low- and a high-lying vibrational level, i.e., (U,J ) = (0, 1)
and (10,1), by propagating the Fox-Cxoodwin ratio ma-
trices along a partially real grid. Both inward and out-
ward Fox-Goodwin matrices are initialized by zero for
both channel components of the resonance wave func-
tion. Various grid dimensions are tried, all leading to at
least 3 —4 accurate decimal digits. As a typical grid we
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FIG. 2. Same as for Fig. 1, but for I=1.4X10' W/cm . The closed-channel component in the diabatic frame asymptotically
diverges, thus endowing a nonphysical Aux. Its asymptotic contribution becomes vanishingly small in the adiabatic frame.
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4.

R (bohr)

FIG. 5. Nonadiabatic couplings P (in arbitrary units) as a
function of the interparticle distance (in bohr units). Solid line:
I=3.5X 10' W/cm . Dashed line: I=1.4&(10" W/cm . As
the intensity increases, the nonadiabatic couplings spread
around the crossing position; however, they remain vanishingly
small in the asymptotic region.

in reproducing the resonance width. As for the single di-
abatic channel expressions of Eqs. (27) and (28), where no
Siegert form of the open channel is assumed, they also
fail to reproduce the resonance properties.

On the other hand, for all the examined intensity re-
gimes, Eqs. (40) and (41) are able to reproduce the width
and shift of the v =0 resonance to an excellent accuracy
(five to six figures). The high quality of the method to
correctly quantize laser-induced resonances, and, through
an asymptotic analysis of the open adiabatic channel
function, to reproduce accurately their widths and shifts,
is preserved no matter how much of the persistent cou-
plings their wave functions experience. This is numeri-
cally demonstrated in Table II for a very high-lying reso-
nance v = 10, whose wave function, being spatially
diffused, is much more exposed to the radiative coupling.
Figures 1 and 2 refer to the v =0 resonance for the two
extreme intensities, respectively. Figures 1(a) and 1(b) il-
lustrate the open- and closed-channel components of the
wave function in the diabatic representation. Figures 1(c)
and 1(d) illustrate the corresponding components in the
adiabatic representation. As long as the intensity
remains low, the functions in the two frames are not
characterized by important differences, and the resonance
properties could be equally extracted from both frames
(Fig. 1). On the contrary, as the intensity increases (Fig.
2) the closed diabatic channel function presents asymp-
totically an important osci.llatory and diverging behavior
comparable to that of the open channel. This behavior is
associated with a physically unacceptable Aux which car-
ries part of the resonance width and vanishes once the

adiabatic frame is invoked. A similar behavior is ob-
served for higher-lying resonances. In Fig. 3 the open
[Fig. 3(a)] and closed [Fig. 3(b)] adiabatic channel func-
tions are presented for the resonance of quantum number
v =10 and for the highest laser intensity (I=1.4X10'
W/cm ). It should be noticed that the closed-channel
component of the wave function contains eight nodes in-
stead of ten. Although in the preparation stage the reso-
nance stems from the U =10 level, its physically relevant
closed-channel component has a nodal structure similar
to the v+ =8 vibrational level of the upper adiabatic
curve which is formed. The energy of this resonance
(dressed by the photon) turns out to be E„=96454.71
cm ', very close to the energy of the vibrational level
U+ =8 of the upper adiabatic potential, i.e., 96590.96
cm

The inadequacy of the Siegert analysis is illustrated on
Fig. 4, where the v =0 resonance width from Eq. (18) is
shown as a function of interfragment distance, and com-
pared with the width from the Aux analysis of the open
adiabatic channel of Eq. (40) for the two extreme intensi-
ties of Table I [Figs. 4(a) and 4(b)]. For the highest inten-
sity [Fig. 4(b)] the Siegert analysis fails completely to
reproduce the width of the resonance. In Fig. 5, the
behavior of the nonadiabatic couplings is illustrated as a
function of increasing interparticle distance for the two
extreme intensities of Table I. Apart from a region of
small extent around the crossing position R, =2 bohr, the
nonadiabatic couplings turn out to be vanishingly small
throughout the entire domain of R, thus allowing for the
single open-channel adiabatic analysis of Eqs. (40) and
(41).

Being asymptotically decoupled, the adiabatic channel
functions are the physically relevant ones in the far
asymptotic region. The Born-Oppenheimer approxima-
tion becomes exact at that limit. The width is carried
only by the open-channel components of the resonance
wave function. This feature is preserved even in cases
where more than one open channel is involved and, there-
fore, opens the door to the quantitative determination of
total and partial photodissociation rates for high laser in-
tensities. This is the case of the following study (paper
II), where more than one Floquet block pertains to the
physics of the process, corresponding to eventual absorp-
tions and/or emissions of more than one photon [24].
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