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Optimal control of quantum systems by chirped pulses
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Research on optimal control of quantum systems has been severely restricted by the lack of
experimentally feasible control pulses. Here, to overcome this obstacle, optimal control is considered
with the help of chirped pulses. Simulated annealing is used as the optimizing procedure. The
examples treated are pulsed population inversion between electronic levels, and optimization of
vibronic excitation in the presence of another electronic level. In the problem of population inversion
efFective potentials of displaced harmonic oscillators are used. For optimizing vibronic excitation
the CsI model potential is used.

PACS number(s): 33.80.—b, 42.50.Hz

I. INTR.DDUCTION

Much effort has been put into developing methods for
controlling chemical reactions and/or molecular excita-
tion via the manipulation of laser fields (see, e.g. , [1—35]).
In many of these computations the problem was the ef-
ficiency of the optimal control scheme. It is now estab-
lished that light shaping is an eKcient way of controlling
quantum systems and thus, for example, chemical reac-
tions. These theoretical results will presumably give a
push to the progress of laser technology, since the op-
timal pulses indicated in most of these publications are
way beyond present-day possibilities.

Here we try to focus on the experimental possibilities.
Present-day femtosecond laser technology is viewed as
follows.

(1) It is possible to create a short pulse or two related
short pulses in the laboratory.

(2) The duration of the pulse or the pulses cannot be
shorter than 30 fs if long-term reliability is required.

(3) It is possible to adjust the phase of a "two-pulse
sequence" (see, e.g. , [36]).

(4) Pulse shaping is troublesome if (i) shaping involves
the amplitude and the phase of the Geld as a function of
time and (ii) the required time resolution for shaping is
a few femtoseconds or below, as suggested by most re-
sults of optimal control computations (see, e.g. , [5,15]).
New and flexible solutions have been appearing on this

field, however, that use liquid-crystal technology or holo-
graphical methods [37,38]. 20-fs pulse shaping has been
demonstrated already [39]. Further advances of these
technologies may be able to create pulse shapes suggested
in the literature.

(5) The experimental technology of pulse shaping has
opened another direction, the direction of chirped pulses.
In other words, the approach of "chirp expansion" is
nowadays feasible up to at least third order [40]. This
route has attractive properties also since the spectral
width of present-day chirped pulses is very broad (it cor-
responds to a few-femtoseconds pulse length), allowing a
broad range of quantum states to contribute in the con-
trol process.

Here we deal with the power of a single chirped pulse
in optimal control. The results are promising especially
if one considers that point (1) states that two pulses are
feasible as well as noting the mixing of two pulses is a fea-
sible route for creating more complex electric-Geld shapes
[41].

In the theoretical description of the control prob-
lem we use several approximations, e.g. , we use Born-
Oppenheimer (BO) surfaces in one case and displaced
harmonic oscillators as model potentials in the other.
Since any of the approximations may be crude, what can
one really say to the experimentalists? Since this range
of research may be oriented towards chemical technol-
ogy, then what can we say to the engineers? If, how-
ever, we were to design an optimal control procedure,
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then we should note that the experiment is at the edge
of present-day technology, the control unit is subject to
aging, the parameters of the procedure, such as temper-
ature, may change, the optical components may move,
electrical components may drift, etc. All of these uncer-
tainties should direct our attention towards adaptive con-
trol systems. It is important to underline that optimal
control through chirped pulses may be made adaptive
through on-line control, since the elements one controls
here are the positions and the directions of prisms and
gratings [40,42]. The first approach along this route was
suggested by Judson and Rabitz through the use of a ge-
netic algorithm [16] (see also [20]). In the chirped-pulse
approach one might try to consider the method that we
shall use for optimization, namely the method of simu-
lated annealing.

We have decided to use simulated annealing for three
reasons.

(1) "Chirp expansion" does not favor gradient methods
since the gradient becomes complicated.

(2) The small number of parameters in chirp expansion
makes simulated annealing possible.

(3) In contrast to a gradient method, simulated an-
nealing can guarantee that the search ends in the global
maximum [43,44].

There are two problems we shall treat here: that
of population inversion and that of generating large-
amplitude ground-state vibrational coherence [45]. With
regard to population inversion two displaced harmonic
oscillators are used as a model system. For comparison,
this problem is considered with the help of electric fields
of a few Fourier components and also with chirped. pulses.
The results presented here are promising and shrew e%-
cient control with the help of chirped pulses. However, it
is known that the transition dipole moment is a function
of the rotational quantum number [46] and that infiu-
ences the solution of the optimal control approach [19].
The results &om the latter work show that optimal con-
trol is feasible for the general case as well at the expense
of more intense electric fields.

II. OPTIMAL CONTROL APPROACH

A simple model is treated in which there are only
two electronic states in the process under control. The
equation of motion in our system is the time-dependent

Schrodinger equation (Oq =
&, )

iM, @(x,t)—:ih4(x, t) = H4(x, t). (2.1)

In the semiclassical and adiabatic approximation,

(
~(t)

. E(t) l
H„

(2.2)

where pg„denotes the matrix element of the dipole op-
erator p between the electronic wave functions, and the
nuclear wave functions are described by the vector

(2.3)

Z(t) = ) (AI, sin ((so+ kbcu)t

+By cos[((uo + kb~)t]) sin (~t/~). (2 4)

The terms in this sum have the same sine squared en-
velope function.

The second type of electric field is the chirp expansion,
which could result from propagation through matter,
such as fiber optics, and may be manipulated [40,47,48].
We have chosen the following form to express the chirp
[42]:

The subscript g refers to the "ground"-state potential en-
ergy surface and u, correspondingly, to the "upper" state
potential-energy surface. H; = T, +V;(x), where i = g, u;
T; = p2/2m, is the kinetic-energy operator and V, is the
corresponding potential energy. F(t) represents the am-
plitude of the classical electric field. The electric field is
a physical quantity and is represented by a real function.
We consider two types of electric fields, both of which
ofFer a broad spectrum, have a low number of parame-
ters to be adjusted (thus enabling simulated annealing),
and look attractive from an experimental point of view.
The first of these is given by a Fourier-series expansion
in a given time interval with a base frequency wo (here
we considered ten terms in the expansion):

Re A Cpu exp —i uze' dw

Re A E'pu exp —i upz —i 'upz& —cdp

4 2
—+ —P"(~o)z (ur —~o) ——P (~o)z(~ —~o) e' 'd~

6 (2.5)
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Here Re denotes the real part and fo(u) is the fre-
quency spectrum of a Gaussian pulse before entering the
dispersive medium)

Zo(t) = Re (A exp( —t /r + i~pt) ), (2.6)

that is,

Fo(~) = A (2.7)

(2.8)

where the first term is the population on the upper sur-
face at the final time ty. The second term is a penalty
term to limit the energy of the electric Geld and A is a
penalty factor. The electric field of this treatment should
not have a discontinuity due to the form of the envelope
function and there is no need to include a "weight func-
tion" as in [19].

The objective of the optimal control of generating
ground-state vibrations is

8 250 fs

Ic r= &:l(eel@a(~t.))l "f c'(&)d&
j=3

(2.9)

where yj denotes the jth vibrational eigenstate of the
ground electronic surface of CsI. The eigenstates are cal-
culated by the relaxation method of Kosloff and Tal-Ezer
[49].

In the simulated annealing procedure a new electric
field is generated at every step with the help of random
modification of the parameters. Then a new "annealing"
objective is defined as

anneal— (2.10)

for the minimum search in the annealing procedure. The
new electric field is then tested by determining whether

x ) exp(EI „„.i/T), (2.11)

where x is a random number between 0 and 1, AI „„,l
is the difference between the new and the old annealing

z is the thickness of the dispersive medium and P(cu) is
the frequency-dependent propagation factor if the chirp
is to be created by direct propagation. On the right-
hand side of (2.5) we have applied a Taylor expression
of P(cu) around the central frequency wo prior to en-
tering the dispersive medium, up to the third power of
(ur —w()). P(coo) is merely a phase factor, P'(coo) gives a
group delay, P"(uo) is part of the chirp as well as pulse
(de)compression. The third derivative, which is not usu-
ally considered, but could be adjusted if required [40],
may give rise to some beating in the pulse shape. For our
purposes, the expansion factors Pl l where n denotes the
nth derivative multiplied with thickness z, may be con-
sidered as the set of parameters to be optimized.

The objective of the optimal control, I;„,of popula-
tion inversion is:

objectives, and T is the parameter of the procedure the
"temperature" if the objective corresponds to an energy
expression. If one approaches zero with the analog of
temperature sufriciently slowly, it guarantees that we end
up in the global maximum with probability 1. The con-
ditions for the suitable rate of temperature change may
be determined [50].

The optimization procedure was applied to the fol-
lowing problems: (1) nondisplaced harmonic BO sur-
faces and an electric field given by (2.4) where the set
of (Ai„&k) is to be optimized to invert population (test
example); (2) displaced harmonic BO surfaces and an
electric field given by (2.4) where the set of (Ak, R&) is
to be optimized to invert population; (3) displaced har-
monic BO surfaces and an electric field given by (2.5)
where the set of (A, P((dp)z, P ((do)z, P ((do)z, P (cdo)z)
is to be optimized to invert population; and (4)
ground and excited electronic states of CsI and
an electric field given by (2.5) where the set of
(A, ceo, P((up) z, P'((uo) z, P"(u)p) z, P"'((uo) z) is to be op-
timized to increase vibrations in the ground electronic
state by going through the excited electronic state.

III. RESULTS

The time-dependent Schrodinger equation was solved
numerically by a split operator method [51,52] that uses
the grid method and fast Fourier transformation for com-
puting the Laplacian operator.

All calculations were carried out using atomic units,
that is, 1E~=219474.64cm i, 1h/E~=0. 0241888 fs,
1 E~/(eao) = 5.142 21 x 10 V/m, where EH denotes
the Hartree energy.

A. Inversion problem

The parameters were the same as in [19]: a reduced
mass equal to 80000m„and the &equencies were iden-
tical on both surfaces with the value 5 x 10 a.u. The
displacements are 2.53o for cases with displaced surfaces,
where a = gh/(Mw) is the position uncertainty of the
lowest-energy vibrational state. The initial wave func-
tion is the lowest vibrational eigenstate of the lower sur-
face. The optimizations were all restricted to pulses with
a full width at half maximum (FWHM) of 50 fs. Thus,
the calculations with sine squared envelope had a total
time period of 100 fs. Due to the long tails of the Gaus-
sian fields, the calculations with the chirped pulses were
initially on a 300-fs time scale. This time interval was
lengthened to 450 fs at a later stage as was required by
the optimal chirp parameters. The results of the calcu-
lations are given in Table I.

The optimized electric fields of the population inver-
sion problem are shown in Fig. I. In this figure we also
give the probability density of the final time wave func-
tions on the ground (small amplitude, dashed lines) and
excited (solid lines) surfaces, too.

For nondisplaced potentials perfect population inver-
sion is possible and the exact result for a sine squared
envelope function is a resonant field with amplitude A
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TABLE I. Results of inversion optimizations.

ARp/o.

0
2.53
2.53

50
20
2
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0.0506
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(0-(&~) I@-(t~))

0.997
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0.919
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0.727
0.648

2.53 0.0515
Chirped
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FIG. 1. Optimized electric
fields (left) and the wave func-
tions numerically squared on
the upper surface and the lower
surface (dashed line). The
figures at the top are for
undisplaced potentials and ten
Fourier components. Figures in
the second and third rows from
the top are for displaced po-
tentials and ten Fourier com-
ponents. The values of A are
—20 and —2, respectively. The
figures at the bottom are with
chirped pulse and displaced po-
tentials.
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tion cannot move during excitation; in other words, it
becomes perfect with a Dirac b function at inBnite cost.
The A = 20 case resulted in a 0.954 inversion value, while
the less strict case gave a 0.973 value. The corresponding
target values were 0.880 and 0.963, respectively.

The last set of graphs corresponds to chirped-pulse
population inversion and A = 2. The change of the shape
of the envelope indicates that the third derivative in the
chirp expansion plays a role here. The inversion value
of 0.981 could be improved by decreasing the penalty on
the electric-Geld energy.

B. CsI calculations

0.4—

02-

0.1—

0.0
0 1 2 3 4 5 6 7 8

For vibronic excitation of CsI we present the results of
three difI'erent computations. The parameters of the CsI FIG. 4. Final time projections of the ground-state nu-

clear wave function onto vibrational eigenstates. Solid cir-
cles, chirped excitation pulse; crossed circles, nonchirped ex-
citation pulse; open circles, high electric Beld with no chirp.
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FIG. 3. Optimal chirped electric field (upper graph) for CsI
with central frequency removed. Lower plot is for the same
electric Beld except for the chirping parameters are set to 0.
Expressions abs, Re, and Im denote the absolute value and
the real and imaginary parts of the complex Beld, respectively,
with removed central frequency.

BO surfaces are given in Table II. The first optimization
was conducted without chirp and it was the amplitude of
the electric field that we optimized with a sine squared
pulse of 125 fs FWHM.

In the second run the optimization procedure could de-
velop nonzero chirp parameters also. Results of the posi-
tion probability distribution of the ground- and excited-
state wave functions are given in Fig. 2. The chirped
electric field is presented in Fig. 3. The electric field
is given with the central &equency removed. The Geld
of the optimization with no chirp is almost an order of
magnitude larger, that is, its energy is almost two orders
of magnitude larger than that of the optimization with
chirp.

The projections of the diferent final ground electric
state wave functions to the vibronic eigenstates of CsI
are given in Fig. 4. The solid curve and filled circles
is the result of the optimization with chirp. The dash-
dotted curve and open circles is the result of the almost
two orders of magnitude stronger light excitation with-
out chirp. At the expense of high electric-field strength
one may achieve similar results as with chirped pulses of
moderate strength. The dashed line and crossed circles
shows the vibronic content of the excitation when the
same moderate electric field was applied but the chirp
parameters were set to zero. As it may be seen chirp
increases the vibronic content significantly. This fact has
been established by Ruhman and KoslofF [45]. The difFer-
ence between their results and ours is that (I) the chirp
we introduced could be produced in the laboratory (they
used a different chirp expansion), and (2) these results
are the results of an optimization procedure and are the
"best" results for a given penalty value A. More impor-
tantly, the simulated annealing procedure we have fol-
lowed in the theoretical computation could be followed in
the laboratory to optimize the outcome of a given control
experiment.
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IV. CONCLUSION

We have demonstrated that simulated annealing may
be an attractive method for solving optimal control of
quantum systems. The resulting Belds are feasible in the
laboratory and the simulated annealing procedure could
be followed in the experimental optimization also.

The results presented cannot be considered as the re-
sults one should really reach in the laboratory. There
are various reasons for that, e.g. , we have used models
of realistic systems, and we have not taken into account
the dependence of the transition dipole moment on the

rotational quantum number. However, the approach was
designed to open the way to optimal control experiments.
Chirp expansion seems very promising &om this point of
view.
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