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Relativistic corrections to the Zeeman effect in heliumlike atoms
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An approximately relativistic theory of bound states which ensures Poincare invariance of the atomic
system to relative order (v/c) is used to derive the Zeeman interaction Hamiltonian correct to order a'
and to all orders in m, /m& for an arbitrary three-body system. This approach is distinctly different
from methods used in the past. The terms of order m, /mz, a, and a' agree with previous results. The
terms of order a m, /mz and smaller do not agree with previous results. The terms of order m, /m&, a,
a, and o, m, /m& are used to calculate the g factors for n =2 He and He. The corrections of order a'
and a m, /mz have not previously been calculated for the P-state g factors. Our results for the He
2'S, g» factor [g, (1—40.9158X10 )] can be compared with the result of Grotch and Hegstrom [Phys.
Rev. A 8, 1166 (1973)] [g, (

—40.9157X 10 )]. We calculate the ratio of this g factor to the g factor of
1 S,z~ hydrogen to be 1 —23.211 X10 . This agrees with the result of Grotch and Hegstrom [Phys.
Rev. A 8, 1166 (1973)], 1 —23.211 X 10 6, and the best experimental result [G. M. Keiser, H. G. Robin-
son, and C. E. Johnson, Phys. Rev. A 16, 822 (1977)], 1 —23.214(50) X 10 6. We also find that including
the mass polarization in the 2 S& wave function contributes a negligible amount, 1.4X 10 ', to the He
2 S& gJ factor. We use 125-term variational wave functions in a configuration-interaction basis and ex-
plicitly examine the effect of configuration mixing on the g factors. We find the He 2 PJ g,

' factor to or-
der a m, /mz to be g, —80.4010X 10 . This agrees (to order a ) with the results of Lewis and Hughes
[Phys. Rev. A 8, 2845 (1973)]. We also calculate radiative corrections of order a' that contribute to the
2 PJ gt factor (gL =1—m, /m&+8. 838X10 ) and find that they are too small (1.79X10 ) to resolve
a long-standing discrepancy between theory and experiment for the 2 PJ gl factor. These radiative
corrections have not previously been calculated. Our value for the He gL factor is 1.36 standard devia-
tions above the best experimental value. This represents a significant improvement over the results of
Lewis and Hughes which is 1.97 standard deviations above the best experimental value. The He
2 PJ gz factor is found to be —5.344X10 . We have also calculated the He 2'P& gL factor
(gt'. =1—I, /m& —15.771 X 10 ). This g factor has not previously been calculated. Finally, we have to
introduce a g factor for the helium 2 P states in the (Jm»LS) representation: g» =1.08X10 for He
and g~ =1.06X10 for He. This g factor comes from terms of the order a and a (m, /m&).

PACS number(s): 32.60.+ i

I. INTRODUCTION

Since precise atomic-energy-level measurements of
helium are made in constant magnetic fields, a precise un-
derstanding of the Zeeman effect for helium is important
[1]. The motional corrections of order m, /mz were first
obtained quite some time ago by Phillips [2]. The relativ-
istic corrections of order cx were first obtained by Perl
and Hughes [3]. These terms were then verified by
Hegstrom [4], who used an extended Breit equation to
derive a Zeeman Hamiltonian including terms up to or-
der a m, lm& for an arbitrary many-particle atomic sys-
tern.

The agreement between the best experimental result
[1—23.214(50) X 10 ] Ref. [5] and the most accurate
theoretical result (1—23.211 X 10 ) [6] for the
gJ( He2 S, )/gJ(H1 Si&z) ratio is quite good. For the
He 2 PJ states the agreement between theory and exper-

iment for the atomic g factors is not as good. We work in
a

~
Jm&LS ) representation where L, S, and J are the total

orbital angular momentum, total spin angular momen-
turn, and total angular momentum, respectively. There

are four g factors for the 2 I'z states: a gz factor resulting
from terms which act only in the Sm, subspace, a gL fac-
tor from terms which act only in the I.ml subspace, a gz
factor which results from terms which couple a Pauli spi-
nor of one of the electrons with a second-rank spherical
tensor, and a g& factor which results from terms which
couple a Pauli spinor of one of the electrons with an or-
bital angular momentum vector. The g factor, which
comes from terms of the order a and a m, /m&, has not
been considered in previous work [7,10], which only in-
cluded terms to order a . Table I displays the published
experimental and theoretical results for the helium 2 PJ
and 2 'P, state g factors. The results of our work are also
included in Table I.

The largest discrepancy between theory and experi-
ment exists for the 2 I'J gl factor, which turns out to be
sensitive to the atomic wave function used to evaluate the
Zeeman Hamiltonian. The first entries of Table I are the
results which use simple hydrogenic wave functions
which assume a pure sp configuration. We are in agree-
ment with Lewis and Hughes [7] in the results of this
later calculation. Lewis and Hughes [7] also used a very
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accurate 165-term variational wave function which uti-
lized a Hylleraas basis and two nonlinear parameters to
get the results in the ninth row of entries of Table I.
These results include contributions from motional correc-
tions of order m, /m~ and relativistic corrections of or-
der a . Their result, however, for the gL factor
(0.9998375) is 1.97 standard deviations above the best
experimental value [0.999 867 8(29)] Ref. [8]. An attempt
to resolve this discrepancy was one of the goals of our
work.

We will use an approximately relativistic theory of
bound states developed by one of us (K.J.S.) [9], which
ensures Poincare invariance of the atomic system to rela-
tive order ( v /c) . It describes the interaction of the com-
posite system with an external electromagnetic field [9].
This theory allows us to calculate relativistic corrections
to the Zeeman effect to order e and motional corrections

to all orders in m, /m&. In this work we will use all the
corrections of order m, /mz, a, a, and a m, /m& [all
those which are larger than corrections of order a which
cannot be calculated using an approximately relativistic
theory which is correct only to order (v/c) ]. This is
more than sufficient, however, since the experimental lev-
el of uncertainty is at the a level [10].

There are two ways in which one can try to improve
upon the results of Lewis and Hughes [7]: (i) include
higher-order corrections (a and a m, /m&) and (ii)
evaluate the Zeeman Hamiltonian with different wave
functions. We have utilized both of these options. The
only a corrections to the orbital g factor are radiative
corrections due to the self-energies of the two electrons
individually and single transverse photon exchange be-
tween the two electrons. Using nonrelativistic perturba-
tion theory, Hegstrom correctly gives the result [4]

2(x

~me C

dk
2k

meC

where II; =p;+(e/c) A,. is the mechanical momentum
for electron i, we choose A,-= —,'BXr; for a constant
external magnetic field, and we set %=1 in this paper.
The constituent position and momentum variables are
denoted as r; and p;. This expression, however, must be
multiplied by —„' to account for the fact that the self-

energy contributions in a nonrelativistic perturbative ap-
proach are twice as large as the (presumably more
correct) results of Grotch and Kashuba [11]. crotch

correctly gives the result based upon the nonrelativistic
limit of the formal covariant gauge-invariant expression
for the self-energy of a fermion in an external electromag-
netic field [11]. The contributions of Eq. (1) have never
been calculated in the past because of the internal sum on
states is difficult to evaluate. The evaluation of this con-
tribution is outlined in Appendix A. It provides a contri-
bution of 1.79 X 10 to the orbital gL factor for the 2 PJ
states of He and He.

TABLE I. Relativistic and motional corrections to the helium 2 PJ and 2'P& g factors. All entries
are to be multiplied by 10 . The upper entry of a double row includes m, /mz and a corrections.
The lower entry also includes a and a m, /m& corrections. g, =2(1+a, ), gI =1—m, /m&.

Reference gs ge gL gL

2 PJ
gx

4He

2'P,
He

2 PJ
gL gL

This work'

This work

This work'

This work
Ref. [7]'

—80.264
—80.236
—80.430
—80.399
—80.461
—80.428
—80.401
—80.46(1)

3.840

13.013

8.656

8.838
10.6(4)

Theoretical
—5.600
—5.571
—5.640
—5.594
—5.394
—5.345
—5.344
—3.5(2.5)

0.010

0.011

0.011
0.011

—14.760

—10.062

—15.773

—15.771

7.840

20.122

14.399

14.578

Ref. [10]
Ref. [8]'
Ref [27]g.

—76.0(2.4)
Experimental

3.8(9.0) 4.04(25.0)
4.9(2.9)

10.5(2.0)

'Using a simple hydrogenic wave function.
Using the best wave function of a pure sp configuration.
Using a 125-term configuration-interaction wave function.
Same as (c) but also includes a radiative corrections and reduced-mass corrections.

'Includes only terms of order m, /m& and a .
Cannot measure the effect of configuration mixing.

gMeasures the effect of configuration mixing.
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Although there are no explicit Zeeman interaction
terms of order a m, /m~ which contribute to gl, correc-
tions of this order arise from using wave functions for a
helium atom with a finite nuclear mass when taking the
expectation value of the a contributions. The total
a m, /m& contribution to the 2 PJ gL factor is
2.37X10 . Thus we see that higher-order corrections
will not bring us far in resolving the discrepancy between
the experimental and theoretical gI values.

The wave function used by Lewis and Hughes [7] pro-
vided an accurate energy eigenvalue ( —2. 133164 a.u. )

and correspondingly accurate values for radial expecta-
tion values. The inclusion of r, 2 (the interelectron dis-
tance) directly in the Hylleraas basis used by Lewis and
Hughes [7] is equivalent to configuration mixing. With a
Hylleraas-type wave function, the integrals which are
used to evaluate the g factors include r &2 and are not sim-

ply the product of their radial and angular parts [7]. The
evaluation of these integrals turns out to be a highly nu-
merical procedure [7]. We used a distinctly different pro-
cedure to evaluate the helium 2 P and 2 'P g factors. We
used 125-term variation al wave functions in a
configuration-interaction basis with 12 nonlinear pararne-
ters. This wave function provided an energy eigenvalue
of —2. 133 160 a.u. Instead of including r &2 as part of the
radial basis functions, the wave functions explicitly mix
other configurations with the pure sp configuration of the
P states and use a simple radial basis including only r,
and r2. This allows for a straightforward evaluation of
the g factors using the Zeeman Hamiltonian recoupled in
terms of spherical tensors. The results for the g factors
using these wave functions are also listed in Table I. The
final result is a significant improvement in the agreement
between the theoretical and experimental values for the g
factors, especia11y the gI factor, which is now 1.36 stan-
dard deviations above the experimental value. Here the
a corrections are responsible for an increase of the
discrepancy by 0.06 standard deviations.

The rest of the paper is as follows. In Sec. II we
present the derivation of the Zeernan Harniltonian. The
2 S) gJ factor is derived in Sec. III. The 2 PJ and 2'P,
g factors are derived in Sec. IV. A concise summary of
the paper and conclusions are given in Sec. V.

2 P4
H= y " —,", +U' '+U"',

8m c
(2)

where U' ' and U"' are the internal interactions of the
zeroth and second order in U/c, respectively. For atomic
systems and nonrelativistic interaction ( U' ') is simply

I

II. ZEEMAN HAMILTONIAN

The total Hamiltonian for the isolated composite sys-
tem can be written to order 1/c as

the Coulomb interactions between the constituent parti-
cles. We shall take U'" to be given by the sum of the
well-known Fermi-Breit intereactions between the con-
stituent particles [12]. The Fermi-Breit intereactions in-
clude all of the (Za) contributions to the zero-field
energy-level splittings and with the phenomenological in-
troduction of the anomalous magnetic moments of the
constituent particles it also includes some of the a(Za)
contributions and even terms of order a (Za) coming
from terms which contain the product of the two anoma-
lous magnetic-moment parameters. These terms
represent the lowest-order contributions from the self-
energies of the bound constituent particles.

In a previous paper [9], one of us (K.J.S.) has shown
that the interaction of an arbitrary composite system
with an external electromagnetic field can be written as
the sum of two terms:

HI =HI i+HI2 ~ (3)

Here Hl& is the interaction resulting from a minimal sub-
stitution in the total Hamiltonian of the isolated compos-
ite system. Retaining only the terms that are linear in the
external magnetic field, we have

n

HI& =i g "
[ [r~,H] A~+ A~. [r~,H ]],

i 2c
(4)

where a„, s„, and p„are the anomalous magnetic-
moment parameter, spin, and momentum of the pth par-
ticle. In addition to H&+H2 we must add 46Ez in Eq.
(1).

Now the relations of Krajcik and Foldy [13] must be
used to express the Zeernan Hamiltonian HI =HI, +HI2
in terms of the center of mass and internal variables. The
radiative and recoil corrections of Eq. (1) are of order a
and are already relativistically correct to order (v/c) .
Therefore, the usual nonrelativistic transformations from
the constituent to center of mass and internal variables
are used in Appendix A to evaluate this contribution.
The Krajcik and Foldy relations are [13]

where e„and r„are the charge and constituent position
vector of particle IM, respectively. The second term HI2 in-
cludes the sum of spin-dependent terms resulting from
the Foldy-Wouthuysen reduction of single Dirac particles
with anomalous magnetic moments in an external elec-
tromagnetic field. For the case of a constant external
magnetic field and no electric field we have retained only
terms linear in the magnetic field and obtain

n n

(I+a„)s„.B„+g 3 3 [p„,s„B„]+
&mac " " " „&4m c

n

p
—(2m c

r„=p„+R— pp P
2c~ M m„

a&XP 0 v X el v

2m„Mc, 2m, Mc2+&

P+ +H.c.

+y " — w'"—e, XP

, 2Mc

m.,p„(p„Xm„)+H. c. +g XP

dp. ~(&) p
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m„
p„=w„+ "P+

2m'

o„X(n.„XP)
Su =

2m Mcp

2
mp ~v 7Tp P p l f'p

J dp W'", cr„

(7)

(8)

where p„, ~„, and cr„are the internal position, momenta,
and spin variables. The position and momentum variables
of the center of mass are denoted by R and P. The
interaction-dependent part of the Lorentz boost operator
which determines the form of the constituent to center of
mass and relative variables relations for a heliumlike
atom is

—e 2 me
H3 = 1+2a, +

meC mN

2e me
H = 1+a—4

meC
e

2mN

p&B.[cr, X V&(q &z' )]X q, ,

(15)

paB [tr i X V i(C i~ ) ] X qi

Ze N

c2 M
r

e2 mN+
2c2

q,

q&

qi+q2

2m,

mN

q2

g2 q)

(9)

(16)
2

H5 2 pgB [q» (q~ X~&)+q ~~ (q~ X q~)(q]2 ~p)]
—e —3

mec

(17)

where Ze and (
—e) are the nuclear and electronic

charges, the total atomic mass is the sum of the electronic
and nuclear masses M =mN+2m„q& =—

p&
—p3,

q2
——p2

—p3, and p&, p2, and p3 are the position vectors of
the two electrons and the nucleus relative to the center of
mass, respectively. This result has not previously been
found and is derived in Appendix B.

The matrix elements of the resulting interaction Ham-
iltonian contain factors of R and P. Matrix elements of
R in states of definite momenta are ambiguous. There-
fore, before we go to the P —+0 limit we must take the ex-
pectation values of these operators using a symmetric
normalized wave packet

gy
—R /2A,1

g )3/4 (10)

9

H, = gH;+DE~,
i=0

Ho=p~B (L+g,S), (12)

2

H, = —p~B. g (I;+2o; )
2m c

(13)

Ze m,H2=
2 1+2a, —

2mec mN

2

Xp&B g [o;XV,.(q; ')]Xq;, (14)

which in the A.~~ limit is equivalent to the P =0 plane
wave. Once this is done we get an unambiguous operator
(HI ) in the P=0 frame.

After much algebra and retaining terms of order
m, /m&, a, a, and a m, /mz and neglecting nuclear
spin-dependent terms we obtain for the Zeernan Harnil-
tonian H, =HI+ hER the expression

me
p&B L+g(q, Xn;)i'

—a, 2

K7 =
2 2 p~B g m;(o; n.; ),

meC i=1
—Ze2 me

@~8.g (cr; X V;q; ') X q2m c mN

1H9=
z p~B.Q(n.;+m. ) X(n., Xcr, ),

mNc

(19)

(20)

(21)

where pz is the Bohr magneton, g, =2(1+a, ) is the
free-electron g factor, a, is the electronic anomalous
magnetic-moment parameter, L=g; I;, S=g;o;,
p&2

——~q&
—&2, and I;, n.;, and cr, are the .orbital angular

mornenta, momenta conjugate to q;, and spin variables of
the ith electron relative to the nucleus in the center-of-
mass frame, respectively. The radiative and recoil correc-
tions of Eq. (1) are denoted as b,Ez.

The terms of order m, /m& and a in Eqs. (11)—(21)
above agree with previous results [2—4,7]. The terms of
order m, /mN are equivalent to the motional corrections
resulting from a minimal substitution in the nonrelativis-
tic Hamiltonian for a heliumlike atom with a finite nu-
clear mass [2]. The a terms are purely relativistic terms
which one would obtain from the appropriate reduction
of any extended two-particle bound-state wave equation
correct to relative order [(v/c) ] [3,4). The terms of or-
der a also agree with the results of Hegstrom and co-
workers [4,6]. These terms account for the other radiative
corrections (to a ) beyond Eq. (1). They result from ac-
counting for the anomalous magnetic moments of the
electrons. The terms of order a m, /m&, however, are
different from the results of Hegstrom [4]. The appropri-
ate accounting of these relativistic motional corrections
was precisely the intent in using an approximately rela-
tivistic theory of bound states which is Poincare invariant
to relative order (v/c) . Hegstrom derived his Zeeman
Hamiltonian by performing a Charaplyvy-Barker-Glover
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reduction of a unitarily transformed extended Breit equa-
tion [4]. Discussions and comparisons of the two
methods have been given by Grotch and Kashuba [14]
and Grotch and Hegstrom [15]. The a ???, /m)v contribu-
tions in H3 and H4 agree with the results of Hegstrom
[4]. The a rn, /m)v contribution in H2+Hs is exactly
half of the spin-other-orbit contributions in Hegstrom s
Eq. (21) [4]. These are the only contributing forms of or-
der a m, /mz in Hegstrom[s Hamiltonian [4]. In addi-
tion to these we have the contributions from Eq. (21)
above. So we lose a contribution in H2+Hs but pick up a
contribution in H9. This is the result of the algebra
which is necessary to ensure Poincare invariance of the
atomic system to relative order (v/c) . It amounts exact-
ly to the replacement

B [(q, +q, )X(o, Xq, )]
2q; m& m c

(i' )

me B.[(?r;+?r? ) X ( o, X~; ) ]
m~ 2m, c

(i' )

(22)

in Hegstrom's [4] spin-other-orbit terms of order
a m, /m1v. These terms contribute to the g,

' and g„ fac-
tors. To facilitate the extraction of the g factors it is use-
ful to recouple the Zeeman Hamiltonian in terms of
spherical tensors

Ho=paB (gLL+g S)
2

H1 = —
P??B.g ( I;+2cr; )

2mec

(23)

(24)

2'2—
3mec

me1+2a, —
m~

2

[o +( 5 ))/2[~ C(2)](1)] (25)

2e
H3 +H4 =

2 p&B. cr1+2o.2+2a, S+
meC

me
(tT1 CT2)

k k

Xg( —1)"(2k+1)' —k —(k+1) [O'"'C'"'}( '

3 k+1 k+1
k q2

+ [k (k + 1)] ~1 + ~2 [( (k)C(k) ](1)"+1 "+'
q2 q1

[k (k +1)]'"
6&&

1/2
2k +3

k+1
q2

1/2 k
2k —1 q2

2k+3 q", +'

1/2

[
(, ,) (,)](,)

2&3 2k —1 k+1

1

2V'3
(k + 1)(k +2)(k +5) Wz (k+2) (k

2k +3 q1

(26)

1
((2|?B g( —1)

??tec v 3

2k +1
2k +3

1/2

k k+2

k+1 k+3 2k+3 [(2k + 1 )1/2 X [C(k)
I
C(k)I ]

(k)
]

(1)
1 2 2

(2k + 5 )1/2[ C(k+2) ( C(k+2)I ) (k+2)] (1)]
2 2j

(2k + 1 )1/2 [C(k)
I
C(k)I ]

(k+1)](1)

(k+1)(2k+5)
k+2

X [C(k+2) (C(k)I )(k+1)](1)
1 & 2 2j
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qk+2
+ (k+3) k+2 +

X([k(k+1)(2k+1)]' {O'I"'C2 j

—[(k+2)(k+3)(2k+5)]' {C'I + 'C2"+ 'j"')

mN
{C(1){C(1)l j j{1) ~2 {C(1)C(l)j(1)

Bq2
(28)

1 a

q; Bql

(
s )I/2{~ {C(2)$ j(2) j(I)

Bq;
+

q, 6q,.

Ze
8

2m, c

+ I
( 7() )I/2 { {((2)I(2) j(2)j(1)+ (2{ ( 2j(I)+( s )I/2 { I(2) j(1)

ql.

{C(1)( ( I )
j (0)~ {~ {( ( I )( ( I )

j
( I )

j
( I ) + (

s
)
I/2

{ {( ( I )( ( I )
j

(2) j ( I )m&, ~ . q~

(29)

(30)

a2

+ 1( 70 )I/2 {~ {C(2)I(2)j(2)j(1)
2 3 3 l l l

g; ql

l2{~ C2j(1)+( s )l/2 {~I(2)j(1)+ { l j(1)1
1

2 ~ {{C(I)l j(1){C(I)l j(1)j(0)
q q

3 l J J l l
J

{~ {{((1)l j(1){C(1)lj(1)j(l)j(1)+ { {{((I)l j(1}{({1)l j(1)j(2}j(1)l J J l l
3

38+ 2~ {C(1)C(1)j(0) { {C(1)C(1)j(I)j(1)+ { {C(1)C(l)j(2) j(I)
3 & J / Q I Jql qJ 3 3 l J

2 ~ {C( I)
{C{1)l j

( I)
j

{0)
ql BqJ.

1
{~ {C(1){C(1)l j

(I) j (I)
j

( I )+ { {C(I) {C( I)l j
(I)

j
(2)

j
( I)

v'5

{C(1){C(1)l j
( I)

j
(0)

{C{1){C(1)l j
( I)

j
( I)

j
(I)+ {~ {C(1){C( I)l j

(I) j
(2)

j
(I)

3
(31)



3798 JOHN M. ANTHONY AND KUNNAT J. SEBASTIAN

where C ' is a spherical tensor of rank k for the ith elec-
tron. The recoupling of two tensors to form another ten-
sor of rank f is denoted by encasing the two tensors in
curly brackets: [ I' '. The a contributions were first
recoupled by Innes and Ufford [16]. In order to recouple
H9 we had to define a second-rank angular momentum
tensor (II '). The evaluation of the reduced matrix ele-
ments of this tensor is presented in Sec. IV. We have
defined gL

= 1 —m, /mz and combined the m, /mz term
proportional to L-in H6 with Ho in conformity with the
conventions of Lewis, Pichanick, and Hughes [10] and
Lewis and Hughes [7].

III. 2 S( gJ FACTOR

The techniques used to evaluate the 2 S, g factor are
well known [3,4]. The only terms which do not contrib-
ute to the gz factor are Hz, H6, and EEL, which act only
in the Lml subspace of the ~JmJLS) representation.
For S states L =0, J =S, and gJ =gz. Using the projec-
tion theorem, we define the gJ factor

g,
—= (Sm, =I~H, ~Sm, =i) .

1

pgB
(32)

Using the fact that ( cr; ) =5;, for S = 1, ( ( ~; ) ) =
—,
' ( ~ )

(for i =x, y, and z), and similar results for the expectation
value of the square of a Cartesian component of any
operator in a spherically symmetric state, it is easy to see
( ~X (cr X m. ) ) =—', ( m ) and similarly for all the other tri-
ple cross products in H, . We now need to consider the
effect of the finite mass of the heliumlike nucleus on the
2 S& wave function and expectation values of m, 1/q„
m, m.2, 1/q, 2, and (q, qz)/q, . The nonrelativistic Hamil-
tonian for a heliumlike atom with finite nuclear mass is
[17]

vr, r1.
2 (m, ~2)2 2

Hf= + +
p p

Ze Ze +
q2 q&2

(33)

where p = ( m, m~ ) /( m, + m & ) is the reduced mass for
the helium atom. This Harniltonian is different from the
nonrelativistic Hamiltonian for the helium atom with an
infinitely massive nucleus in two respects: (i) the replace-
rnent of the electronic mass by the reduced mass in the
electronic kinetic energy operators and (ii) the addition of
the third term, which is referred to as the mass polariza-
tion term. If we first set the mass polarization term to
zero the effect of the reduced mass in Eq. (33) is such
that for an operator which has dimensions of (length)
( o ) =p"( o ) „(the operator scales as p, "), where ( o ) „
and (o ) are the expectation values using wave functions
for the case of an infinitely massive nucleus and wave
functions of Hf without the mass polarization term, re-
spectively [18]. The operators vr„ 1 /q „vr, n 2, and
1 /q &2 are of degrees 2, —1, 2, and —3, respectively. To
first order in m, /m&,

p"=m, [1 n(m, /m~)], —

m, /m„= l. 370 933 54 X 10 for He [19] and
m, /m& = l. 818 881 21 X 10 for He [20]. Therefore,

scaling affects the expectation values at the 10 level. If
we now explicitly include the mass polarization term in
the Hamiltonian when determining the variational wave
functions, the expectation values will be affected at the
10 and 10 level for the 2S and 2P states of helium,
respectively [21,22]. The largest contributions to the
Zeernan Harniltonian for which the form of the wave
function can have an inhuence are of the order a for the
S states and m, /m& for P states and we are neglecting
terms of order a (3X10 ) and smaller. Thus, we can
neglect the effect of mass polarization completely. Scal-
ing the o. terms with p is equivalent to adding terms of
the. order a m, /mz Note. that the motional corrections
of order m, /m& in H6 are of degree 0 and do not scale
with the reduced mass.

We can also reach the same conclusions via a different
route. Application of the virial theorem to the Hamil-
tonian for an infinitely massive nucleus leads to the well-
known results ( T ) = Ean—d ( V ) =2E, where T, V, and
E are the total kinetic-energy operator, potential-energy
operator, and energy eigenvalue, respectively. Applica-
tion of the virial theorem to Eq. (33) leads to the same re-
lations where now the total kinetic-energy operator in-
cludes the mass polarization operator and the electronic
mass is replaced by the reduced mass. Treating mass po-
larization in first-order perturbation theory, scaling with
the reduced mass, and using the virial theorem, we can
write

(
Ze'

q&
+ =2Ef =2p E +

q2 m~
(35)

where Ef is the energy eigenvalue of Hf for the state un-
der consideration. Using Eqs. (32), (34), (35), factoring
1=—,'g, (1—a, ) to first order in a„and setting a, =a/27r
here and in H& —H9 we get the n S& gJ factor for an arbi-
trary heliumlike atom:

g&=g, . 1+
3mec

eE
4~m, c 2m&c

Ze
6mxc q

(36)

The o. and a corrections agree with the results of
Grotch and Hegstrom [6]. The a m, /m& terms are not
in agreement with their results. It is important to note
here that Lewis and Hughes [23] used the above result
correct to order a (from Ref. [6]) to calculate numerical-
ly the gJ factors for many n P

&
states of heliumlike
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atoms. Clearly that work is not correct since the P states
are not spherically symmetric and ((m;) )A —,'(ir ) for
the P states. If it was correct then all the contributions of
the form Io;C ']'" would have to vanish for the n P,
states and they do not. Furthermore, they erroneously
claim that the a contributions only affect the g, factor,
which is fallacious precisely because [o;C,' ' j'" and simi-
lar forms do not vanish for any of the P states. These
terms contribute to g .

We use the very accurate results of Pekeris [21]:

E = —2. 175 229 378 24' m, c

(e /qt2) =0.268 1978553a m, c

(e /qi ) —1.154664153a m, c

((~i re)/m~) =1.0201092X10 a m, c

and the five-figure-accurate result of Barkley and
Hegstrom [6]:

(qt q2/q i )„=—0. 149 860am, c

to get

gJ =g, [1—(40.991 63 —0.067 27 —Q. QQ8 47

—0.00005) X 10 ]=2.002237 3778

for 2 S] He and

g~ ——g [ 1 —(4Q. 991 63 —0.067 27 —0.01 1 23

—P.QP001) X 10 ']=2.0022373834

for 2 S& He. The first three terms in the parentheses are
contributions of order a, a, and a m, /m&, respective-
ly. The last contribution is that due to mass polarization,
which is negligible as expected. The above result for He
can be compared with the result of Barkley and
Hegstrom [6]:

g~ =g, [ 1 —
( 40.991 63 —0.067 27

Yi i ——g (ltl2mim2ILM) Yi, (qi)Y, (q, ),
m&m&

(37)

where A is the antisymmetrization operator [1+(ex-
change )], g(1,2) is the spin function for either the triplet
or the singlet state, Yi (q, ) is a spherical harmonic, and

(ltl2mim2~LM) is a Clebsch-Gordan coefficient. The
coeKcients CI I" are determined by performing a

Raleigh-Ritz variational calculation with the nonrela-
tivistic Hamiltonian for a helium atom with an infinitely
massive nucleus. These wave functions, which do not ex-
plicitly include q, 2 (the interaction distance) in the radial

TABLE II. Energy eigenvalues (in a.u. ) and radial expecta-
tion values (in a.u. ) for the 2 'P& and 2 PJ wave functions. The
radial coordinate is that of an electron relative to the nucleus.
The four entries are results for a hydrogenic wave function. A
50-term best wave function of a pure sp configuration, a 125-
term best configuration-interaction wave function, and the wave
function of Pekeris (Ref. [19])in descending order. Pekeris does
not have a value for 1/r .

Operator 2 P

2.122 390
2.122 595
2.123 828
2.123 843

2 PJ

2.130691
2.132 370
2.133 160
2.133 164

late the He gr factor. All of the wave functions used are
for an infinitely massive nucleus. Mass polarization is
completely negligible and terms of the order a have been
scaled with the reduced mass to account for the effect of
the finite mass of the nucleus on the wave function. The
wave functions can be written as [22)

g y Cmn rn n ill i i2 ELM

m, n,
l(12

= A g Ci (" Pi "i y(1,2),
m, n,

—0.008 67 ) X 10 ]=2.002 237 378 2,

which does not include mass polarization. Correspond-
ingly, we get 1 —23.211X10 and 1 —23.2Q8X1Q for
ratio of the helium 2 S& gz factor to the hydrogen 1 S&&2

gJ factor for He and He, respectively. The former is in
excellent agreement with the best experimental value [5]
1 —23.214(50) X 10 and Barkely and Hegstrom [6],
1 —23.211 X 10

IV. 2 Pg AND 2'P) g FACTORS

We have used three different types of wave functions to
evaluate the gL, g,', g„, and g~ factors for the 2 PJ and
2 'Pt states of He and He in a

~
Jm&LS ) representation.

We have not retained the nuclear-spin-dependent terms
in the Zeeman Harniltonian and therefore will not calcu-

r2

1.222 125

1.122 243
1.123 189
1.123 178

2.965 112
2.941 291
2.910521
2.910684

16.481 69
16.108 50
15.759 73
15.769 58

4.050 810

4.047 058
4.043 083

1.131250

1.132 800
1.133232
1.133242

2.670 463
2.688 850
2.674 230
2.673 962

13.003 98
13.374 83
13.214 70
13.211 74

4.009 604

4.107441
4.014 629
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basis, account for electronic correlation through
configuration mixing. The nonlinear parameters (a;P;)
are optimized for each different configuration. The dom-
inant configuration for the P states is I] =0, 12=1 (sp).
We obtained the first wave function by retaining only the
dominant radial contribution m =0, n = 1 for the pure sp
configuration. This is the hydrogenic wave function of
Eckart [24]. Expanding the radial basis to 50 terms, we
then found the best possible wave function of a pure sp
configuration. Finally, the most accurate wave function
was obtained by mixing 30 l, =1, Iz =2; 20 l, =2, l2=3;
10 I, =3, I =4; 10 I, =4, I =5; and 5 l, =5, l =6 terms
to the best pure sp wave function and then optimizing the

12 nonlinear parameters separately. The energy and radi-
al expectation values for the above three wave functions
are listed in Table II for comparison with each other and
the very accurate results of Accad, Pekeris, and Schiff
[25].

The benefit of using a configuration-interaction basis is
that li and 12 are specified for each term of the wave
function. This is not true for a wave function expanded
in terms of a Hylleraas-type basis, which explicitly in-
cludes qI2. With l, and l2 specified, general theorems of
angular momentum can then be used to evaluate the ex-
pectation value of the Zeeman Hamiltonian [10,26]. The
g factors in the

l
Jm&LS & are then defined as

&'z, m, lH, l'p, ,m, , & =( —I)]-'i/(2J'+1)6& J'lm, 'ol Jm, &

r

J J' 1 J J' 1

X W(JJ1111)[g( 1) gL]( 1)~ 1 1 2 g + 1 1 1 gy
1 1 1 1 1 1

(38)

&]p]mJI~. I]p]mJ&=&Z& llmOllm &g~p~&,

where & J'1m'.o JmJ &, W( JJ'l l; 1 1 ), and

J J' I
1 1 2-
1 1 1

are Clebsch-Gordan coefficients, Racca 8' functions, and
nine-j symbols, respectively [26]. This is equivalent to
the definition of Lewis, Pichanick, and Hughes [lo]. The
g„and gz factors result from terms in the Zeeman Harn-
iltonian which do not act in either the Lml or the Smz
subspaces separately. The terms which contribute to g
couple a Pauli spin vector with a second-rank spherical
tensor, e.g. , [cr;C[ ]][".The terms which contribute to
gz couple a Pauli spin vector with an orbital-angular-
momentum vector [cr; I; ]"'. The gr factor was not in-

eluded in the work of Lewis, Pichanick, and Hughes [10]
or Lewis and Hughes [7] since these authors did not con-
sider the contributions of orders a and c]. m, /m]v which
give rise to g~. In Eq. (38) g,'=g, +[(a +a +a m, /
m]v) corrections] and gL

= 1 —m, /m]v+ [(m, /m/v +a
+a +a m, /m]v ) corrections]. The expectation value of
the Zeeman Hamiltonian using the wave functions of Eq.
(37) can be written symbolically as

&qlH, l@ &
= wc y y c, ,

"c, ,
',"'&y, ", lII, ly;, ',", '&,

m, m, m, n,
1 1I' 2 I I, 12

(39)

where the sum are over all the terms of a wave function
and contain both direct and exchange contributions. We
define

c, =— m, /m]v[(21] +1)(212+I )]'~ & l] lool]0& & lz loollzo&

X 2[ 1[(l[+ 1 )(2/] + 1 )( I [ + 1 )(2/[ + 1 )351] W(/~I[ 1 1' ll [ )W(12l[ (I ' ll[ )(mn
qiq2

+[I', (I', +1)(2l', +1)18[' W(l, l', 1/;1/', )(mn m'n')+[/](I[+1)(2/[+1)18]'
qli3qz

a2
XW(12/[((;(l[)(mn m'n' —mn m'n') . ,

q Bq, Bq, Bq2
(40)

where the bracketed terms are the radial matrix elements of an operator between the radial basis terms of the variation-
al wave function:
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& mn IO(qiq~) lm'n'& =—f "q,dq, f "q2dq, Q(q, qz)q P ™q,"+"'
(41)

We also define radial integrals for which q, ~ q2..

q&

& mnlQ(q&q2 )Im'n' & ) —=f q idqi f qzdq20(q&q2)qP ™qz
0 0

and similarly for those in which q2 q&. The g factors are explicitly found to be

(42)

g,'=g, +Ad'g g CPi" CPi,
" —a 1+

6m
7 7

1 11' 2 1 i, 12

11
m, /mz & mn

I T, Im'n' &

+ (+——2m /m (mn
a a
3 e N

2 I

+ m, /m&( —1) ' ~[(2I&+ 1)(21~+1)] & li100lli0& &I&100I120&W'(IiI~1 il~i 1 1)
6

I, +I'm'n' + ~c ( —1) ' W(li1'&I&l2 , l l)'
q&

n

x( ~

k ka q& q2
k mn n~i m n —'(k' +()(mn nii m'n')

k=0

x [(21,+1)(21,+1)]'"&I, lool I', 0 & & I, lool I', 0 &

I

1)) 2

X W(l, 121il z,
' lk) 1+ —m, /mz

377
(43)

1 1 1

gL =1—m, /mz+ AA' g g Ci i" C,
" m, /mz . I, I& 1,[(21,+ l)(2lz+1)]' &1, 100ll &0&& lz100llzO&3

1 2 li, 12 I2 I2 1

quax mn m n + —1 ' ' 2I2+1 I2+1I26 1/2

qz

X))'(li(i(1; llz)(mn m'n')

I—a (1—2m, /mz)( —1) ' '[—,'(I& )(I&+1)(2I&+1)]'i W( ill, l &,'1lz)& mn
I T& Im'n'&

+ g a (1 —
m, /mz)[(21&+1)(2lz+1)]'

k=0

1 1 1

X . . Ii I', k +2 .& I, k +200ll i 0& &12k +2QQI12Q &

I, I2 k+2

X ( 1)k+1

k+2' k+1'
(k + 3)(mn m'n ') —k (mn n+, m n')'

q2 Bq2 k+1'

(2k +3)

X [—,'(k +2)(k +3)(2k +5)]'i~+( —1) ' 'W[lpl2(k +2)(k +2); lip]
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X l~(I~+1)(2I2+1)(2k+5)
(2k +3)6

1/2

k

X2 mn
q1

+(I,kooll', o) & I,

I +I
( 1 )

2 2

X
2

. l,

l2

k+2
+mn ",., -'

q2

I OOil,'O)

1 1

1/2

X Iq(I~+1)(2lq+1)(2k+1)
(2k + 3)2

W( I 2l ~kk; 1I2 )

k k+2

X mn k+1
m'n' + mn 'k+3 m'n'

q1

1 1

+( —1) ' ' . Ii I i

1

k .3[—,
' I ~ (I~+ 1)(2l~ + 1)]'~

l2 l2 k+1

X W(l2lqk(k +1);1I~)(2k+ 1)
1 1

k

x
(

~
k

k+1
m'n' + mn m'n' +( —1) . I, I'& k .

k+3
q1

l I' k2 2

q1
k+2' k+1'

(k+3((mn m'n' —(: mn
Bq2 q1+' Bq2

(2k + 3)

X [k (k + 1)(2k + 1)]'i

1 1 1

+( —1) ' '&I2koollgo)(l, (k+2)oolI;o& . I, I; k+2 .

l2 l2 k+1

1/2

x
(

~

k k+2+- ".- -"
q2

+~LR

r I CP&,
" a 1 —2m, /mn+ —((&200(l(&0~(( (21(&(z, l('&)(mn

7

1 I
1 2

2 I

X[—", (21&+1)]' 5& &, + ——m, /m~ 5, W(121&I' 'll&)( —1) '
'2'2
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a
q18q1

X(l,200~i', 0)(2l, +1)'i
a2

X V30 mn
I

m'n' + 45 —1 ' ' 5l1 2l1+1 l1+1

X )) (22(~(~ 'll~ ) 2(mn m'n' &2+ mn m'n'l
q1Bq1 q1

+
2

m' '
6I I,

— 70 2l1+1 5 ' 8' l1l122 2l1
q1 1

X (l, ill I ill', ) —
( —", )' l, (l, +1)

(l 2()() l ())

1 1 2

+cx m /mN . l1 l1 1

l2 l2 1

X v'75c, —", (l, (00(~(', 0)((,200(~('zO)[(2(, +))(2)z+))]'~ (mn m ln'
q1

+a 1 — —m /m
2(x

3 N

X g (
—1)"(l~koo~l~0) [(21I+1)(2lq+ 1)(k +1)]'

k=0

X ——", &k(k+1), mn
(2k —1)

(2k —1)
k k

k+1 2k ~ 3 k+1

1 1 2

x. l, l', k.(t, kOO~l;0)

l2 l2 k

1 1 2

+—', (li(k —2)00~1', 0) . l, l'I k —2 .

l2 I 2 k

k (k —1)(2k —3)5
(2k —1)

1/2

X( ~

1 2
m'n' —9 (li(k +2)00~i', 0), li l'i k+2 i

l2 l2 k

X (k+1)(k+2)(2k+5)5 q2

(2k +3) k+1

(45)

I I
I 2 II12

m'n' 35,5, W(111&ll', 1/&)( —1) '

q1

(46)
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where gl~ is the contribution to the gL factor coming
from the radiative corrections of Eq. (1) derived in Ap-
pendix A, T, —:m f/2m„and (I, ~~I, ~~II ) is the reduced
matrix element for l

&
which is a second-rank angular-

momentum tensor operator built from the components of
the angular momentum vector in the usual way:

I = g ( llm, mz~2m )I' I'
ill l, m2

(47)

The fact that the components of I do not commute is not
a problem since the components of I are symmetric. Us-
ing I+ =+1/&2L+, LO=LO, Lo Lm ) =m~Lm ), and
L+~Lm ) =[I(I+1)—m(m+1)]' Lm+1) the reduced
matrix elements are found to be

1.290 994 448 735 806 (I i
= 1)

4.582575694955 841 (Ii =2)
9.486 832 980 505 138 (I, =3)

(I, iil f iil i ) =5(l„l', ) . 16.020819787597219 (I, =4)
24. 186773 244895 647 (I, =5)
33.985 290 935 932 859 ( I, =6)

45.416590214002923 (Ii =7) .

(48)

Equations (43)—(45) contain the a m, /m& corrections
due to the scaling of the a terms with the reduced mass,
thus accounting for the effect of the 6nite mass of the nu-
cleus on the wave function to the precision we require.
The numerical contributions of order m, /m~, a, a, and

a m, /m~ to the 2 Pz and 2 'P» gL, g,', g, and gz fac-
tors of He and He are listed in Tables III and IV for
each of the three wave functions that we used. The re-
sults using the simple hydrogenic wave function agree (to
a ) exactly with the results of Lewis and Hughes [7]. The
expectation value of the m, /m~ corrections of H6 [Eq.
(28)] is sensitive to the form of the wave function. Using
an accurate wave function expanded in a configuration-
interaction basis, we get a substantial improvement be-
tween the experimental gL factor and the theoretical gL
factor over the results of Lewis and Hughes [7]. Howev-
er, our result for the He gL factor is still 1.36 standard
deviations above the experimental value [8] when includ-
ing the a radiative corrections of Eq. (1).

Here we would like to comment on the accuracy of the
results of our work using a con6guration-interaction
wave function in contrast to the accuracy of the results of
Lewis and Hughes [7], who used a Hylleraas-type wave
function. Our best 2 P energy is accurate to 2 ppm and
the 2 P energy of Lewis and Hughes [7] is accurate about
to 20 ppb. Since the error in the energy of a variational
calculation is proportional to the square of the error in
the wave function, we would roughly expect our wave
functions and matrix elements to be accurate to 10 and
those of Lewis and Hughes [7] to be accurate to 10
This, in fact, corresponds to the error that Lewis and
Hughes associate with their value for g,

' (not a single ma-
trix element) by means of extrapolation [7]. The errors
that Lewis and Hughes [7] associate with gl and g„(by
extrapolation) are much worse: 3.7% and 71.4%, respec-
tively. If our wave function was only correct to 1 ppt we

TABLE III. Individual theoretical motional and relativistic corrections to the He 2 Pz and 2 'P& g
factors. All entries are to be multiplied by 10 . Of the three entries for each g factor, the upper entry
is the result using a simple hydrogenic wave function. The middle entry is the result using the best
wave function of a pure sp configuration. The lowest entry is the result using a 125-term configuration-
interaction wave function. Only the lowest entries include a radiative and reduced-mass corrections

g, =2(1+a, ) and gL, =1—m, /m&.

g factor

Rs Re

m, /mz

0.000 00
O.OM 00
0.00000

Q2

—80.264 14
—80.430 14
—80.460 58

2 Pq

(y
3

0.038 45
0.038 47
0.038 48

o.'m, /m~

—0.009 91
—0.007 71

0.021 08

Total

—80.236
—80.399
—80.401

Rs ge 12.242 76
21.756 27
17.565 97

—8.402 59
—8.743 39
—8.909 70

0.00000
0.000 00
0.178 90

0.00000
0.000 00
0.002 37

3.840
13.013
8.838

8'x 0.00000
0.00000
0.000 00

—5.596 53
—5.64040
—5.393 72

0.014 82
0.01677
0.017 56

0.005 22
0.023 01
0.026 22

—5.577
—5.600
—5.350

0.00000
0.00000
0.00000

0.00000
0.000 00
0.00000

0.009 45
0.009 58
0.009 61

0.000 93
0.001 26
0.001 38

0.010
0.011
0.011

—8.161 55
—3.463 32
—8.969 73

—6.598 41
—6.598 43
—6.802 75

2'P,
0.00000
0.00000
0.00000

0.000 00
0.00000
0.001 81

—14.760
—10.062
—15.773
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TABLE IV. Individual theoretical motional and relativistic corrections to the He 2 PJ and 2 'P& g
factors. All entries are to be multiplied by 10 . Of the three entries for each g factor, the upper entry
is the result using a simple hydrogenic wave function. The middle entry is the result using the best
wave function of a pure sp configuration. The lowest entry is the result using a 125-term configuration-
interaction wave function. Only the lowest entries include a radiative and reduced mass corrections

g, =2(1+a, ) and gL,
= 1 —m, /m~.

g factor

Rs Se

m, /mz

0.000 00
0.000 00
0.000 00

2 PJ—80.264 14
—80.430 14
—80.460 58

3

0.038 45
0.038 47
0.038 48

~'m, /m~

—0.013 15
—0.01023

0.027 97

Total

—80.394
—80.402
—80.394

RL, SL, 16.243 04
28.865 05
23.305 59

—8.402 59
—8.743 39
—8.909 70

0.000 00
0.000 00
0.178 90

0.000 00
0.00000
0.003 14

7.840
20.122
14.578

Sx 0.000 00
0.000 00
0.000 00

—5.596 53
—5.640 40
—5.393 72

0.014 82
0.01677
0.017 56

0.006 93
0.030 53
0.034 79

—5.575
—5.593
—5.341

0.000 00
0.000 00
0.000 00

0.000 00
0.00000
0.000 00

0.009 45
0.009 58
0.009 61

0.000 32
0.001 04
0.001 15

0.010
0.011
0.011

—10.828 31
—4.594 95

—11.900 56

2'P,
—6.598 41
—6.598 43
—6.802 75

0.000 00
0.000 00
0.000 00

0.00000
0.00000
0.002 40

—17.427
—11.193
—18.701

would expect the error in g,
' to be at least +0.08X 10

yet we obtain exact agreement (to terms of order a ) with
the results of Lewis and Hughes [7]. In fact, Lewis and
Hughes [7] obtain the same result (g,

' —g, = —80.46
X 10 ) with Hylleraas-type wave functions of 35, 56, 84,
120, and 165 terms. This is because the terms which con-
tribute to g,

' are scalar operators in the LmL subspace.
They are not sensitive to the exact form of the wave func-
tion. The terms which contribute to gL and g have a
more complicated angular structure. As a consequence
the gL and g„ factors depend more on the exact form of
the wave function. If we compare the convergence of the
energy and g factors of Lewis and Hughes [7] with our re-
sults in Tables I and II we can only conclude that the
main di6'erence between our results and the results of
Lewis and Hughes [7] cannot be due to the order-of-
magnitude error in the wave function or the slow conver-
gence of the configuration-interaction basis. We expect
that the simplicity of our approach in separating the radi-
al and angular integrals has facilitated in the calculation
of more accurate values of gL and g . Looking at Tables
III and IV we note that the only contribution which de-
pended critically on choice of each of the wave functions
that we used was the expectation value of H6 [Eq. (28)],
which is responsible for the range of values for gL in
Tables I, II, and IV. Furthermore, to get an idea of the
magnitude of error in our g factors we have recalculated
the 2 P g factors for configuration-interaction wave func-
tions which yield energy eigenvalues in error by 1 and 5

pprn relative to our best wave function with an energy ei-
genvalue of —2. 133 160 a.u. Using the latter two wave

The purely motional contributions of order m, /mz
and relativistic contributions of order a and n to the
Zeeman Hamiltonian for heliumlike atoms [Eqs.
(11)—(21)] agree with previous calculations [2—4]. The
relativistic motional corrections of order a

m &/mz, how-
ever, do not agree with the results of Hegstrom [4].

Note added in proof. Although the terms of order
a (m, /mz) of our Zeeman Hamiltonian [Eqs. (11)—(21)]
are not the same as those of Hegstrom [4], our Zeeman
Hamiltonian [Eqs. (11)—(21)] can be obtained by making
a unitary transformation on the Hamiltonian [Eq. (21) of
Ref. [4] ] of Hegstrom [4] with the unitary operator

U=exp —(r, +r2 —2r~) BXie cr) Xm )+a.2X+2

2t71~ Pl~C 2

+H. c.

Thus our Zeeman Hamiltonian and Hegstrom's [4]

functions we have taken the average error in the g factors
(for each ppm error in the energy eigenvalue) as an esti-
mate of the error (for each ppm error in the energy eigen-
value) in our reported 2 P g factors. In this manner
we estimate the error in our He 2 P g factors
as g =0.011(0)X10, g,

' —g, = —80.401(0)X10 6,

g. = —5.344(2)X10 6, and gL
—

gL
——8.838(13)X10-6

The error in the He 2 P g factors is about the same as
the He 2 P g factors in ppm.

V. SUMMARY AND CONCLUSIONS
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Zeeman Hamiltonian for heliumlike atoms should lead to
the same value for the g factors of heliumlike atoms pro-
vided the same wave functions are used. This is
exemplified in the agreement between our value for the
He 2 S] gJ factor and the value for this g factor ob-

tained by Barkley and Hegstrom [6].
Our He 2 S, gJ factor [g3(1—40.9158X 10 )

=2.002 237 377 8 ] agrees with the results of G rotch
and Hegstrom and Barkley and Hegstrom [6]
[g, (1—40.915 69X10 )=2.0022373782]. The ratio of
the above g factor to the gJ factor of 1 S~&2 hydrogen [9]
[2.002283852451] is 1 —23.211X10 using our value
and using the results of Barkley and Hegstrom [6]. This
compares well with the most precise experimental value

[5] [1—23.214(50)X10 ].
We have calculated all of the corrections of order

I, /mN, a, a, and a m, /mz to the 2 PJ He and He g
factors. The corrections of order o. and 0. m, /m& have
not previously been included for these g factors. We have
used wave functions for a finite nuclear mass expanded in
terms of a configuration-interaction basis as opposed to a
Hylleraas [7] basis. Including terms to order a, our re-
sult for the 2 PJ He g,

' factor [g, —80.461X10 ]
agrees exactly with the calculation of Lewis and Hughes
[7]. Including terms of orders a and a I, /m& changes
this value to g,'=g, —80.401X10 . This is 1.83 stan-
dard deviations below the only experimental value for the
He 2 PJ g,

' factor [g, —76.0(2.4) X 10 ] [10]. Howev-

er, the experimental result cannot measure the efFect of
configuration mixing: it is based upon the assumption of
a pure sp configuration for the 2 Pz states [10]. Our re-
sult for the gz factor [ —5.344X10 ] is in good agree-
ment with the result of Lewis and Hughes [7]
[ —3.5(2.5) X 10 ]. The only experimental value is
quite imprecise 4.0(25.0) X 10 ] Ref. [10]. Better exper-
imental results exist for the He and He 2 PJ gL factors:
[1—m, /m&+4. 9(2.9)X10 ] Ref. [8] and [1—m, /mz
+10.5(2.0)X10 ] Ref. [27], respectively. These experi-
mental results do not assume a pure sp configuration for
the 2 PJ states. Our results for these gI factors are
1 —m, /mz+ 8.838 X 10 and 1 —m, /mz+ 14.578
X 10, respectively. Our He gl factor is substantially
closer to the experimental result than the result of Lewis
and Hughes [1—m, /m~+10. 6(4)X10 for He] [7].
Our latter results for the gL factors include a contribu-
tion [0.179X 10 ] from radiative and recoil corrections
of order a, which have not been calculated previously.

Some of the terms of orders o. and a m, /m& of the
Zeeman Hamiltonian are of the form vr& X (cr

&
X vr& ). The

contribution of these terms to the 2 P and 2 'P helium g
factors have not been evaluated in the past [7,10]. They

I

give rise to another g factor defined in Eq. (38):
g =1.08X10 for He and g =1.06X10 for He.

4 1Finally, we have calculated the He 2 P] gL factor
1 —m, /m~ = 15.771 X 10 . We have not calculated the
radiative and recoil corrections of order a in this case
since the calculations of the radiative corrections are
quite involved and this gL factor is not of much interest.
In fact, there is no mention of this gL factor in the pub-
lished literature.
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APPENDIX A.

In this appendix we outline the calculation of the radi-
ative corrections of Eq. (1). We only need to calculate
AEI/ accurate to three significant digits. We can there-
fore assume a pure sp configuration for the 2 P state
( ~n ) ). Neglecting terms of order a m, /m&, we can re-
place the constituent position (r;) and momentum (p;)
variables by the relative (to the nucleus in the c.m. frame)
variables q;=r; —rz and m; (conjugate to q;) in Eq. (1).
The mechanical-momentum operators in Eq. (1) are
spin-independent operators acting only on the Lml sub-
space and therefore all of the states of the internal sum
on states must have the same symmetry as the end states
~n ). This allows us to make use of exchange symmetry
and replace m.z and qz by m. , and q, in Eq. (1). This gives
us eight equivalent contributions: four self-energy and
four transverse. The self-energy terms are twice as large
as the (presumably more correct) results of Grotch and
Kashuba [11]. Therefore, to bring the self-energy contri-
butions in agreement with the result of Grotch and
Kashuba [11]we must multiply Eq. (1) by —,'. Expanding
the dot product, retaining only terms linear in the
magnetic field, integrating over k, and using
( n

~ r, ~
n

' ) (E„. E„)= ( n
~ [r„ I]—

I~ n ' ) =i m/m„Eq. .(1) be-
comes

16'&iB m, c

37rm c
gin

X[(n ~~& ~n')(n'~m, ~n ) —c.c. ] .

Using m„=(1/v'2)(m —m' ), m =(i /&~2)(~ +~ )
and ~=(/+2/qt ) I &I"/& ]'"—i&&I '/Bq, (subscript 1 in-
dicates electron 1), we evaluate the matrix elements in
Eq. (Al) to get [26]

16ap, &B m, c
bEz =

z z
g' ln [(L'1m' 1~Lml ) —(—L'1ml 1~Lml )][(LlmL —1~L'ml )+(LlmL1 L'mL )]

3~m, c E„. E„—
I

X [5, , 5, , ( —1) ' '( —1) ' '[(2L'+1)(2L +1)(2/, +1)(2/,'+1))' W(LL'/, /I;1/2)

X W(L'L/, '/„1/b)] 6, , [(2/', +1)/, (/, +1)3]'~ W(/, /', l l;1/', )(/, 100~/', 0)
1 1
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X,I l', l,' + l, 100 l', 0 l, l,

X 5i i, [(21,+1)I,(1,+1)3] ~ W(l, l, 11;ll, )(l, lOOIl, 0~ I, li,
a a

aa&a a a ah

~( .' llolo, l0&( ;l;ll. l, )a b g a b (A2)

where the sum extends over all primed variables. The subscripts 1 and 2 (a and b) are used for the orbitals of the first
(second) matrix elements of Eq. (Al). Symbols such as (l, i@I(&2/q, )Il', lz) represent the radial integrals for the
specified orbitals. We choose I, =1, Il =l, =0, and l2=lb=1 for the pure sp configuration 2 P state. The only
configurations of the internal states which will connect with the pure sp 2 P state via a vector operator in the Il sub-
space are ss, pp, and sd:

16ap~8 m, c
z z

g' Nzln ((L'1mi —1I lmL ) —(L'lmL 1I lmI ) )

X((llml —1IL'ml )+(11ml 1IL'mi ))

X [3(2L'+1)]'~ [W(1L'01;11)](
—1) +'N'

X Slp2 ~ p lp2 Slp2
~ p2p 1

X p lp 2 ~
s lp2 p 2p1 s lp2

a, , a,—N„p 1 $2
~

s ls 2 p 1 $2v3 Bql Bql
$2$1 S 1$2 P1$2 S2$1 P1$2

Bq,

I2
i'z ~i'z l'i'2)15 Bql Bql

(A3)

where we have used triplet wave functions of the form f=N&
& [f(qiq2))l, l2 f (q2q, )l2l, ], N—

& I is a normalization
1 1 1 2

constant, and f (q, q2) is a radial function for the configuration l, 12. The contributions from the matrix elements of the

j O', "Ii I'" tensor operator vanish. Choosing mL =1 the gi~ factor is defined as giz =bEz lpiiB. Summing over L'
and II the contributions from the pp orbitals vanish and we have

16'
gL~

= g' N ln
9mm c

mec

IE„, E„—I2 I I a
Nss P1$2 S1$2 P1$2

g
$2

()q 1 Bq 1

8
X s 1$2 p1$2 s 2s 1 p1$2

Qql Bql

&2 I t I I—Nd p1$2 dls2 d1$2
~

p1$2
Bql Bql

(A4)

The sum in Eq. (A4) is split further into the following
contributions.

(i) Terms in which both electrons are bound and are of
the form 1$ns. There are no triplet states of the form
(nlnl —nlnl). For n =2—6 we use variational wave func-
tions with 30 terms for the 1sn$ states and the 50 term
best pure sp wave functions for 1$2p to get a contribution

of 0.01337X10 to glz. It becomes very difficult to
create variational wave functions for n =7—50. Thus, for
n =7—50 we use 1sns wave functions which are simply
the product of 1S(Z =2) and nS(Z =1)hydrogen states,
where the inner electron "sees" the full nuclear charge
(Z =2) and the outer electron sees a screened nuclear
charge (Z =1). Here and in all the following contribu-
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tions we use the simple hydrogenic sp variational wave
function for 2 P state. Additionally, we include here the
contributions from states of the form nsms(n, m ~1).
These contributions converge well before n =50 to give
0.00002X10 to glz.

(ii) For the other doubly discrete states (nsmd) we use
the aforementioned screened hydrogen product approxi-
mation, which is a very good approximation since even
for the ls3d (3 D) state the screened hydrogen product
approximation gives an energy eigenvalue correct to five
figures. Again, these contributions converge quickly and
provide a contribution of —0.00035 X10 to the gLz
factor.

(iii) There are also contributions for which one electron
is bound and one is in the continuum. Here, the screened
product hydrogen approximation should be excellent. In
agreement with similar calculations of the average excita-
tion energy and the helium Lamb shift [28], these contri-
butions are the dominant ones. They provide
0. 166 35 X 10 to the gL~ factor.

(iv) Finally, there are contributions from states in
which both electrons are in the continuum. Again we
have no choice but to use the product hydrogen approxi-
rnation which is expected to be excellent in this case.
Here, however, both electrons see the full nuclear charge
(Z =2). They provide a contribution of
—0.00052X10 to the gL~ factor.

This method of explicitly splitting the internal sum
into the above contributions was previously used for
Kabir and Salpeter [28] to evaluate the average excitation
energy used in the helium Lamb shift. Their results
agreed to four ppt with more accurate results employing

I

a different method [29]. They, however, neglected contri-
butions from doubly continuous states. We expect the
same level of accuracy from our calculation. It has re-
cently been brought to our attention that the doubly
discrete excited states (nsms and nsmd; n ~ 1, m ~ 1) are
not actually eigenstates of the nonrelativistic Schrodinger
equation for the helium atom. These states are autoioniz-
ing and only a few have experimentally observable decay
spectra [39]. The actual eigenstates of the system are
linear combinations of these states with the states in
which one electron is bound and one is in the continuum.
The linear coefficients of these combinations are time
dependent and give a nonvanishing amplitude for the
doubly discrete state only if the state is prepared as such
and only for a very brief period of time. At any rate, the
total contribution from these doubly excited discrete
states is 0.000008X10, which is quite negligible. The
dominant error in the calculation of these radiative
corrections will come from the lsns (n ~ 7) doubly
discrete contributions. We thus estimate our calculation
of gL& to have a maximum error of one half of the 1sns
doubly discrete contribution (+0.007X10 ) and get
gl~ =0.0179(7)X10 . Had we used Eq. (1) as is, not
multiplying by —,', we wold have gr~ =0.0239(9)X 10

APPENDIX B

In this appendix we derive the interaction-dependent
part of the Lorentz boost operator for a heliumlike atom.
Our starting point in Eq. (33) of Ref. [12]:

[P',. ",h' ]= U' P; —M[R;, U '
]
— g pp,

m.„.P+
M

m„P+ " + Pp, l

P

(Bl)

where h' '=Kf is the Hamiltonian of Eq. (33) and U' ' is the potential-energy operator of that Hamiltonian. Making
use of the commutation relations [12]

[R;,(p„,m„, cr„)]=[P;,(p„,m„, cr„)]=[R;,R ]=[P;,P ]=0, [p„',pj]=[a„',m'j]=0,

m
[ppy 17~] l 5p~ 5jj y [cTpy l7~] l 5p~cjjk opM

(B2)

we obtain the right-hand side of Eq. (B1):

Z2 2

[ ~~(1) h (o)]-
4c

(PWV)

&p'qp
3

(M —m, )(m, —m)v)+~)v
Mm, mN

(m, —m)v)
l + E

qp ~ qv
m~

7l q
3

qp

(M —m ) m 1 (m —
yPz)v)

~mz ~m~ q„" m&m, m~

m„(q„—q )

3
qpv

M —m, +m)v . (I,—M)

Mm,

2
g

2

+ (B3)
4~ 2

(PWV)

where q„—=p„—p&. If we assume that W'" is only a function of q& and qz (and not n ) and nz), we obtain the left-hand

side of Eq. (Bl):
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(m~+m, )
[W;"),h' ']= g —(Vq W, ") m'p+ (84)

) 2 II mern~ m~
(pwv)

Equating the coefficients of rr, and mz in Eqs. (83) and (84) we have two coupled sets of vector differential equations for
each of the components of W' ":

with

1
aW")

1 aW,'"
p aq,, m„aq„d ' '''

m~ aq, p aq„ (85)

Ze q', (M —m, )(m, —m~)+m~
Cd('q 1 q2 ) '

Mme m~
T

(m, —m~) q~~

q&+ q2 +
Mm~ q3

me
q2

m~

1

q)

(m, —m~) 5';
5, +

m~m, '
m&q2

2c

M —m, +m~
Mm,

(m, —M)
q)+ q2 +

Mm, meq12

and C, (q, q2)j is obtained from Cd(q, q2)J by interchang-
ing the labels 1 and 2. Solving the algebraic Eqs. (85) we
obtain the 18 differential equations for the three com-
ponents of W'":

t)W" (m, +mt')m, m,
Cd(qiq2)l —

M C, (qiq2 l
(87)BW" (m, +mtv)m, , m,

Bq2.

Equations (87) can be integrated directly to obtain Eq.
(5). If we assume the W'" is a function of n, and m2 in-
stead of q& and qz, the resulting solution contradicts the

original assumption and W'" turns out to be a function
of q&, q2, m„and m.2. If we assume that W'" is a function
of all four variables we cannot solve the resulting equa-
tions.

The complete interaction-dependent part of the
Lorentz boost operator is V'"=RU' /c +W ". This
operator must be separable in the following sense [13]:
%'hen the system is divided into any number of subsys-
tems that are infinitely far removed from each other a
Lorentz boost of any subsystem is independent of the dy-
namics of any of the other subsystems. With R=g;m;r, ,
q, =r; —re, and the potential-energy operator of Eq. (25),
we see that with W" ' of Eq. (2) V' "is indeed separable
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