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Semiclassical laser-cooling theory for a trapped mnltistate ion
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We present a semiclassical laser-cooling theory for an ion bound in a quadratic potential well, allow-

ing for an arbitrary internal level scheme of the ion and an arbitrary polarization of the light field. The
special case that the ion moves in a region much smaller than the wavelength of the exciting light
(Lamb-Dicke limit), as well as an additional low-intensity limit, are worked out in detail. Explicit gen-
eral expressions are given for the damping and diffusion tensors of the center-of-mass motion of the ion,
and the light-induced renormalization of the mechanical oscillation frequencies is discussed. The for-
malism is implemented analytically using a computer program MATHEMATICA for an ion with a
j=

2
—+j=—transition moving in a one-dimensional optical molasses consisting of two counterpro-

pagating laser beams with perpendicular linear polarizations (lin I lin). For a weakly bound ion at negli-
gible saturation, the greatest lower limit of excitation energy turns out to be ( o

)' —
~
=0.78 vibration-

al quanta above the zero-point energy.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Recent experiments [1] have prompted the realization
that both the Zeeman degeneracy of the atomic levels and
the spatial variations of the polarization of light often
have to be taken into account in the theory of laser cool-
ing of atoms [2,3]. The traditional two-state description
of the atom may in fact give a qualitatively incorrect pic-
ture of the light pressure in, say, optical molasses. In
response to the challenge, an extensive and rapidly grow-
ing theoretical literature has arisen on cooling and trap-
ping of multistate atoms [2—10].

On the other hand, laser cooling of trapped ions has
paved the way for progress both in fundamental physics,
e.g. , quantum jumps [11—13], and in applications such as
frequency standards [14]. A theory of Doppler cooling of
a trapped two-state ion was compiled some time ago
[15—17], and tested against numerical solutions for the
quantum motion of an ion in a trap [18,19]. Compared to
Doppler cooling, polarization-gradient cooling of free
atoms offers a stronger damping of the atomic motion
and lower cooling temperature. These features might
also be assets with trapped ions. Although there have
been a few isolated studies of closely related subjects
[20—22], our short paper [23] focuses on the
polarization-gradient cooling of a trapped ion. Ap-
parently no experiments have yet been reported.

The purpose of the present paper is to expand our ear-
lier concise summary [23] into a detailed semiclassical
(SC) approach to laser cooling of a harmonically bound
ion. The ion may have an arbitrary internal-level
scheme, and may move in a light field with an arbitrary
position-dependent polarization. %'e have advanced such
a theory for a free atom in Refs. [4] and [10],hereafter re-
ferred to as I and II. In Ref. [9], from now on referred to
as III, we have developed additional theoretical methods
for 1aser cooling of a free atom specifically for the limit of
low light intensity. Here a major fraction of I—III will be

adapted to a trapped ion.
Section II contains our formal development. In Sec.

II A we outline the modifications of the cooling theory re-
quired to go over from a free atom to a trapped ion. For
a trapped ion, the Lamb —Dicke limit, according to which
the ion resides in a region much smaller than the wave-
length of the exciting light, has proven both experimen-
tally feasible and theoretically convenient. Section II 8 is
thus dedicated to the Lamb-Dicke limit. The case with a
simultaneous Lamb-Dicke limit and nonsaturating laser
intensity is taken up in Sec. II C.

Section III presents two explicit applications of the
theory. In Sec. III A we demonstrate that for a two-state
ion the well-known results are regained. Section IIIB
discusses the special case of an ion with a j =

—,
' —+j =

—,
'

transition moving in a one-dimensional (1D) optical mo-
lasses consisting of two counterpropagating laser beams
with perpendicular linear polarizations (lin l lin). It
turns out that the interplay between the optica1 pumping
time of the internal state of the ion and the period of the
oscillations of the center of mass sets the lowest limit of
the cooling temperature. In our example the ion can be
cooled until its excitation energy is about one vibrational
quantum above the zero-point energy.

In our SC approach the c.m. motion of the ion is treat-
ed classically. For instance, we simultaneously refer to
the position and velocity of the ion. Nevertheless our
cooling theory respects the quantum-mechanical zero-
point limit of the energy of a harmonic oscillator. This
issue is discussed in the final Sec. IV of the present paper.

II. COOLING THEORY FOR A TRAPPED ION

In this section we describe the changes of the SC
theory of laser cooling and trapping as one goes from a
free atom to a trapped ion. %'e state our main results in
full and aim at self-containedness on a general level, but a
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few technical details may only be appreciated by a reader
familiar with I—III.

A. General semiclassical theory

2M 2
l

(2.1)

Here p; and r; are the momentum and position operators
of the ion in the three principal axis directions i =1,2, 3
(or x,y, z) of the trap, M is the mass of the ion, and v; is
the mechanical oscillation frequency of the ion in the
direction i. H, is the Hamiltonian of a generally aniso-
tropic harmonic oscillator. The benefits are reaped in the
next step of the development of I, in which spontaneous
and induced processes as well as the evolution due to
H, are converted into the Wigner representation of the
c.m. motion. Because of its form, H, is taken into ac-
count in the fully quantum-mechanical equations of
motion of the Wigner functions simply by using the clas-
sical convective derivative as appropriate for a trapped
ion.

The net result is that the spontaneous emission contri-
butions to the equations of motion of the Wigner func-
tions, Eqs. (2.33)—(2.36) of I, apply as they stand. The
remaining terms are given by Eqs. (3.8) of I, with the sole
change that the convective derivative is to be interpreted
as

d 8 Ji
(2.2)

instead of (3.9) of I. The free-atom theory is regained by
setting v; =0.

In I we next engage in an adiabatic elimination of the
internal degrees of freedom of the atom, so that eventual-
ly only the Wigner function representing the c.m. motion
remains. The difference between the present case and the
free-atom theory of I enters through the translation su-
peroperator, which now reads

8' = exp —wg Mv, r, —Pl

w ar;
(2.3)

Paper I opens with a full quantum treatment of both
the internal degrees of freedom and the c.m. motion of a
free atom. In I we use free-particle plane waves to
represent the c.m. motion. It is possible to use the plane
waves for the c.m. motion of a trapped ion just as well.
Now, in the derivation of spontaneous relaxations in I we
ignored the energy of the c.m. motion in comparison with
the energy differences between the atomic levels. For
that argument it does not matter whether the c.m.
motion is free Aight or bound oscillations of a trapped
ion. All spontaneous damping terms for a trapped ion
come out exactly the same as in I. Induced interactions
with the external field are also the same. The c.m.
motion appears only in the term (i IA'—)[H, ,p] in the
Liouville —von Neumann equation. The explicit form of
this commutator in the plane-wave basis is quite involved
for a trapped ion.

For definiteness we assume the c.m. Hamiltonian

The form of I, Eq. (4.20), is again obtained by setting
v, =0. The "r shift " of an arbitrary function f ( r, p ) is
once more defined as

(2.4)

One may see directly from the definition that the function
f, satisfies the partial diff'erential equation

f,=0 . (2.5a)

The result (in somewhat abbreviated notation) reads

Pl.f,(r, ,p, ) =f r;cos(v;r) — sin(v, r),
Mv;

p;cos(v;r)+Mv, r;sin(v, r) . (2.6)

The new form of the ~ shift has two consequences.
First, in the subsequent calculations in I finding the force
and the diffusion tensor were connected to finding certain
internal-state operators of an atom that moves along a
straight free-fIight trajectory. As one might surmise, a
similar prescription works here. In the present case one
just has to take the trajectory of a harmonic oscillator.
The second change from I is more subtle. The fact of the
matter is that in certain intermediate calculations one
winds up taking partial derivatives of ~-shifted quantities
with respect to momentum. An explicit example is pro-
vided by Eqs. (4.55) —(4.61) of I. Adapted to the trapped
ion, we find intermediate expressions such as

+cos[v;(t t ')]-a
a

(2.7)

The first term on the right-hand side of (2.7) is ignored by
virtue of a similar argument as in I. However, the newly
introduced cosine factor survives all the way to the final
results.

We are ready to summarize our semiclassical laser
cooling theory of a harmonically trapped ion. The c.m.
distribution function f (r, p, t) obeys the Fokker-Planck
equation

Pi 0 2

The term "semiclassical" refers to the state of affairs that
in this formulation the c.m. motion is treated classically.
The ion simply moves under the harmonic restoring force
and the light pressure force F. In addition, the ion is sub-

This is the Liouville equation for a harmonic oscillator,
and can be solved easily with the proper initial condition

(2.5b)
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5'I.+ sin[v;(r —t)] .
Mv;

(2.9)

Here rE( —00, 0] is the parameter of the trajectory,
which we call the running time. For later convenience
we have introduced the position of the center of the trap
r that may differ from zero. Next one finds four
internal-state operators of the ion, p and q& 2 3, by solving
for the moving ion a set of equations analogous to the or-
dinary density matrix equations:

ject to random diffusion that does its best to take into ac-
count quantum fluctuations in ion-field interactions. The
diffusion is quantified by the diffusion tensor D;.. In the
same vein, in the remainder of this paper we take the c.m.
motion of the ion to be classical.

To calculate the force and the diffusion tensor at time t
in the phase-space point (r, p) one takes an ion moving
along a harmonic-oscillator trajectory

r;(r) r, =—(r, —r, )cos[v;(r —t)]

The superoperators W governing the fluctuations in the
motion of the ion due to random directions of spontane-
ously emitted photons are given in Eq. (4.65) of I.

The conditions of validity of the SC theory are the
same as before. First, as attested to by the appearance of
finite-order momentum derivatives in the theory, we have
replaced the discrete momentum transfer between the
light and the ion with a (nearly) continuous fiow. The
momentum of a characteristic photon must therefore be
much smaller than the characteristic momentum scale of
the ion. Second, our derivation is an adiabatic elimina-
tion of the internal degrees of freedom, which are sup-
posed to be slaved by the c.m. motion. There is one
infinite time scale for the internal degrees of freedom of
the ion corresponding to conservation of the population.
We have explicitly taken care of it in the formalism. The
condition then remains that the light-induced change in
the motion of the ion during all other internal time scales
must be "small. " We emphasize that at this point no as-
sumptions regarding the oscillation frequencies v, have
been made.

p =690p+ QQP—,l
a7-

(2.10a) B. Lamb-Dicke limit

g; = 696q;+cos[v;(t —r)]

1 av , aV av
X ar,

+'
ar, p+par,

av—pTr p Br.
(2.10b)

Here 8(r) is the Liouville superoperator (including spon-
taneous emission) that generates the evolution of the
internal state of an ion at point r, and P and 6 are su-
peroperators whose action on an arbitrary internal-state
operator o is given by

As usual in laser-cooling theory of a trapped ion, a ma-
jor simplification results when we assume that the ion
stays in a region much smaller the wavelength A. of the
exciting light. This is called the Lamb-Dicke limit. The
ensuing expansions are the trapped-ion analogs of the ve-
locity exparisions pursued in Sec. II C of II.

In Eqs. (2.10) the right-hand side depends on the run-
ning time via the position dependence: 9=9(r(r)) and
V= V(r(r)). When the motion is confined to a region
much smaller than the wavelength, we may expand these
operators around the center of the trap r . Using (2.9) we
have

2(r(r))=Q(r )+g (r, —r, )cos[v;(r —t)]

IPo= —Tr(o), Qo =o —Po .
N

(2.11) + sin[v;(r —t) ]
M(r )

Mv; ' pro

I is the unit operator for the internal degrees of freedom
of the ion, N is the number of internal states included in
the model, and V(r) is the ion-field dipole interaction
operator rendered independent of time by a suitable
rotating-wave approximation. In Eqs. (2.10), arbitrary
traceless initial conditions are assumed for the operators
p and g, 23 in the distant past ~= —~. The operator
that we denote by p is in fact the ordinary density opera-
tor made traceless by subtracting jL/N from it.

The differences from the free atom are the different tra-
jectory (2.9), and the cosine factor in Eq. (2.10b) whose
origin was discussed around Eq. (2.7). The rest of the cal-
culations proceed exactly as before: Once the solutions
to (2.10) are found at the running time r=t, the force
F(r, p) and the diffusion tensor D,~(r, p) are

+ ~ ~ ~ (2.14)

p =QQ(r )ap +69(r )P—, (2.16a)

8 p'= 69(r )Qp'

The expansion parameter obviously is the ratio of the am-
plitude of the oscillations of the ion to the wavelength.
Assuming a solution of (2.10a) in the form of a power
series of this ratio,

p=p +p'+ (2.15)

and equating terms order by order, we find a succession
of equations. The first two read

avF= Tr pBr;

D; =—'Tr g, + q,. +T.r W p+-Bv av
Br,. ' Br

(2.12)

(2.13)

+g (r, —r, )cos[v;(r —t)]

+ sin[v;(r —t)] 6 p +-p; . BB(r ) p

M v; c)r;0 1V

(2.16b)
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The solutions to Eqs. (2.16) at time r=t with arbitrary
traceless initial conditions are

p'= —[Qe(ro) 6]-'Qe(roy —,
X ' (2.17a)

p,. /M+(r; r—
, )69(r )6 ag(ro

[(6&(r )6)'+Qv'] ar,

aV aV(r )++ o a V(r )+
ar' ' ' ar'ar'

l 2 J I J
(2.18)

Combining (2.12), (2.17), and (2.18), we have the follow-
ing expansion of the force to second order in the ratio of
the oscillation amplitude to the wavelength:

(2.17b)

As usual (see II), the inverses are taken in the projection
space of 6.

To the lowest (second) nontrivial order in the expan-
sion parameter, we also have to take into account the po-
sition dependence of the interaction operator,

QeQ 1 av , av, , av
[(QQQ)2+Qv2] x ar; ' ar; ar;

—p Tr p
p pBV

Br;
(2.23)

Dicke limit A,~ Oo implies that the renormalizations
must be small compared to the original trapping frequen-
cies which are independent of A, . Until further notice we
therefore omit the renormalizations of the trap frequen-
cies in our discussions. To shorten the formulas, in Eqs.
(2.20) —(2.22) we have adopted the convention that all
position-dependent quantities are calculated for the posi-
tion of the center of the trap r . We often resort to this
convention without explicitly mentioning it.

To obtain a finite temperature, it suffices to calculate
the diffusion only to zeroth order in the Lamb-Dicke pa-
rameter, for r=r, p=O, as if the ion stood still at the
center of the trap. Nevertheless, due to the explicit
cosine factor in (2.10b), the result is not the same as for a
free atom. Solving (2.10b) to zeroth order in the Lamb-
Dicke parameter, we find

Combination of (2.17a), (2.23), and (2.13) now gives for
the diffusion tensor the expression

(2.19)

F;(r,p)=P;(r ) —gu,"(r ) —M gN, (r )(r. "r) . —P PJ

J J

Each term in the force merits a separate discussion.
First,

P;= —Tr p
BV p

Br,
(2.20)

(2.21)

consisting of the derivatives of the force with respect to
velocity at v=O is called the damping tensor. It indicates
the presence of a velocity-dependent force that may be
dissipative and therefore lead to cooling of the ion.
Third, the force coefficient tensor

1 8 V p.Tr p

av 6~6 ae
ar; [(626)'+Qv2]

(2.22)

implies that light-induced forces are present that are
linear in the displacement from the trap center. The re-
storing forces responsible for the trapping are of the same
form, so such forces lead to renormalizations of the
mechanical oscillation frequencies of the ion. The princi-
pal axes of the trap may also be rotated. However, the
tensor N,-- is of the order A, , and the formal Larnb-

is a constant force that can in principle be canceled by a
suitable choice of the trapping electromagnetic fields.
Henceforth, we usually ignore P;. Second, the matrix

T

a,, = —Tr [(696)'+6'~] '6 p +-
Br; Br.

D; =—'Tr q+ rl; +Tr W p+-av , BV ,
Br ' Br.J

(2.24)

Equations (2.19)—(2.24) are our main results. Howev-
er, before embarking on explicit calculations, we develop
another slightly different expansion that is particularly
useful in the analysis of polarization gradient cooling at
low light intensities.

C. Adiabatic low-intensity limit

The most peculiar consequences of polarization-
gradient cooling come to the open in the limit of low
light intensity. Physically, an atom whose ground state is
degenerate then has a long optical pumping time scale.
This leads to a singular response to laser cooling.

Although it is possible to expand the quantities given
in Eqs. (2.19)—(2.24) further into a power series in light
intensity, in practice such expansions require degenerate
perturbation theory and are awkward; see, e.g., [20].
Here we take a slightly different route that was already
traveled with a free atom in III. We will use the same no-
tation as in III, even though it partly clashes with the no-
tation of I and II. In the present paper we may thus use
the same symbol for two different objects. However, the
conAicting notations do not appear simultaneously in any
physical case discussed hereunder.

To begin with, we assume that the density operator p
has unit trace, instead of zero trace as in Secs. II A and
IIB. However, the operators g; still have zero trace.
Also, no projection operators are introduced as yet. Not-
ing that the ion-field interaction operator V is traceless,
and that the Liouvillean 9 preserves the trace of its argu-
ment operator, we may rewrite (2.10) as
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(2.25a)
Pp, and expand to the lowest nontrivial (second) order in
field strength. The result is

a i av av
q; =Qg;+cos[v;(t —r)] — p+p

B~ ' ' ' 2 Br; Br;

a
a~

Pp=8Pp, (2.30)

avPTr P
Br,.

(2.25b)
with

8= [PQ' '6(69'o'6) '69'"6—PQ"'6]

The prescriptions to calculate force and diffusion, (2.12)
and (2.13), keep their forms under the new convention,
except that the I/X in (2.13) is to be dropped.

The projection superoperator P introduced for the
present case will be different from the projector P of Eq.
(2.11). For simplicity we assume that the ion has only
two angular momentum degenerate levels g and e, and
denote by I' and I', the orthogonal projections to the
ground- and excited-state manifolds. At low intensity the
populations of, and coherences between, the Zeeman sub-
states of the ground level occupy a special position in the
theory. After all, they are only subject to the slow evolu-
tion due to optical pumping. We therefore define the new
projector P and its complement Q as

x(69' '6) '62'"P (2.31)

(2.32a)

The inverses are once more carried out in the projection
space of 6.

A zero eigenvalue finally makes its appearance on an
attempt to solve (2.30). Physically, optical pumping at a
nonzero intensity leads to a (usually) unique steady-state
density operator. The associated zero eigenvalue of 8
corresponds to conservation of population in the
ground-state manifold. We therefore define yet another
projector p as

Po =P~oP~, Qo =o —Po . (2.26)

g —g(o)+g(&) (2.27)

The projector P restricts the domain and range of its ar-
gument operator to the ground-state manifold. We also
split the Liouvillean into two parts:

In this case I is the unit operator within the ground-state
manifold (I.=Pg ), and n is the number of substates of the
ground level (n =TrP~). In our present approach p is al-

ways applied within the projection space of P, so the
complement is defined as

where the superscript indicates order in field strength.
2' ' conveys spontaneous damping and detuning, while
the induced transitions are contained in O'". The opera-
tor Vis automatically of first order in field strength.

Next we write from Eq. (2.25a) the equations of motion
for the projections Pp and Qp using the field decomposi-
tion (2.27). The equation for Qp reads

c} Qp=QQ'"PPp+(QQ' '6+69'"6)Qp . (2.28)
a~

The projector Qp is subject to spontaneous damping con-
tained in QQ' '6. We assume that the rate of spontane-
ous emission I and possibly the field-ion detuning 5 make
the fastest time scales in the problem. This implies a for-
mal low-intensity limit, just as was the case for a free
atom. However, for the trapped ion we must also require
that the spontaneous decay rate of the excited level is
much larger than the ionic oscillation frequencies,

(2.32b)

p' '= [1—(q8q) 'q8p]—
n

(2.33)

The superoperator q8q governs the optical pumping
among the Zeeman states of the ground level.

The course for the calculation of the force is now clear.
First, we solve Eq. (2.30) for the density operator Pp of
the ground-state manifold of the oscillating ion using the
additional projectors p and q, then resort to the adiabatic
approximation to obtain the projection Qp, and finally
calculate the force from Qp. During this process the
ground-state evolution operator 8 is taken to be a func-
tion of position, and for an oscillating ion therefore a
function of time ~. The technicalities of the analysis are
similar to those in III and in Sec. II B above, and we only
cite the results. First, we define the optically pumped
density operator to zeroth order in field strength

I »v;. (2.29)

Contrary to the models of the preceding Secs. IIA and
II B, a condition on the oscillator frequencies is thereby
built into our successive development. At any rate, with
our assumptions we may (as in III) solve Eq. (2.28) adia-
batically by setting the ~ derivative equal to zero. We in-
sert the result for Qp into the equation of the projection

y; =Tr ( 69' '6 ) 'QQ' "Pp' '' a, (2.34)

The velocity-independent part of the force, and the
damping and force coefricient tensors up to the lowest
nontrivial (second) order in field strength, in the limit
I »v;, are
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a, =Tr (QQ' 'Q) 'QQ'"P[(q6q) +qv ] 'q )0' 'av B6
Br, Br,

(2.35)

(Qg(0)Q) —1Qg(1)p (0) + T (Qg(0)Q) )Qg(1)p ( l (0)
ar. ar; M Br; ((q6q)2+q ']"ar) ~

(2.36)

While the expression for a; is not particularly trans-
parent, juxtaposition with the free-atom result (obtained
by setting v; =0) is telling. The difference is the replace-
ment

1 1

(q6q)' (q6q)'+ qv,
(2.37)

This means that the time scales associated with optical
pumping and with the mechanical oscillations of the ion
are being compared.

The same comparison takes place with the diffusion
tensor. As analyzed in detail in III, the operators g; in
(2.25b) have both a slow component that evolves on the
optical pumping time scale, and a fast component that
within our adiabatic assumption locks instantaneously to
the inhomogeneous terms on the right-hand side of
(2.25b). We employ the projectors P and Q to separate
the slow and fast components in g;. Correspondingly, we
obtain an "anomalous" and a "normal" component in the
diffusion.

At the interesting time ~=t the right-hand side of Eq.
(2.25b) is the same as for a free atom. The normal
diffusion is therefore the same for a trapped ion and a
free atom. However, the anomalous diffusion depends
directly on the comparison between the optical pumping
time and the mechanical oscillation period of the ion.
The technical difference from the free-atom case turns
out to be the single replacement

(1)— (Qg(0)Q) —)Qg())p (0)

(2) (Qg(0)Q) —)Qg(1)Q (1)
(2.39)

Next, we define the expansion in field strength of the in-
homogeneous terms in (2.25b):

pR(2) 1p (Q (1))+(Q (1))P a
E 1

~ I' (1 p 0)

ar,.

QR (1) 1Q (p (0))+(p (0))
a, . P P a

(2.40)

QR(2) —1Q (Q (1))+(Q (1))
ar P al 1

in Eq. (4.13) of III. Nonetheless, for completeness we
state here the entire algorithm for obtaining the diffusion
tensor for a stationary ion (r=r, p=0). While at that,
we add some parentheses to the results of III to clarify
details that might otherwise be misinterpreted.

First we complete Eq. (2.33) into basically an expan-
sion of the steady-state density operator up to second or-
der in field strength,

1 q6q
(q6q) +qv

(2.38)
The lowest-order contributions in field strength to the
operators g; as determined by optical pumping may now
be written

pal' '=
qt [PS'"Q—PQ' 'Q(QQ' 'Q) 'QQ"'Q](QQ' 'Q) 'QR;"'+pQ' 'Q(QQ' 'Q) 'QR' ' —pR' '] .

(q6q) +qv,

(2.41)

The diffusion tensor to second order in field strength and to zeroth order in the ratio of the ionic oscillation amplitude
to the wavelength of light, in the limit I"&)v;, finally is

D = ——'Tr (.QQ' 'Q) 'QB'"PP ' '+ (Q2' 'Q) 'QQ"'PP ' '
LJ gJ 91

E rJ

——'Tr (QQ' 'Q) 'QR'"+ (QQ 'Q) 'QR" +Tr($'J ' )) .
ar, ar P (2 42)
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The first term describes the anomalous diffusion, the
second term the normal diffusion, and the third term the
diffusion due to the angular distribution of spontaneously
emitted photons.

2(z) =
—ikz

Qe ikz

i~eikz
—i5 —y

0
i~eikz

~ g —ikz

i5 —y
—ikz

~ ~ —ikz

—iOe' '

III. EXPLICIT RESULTS

A. Two-state ion
while the nonzero elements of the projector P are

(3.4)

For the sake of illustration we develop in some detail
the simplest possible special case, a two-state ion in a 1D
trap driven by a traveling wave, using the Lamb-Dicke
formalism of Sec. II B. By assumption there is only one
direction in the problem, call it z. The center of the trap
is correspondingly denoted by z . We take a traveling
wave of the form 6 cos(kz cot). G-iven the dipole moment
matrix element 2 and the resonance frequency coo, the
ion-field interaction is pararnetrized by Rabi frequency
II=Z 6'/2lri and detuning 5 = co —coo. The spontaneous
decay rate of the excited state of the ion 2) back to the
ground state ~1) is I, which implies the dipole damping
rate y= 1 /2.

We represent an arbitrary internal-state operator o as a
four-dimensional column vector consisting of the matrix
elements in the basis I ~

1 ), ~
2 ) ] in the following order:

gT
L 011& 012 & 021 & 022 (3.1)

T
QU = [IllV ll + 14 l2U2l, . . . ] (3.2a)

Tr(O) Oll +022 (3.2b)

In particular, the dipole interaction operator is

V(z) =A'[0 —Qe '"' —Qe'"' 0] (3.3)

With these conventions superoperators, linear operators
acting on operators, become 4X4 matrices. The premier
one is the Liouvillian

Besides possessing the obvious linear algebra, these
operators inherit the product and the trace of 2 X 2 ma-
trices:

(3.5)

As it comes to spontaneously emitted photons, only one
superoperator S" is relevant. The matrix representing
4"has precisely one nonzero element, namely

gzz L3
14 (3.6)

Here P is a constant that depends on the angular distribu-
tion of spontaneous photons. Typical values are P= —,

' for
hypothetical isotropic spontaneous emission, and Ii= —',
( —,'0) that applies to a j=0~j =1 transition driven by
linearly (circularly) polarized light [4,24].

The final technicality is the inverses of operators re-
stricted to the projection space of 6. For I %0 the null
space of 6 is spanned by the vector [1,0,0,1], and the
nonzero elements of this null space are also the only vec-
tors outside the range of the mapping Q. This implies
that the projection space of 6 consists precisely of the
traceless operators, and that 9 is one to one if restricted
to act on traceless operators. Given a traceless operator
o, the operator p = ( QQ6 ) 'o is therefore the unique
traceless solution to the equation Xp =o. In practice we
solve for p by making sure that o is traceless, then replac-
ing the first element of o by zero and the first row of the
superoperator Il by [1,0,0, 1], and finally tackling the en-
suing set of equations without any restrictions remaining.
In short, one of the linear equations to be solved for p is
replaced by the condition that p is traceless.

Obtaining the quantities in Eqs. (2.21)—(2.24) is now a
plug-in-the-formula assignment, albeit tedious. We em-

ploy MATHEMATICA [25] in our calculations. All tensors
only have one relevant component. We drop the direc-
tional indices, and present the results as rational expres-
sions of the single trapping frequency remaining in the
problem, v:

4fi5yk 0 [4y —(5 +y +2Q )+v (5 +y +60 )]
d

2A'5k 0 v [4y (5 —3y )+v (5 —7y +4Q )]
Md

D =A' yk 0 I4y [5 +25 y +y +65 0 —2y 0 +40 +P(5 +25 y +y +45 0 +4y 0 +40 )]

+v [ 5 +65 y +5y +105 0 —6y 0 +160 +P(5 —65 y +9y +85 0 +8y 0 +160 )]

+v [5 +y +2Q +P( —25 +6y —8Q )]+Pv ]d

(3.7)

(3.8)

(3.9)

where the common denominator is

d —(52+y2+2I12) I4y2(52+y2+2~2)2+v2(54 652y2+9y4+ 852~2+ 8y2I12+ 16~4) 2v4(52 3y2+4~2)+v6]
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A standard analysis of the Fokker-Planck equation
shows that under the present assumptions, namely con-
stant diffusion and velocity-linearized force, the station-
ary state of laser cooling is thermal, and is characterized
by the total c.m. energy E =D/a. Our present expres-
sions yield an energy that coincides with the thoroughly
verified known result for this system [15—19]. Similarly,
to the lowest order in the Lamb-Dicke parameter the
correction to the force coefficient embodied in X leads to
the renormalization of the trap frequency of the ion in
agreement with Lindberg and Stenholm [15].

Here we expand on the renormalization of the oscilla-
tor frequency. The total position-dependent restoring
force on the ion may be written

F= M(v —+N)(z —z )

E(z t)= —(e e'"' ~"+e e' "' ~"+c.c. )x (3.16)

The field is linearly polarized at the position z =0, circu-
larly polarized at z =+A./8, and so forth. Given the di-
pole moment matrix element for a transition whose
Clebsch-Gordan coefficient equals unity, 2, we define
Rabi frequency 0, saturation parameter so, and optical
pumping rate r through

tion of oscillations is assumed available, call it z, and the
corresponding trapping frequency is denoted by v.

The laser field consists of two counterpropagating
waves in the z direction, one of which is linearly polar-
ized in the x direction and the other in the y direction.
We write the electric field as

—= —M [v(1+/)] (z —z ), (3.11)
2I s

2A' ' ' g'+I'/4' 9
(3.17)

where the fractional change in the oscillation frequency is
defined as

/= +I +N/v 1. — (3.12)

Here

45y(5 —3y )0
(5 +y +20 )

(3.13)

Ak
R (3.14)

is the recoil frequency. For an asymptotically small ratio
ER/y the largest fractional frequency renormalization
occurs at 5/y = —0.505, 0/y =0.560, and equals

(=0.130e~ /y.
A final note about the implications of the Lamb-Dicke

limit on the renormalization of the trapping frequency of
a two-state ion is useful for contrast with the correspond-
ing result for polarization-gradient cooling, to be de-
scribed below. Let us take the quantum-mechanical
length scale

l =(fi/2Mv)'~ (3.15)

as the lowest limit of the size of the ion cloud, then by the
Lamb-Dicke limit l/1, « 1. Moreover, the limit underly-
ing Eq. (3.13) implies that v/y (& 1, hence
(1/A, ) v/y-Ez/y &(1. Expression (3.13) is consistent
with the Lamb-Dicke limit only if cR /y «1, and hence
the renormalization must satisfy g«1. Of course, this
does not automatically mean that the renormalization
cannot be observed in an experiment.

We take as an example the experimentally quite common
case in which the trapping frequency v is small compared
to the linewidth of the transition y. The parameter g
then reads

1/2

We also define a scaled detuning b, (positive is the laser is
tuned below resonance) and a parameter c that conveys
the position of the trap center in the field,

a= —5/r, c =cos(4kz') . (3.18)

3r b(l+c)
v +7'

and the diffusion coefficient is

D 9(1+c) 6 r 3(3+c) 29 —7c
Ak r 4(v+r ) 8 40

(3.19)

(3.20)

In (3.20) the three terms are the anomalous, the normal,
and the spontaneous diffusion, in the same order as in
(2.42). Once more the steady state of cooling is thermal,
and could be characterized by a temperature. However,
we prefer to specify the steady state in terms of the total
energy of the c.m. harmonic oscillator expressed in units
of an oscillator quantum. The result is

This problem was studied earlier with a free atom in
III, where we also discussed the implementation of the
calculations using MATHEMATICA. It turned out that the
superoperator q8q is basically one-dimensional. In fact,
independent of the position z, the effect of q8q is essen-
tially to multiply its argument by the negative of the opti-
cal pumping rate r. Going over to the trapped ion, the
key replacements (2.37) and (2.38) therefore boil down to
the same operation: The damping coefficient and the
anomalous diffusion coefficient are to be multiplied by the
factor r /(r +v ). The rest of the calculations proceed
as before.

Unfortunately, enough details were not published in III
to allow one to write down the results by inspection. We
produce the missing details here. The damping
coefficient for a trapped ion is

B. Polarization-gradient cooling
E (37+4c)(r +v )+456, r (1+c)
Av 606 r v( 1+c )

(3.21)

As our second example we take up polarization-
gradient cooling of a j =—,

' ~j =—,
' ion in one dimensional

lin I lin molasses [23]. We now use the adiabatic low-
intensity formalism of Sec. II C. Again only one direc-

We first analyze the cooling energy as a function of the
optical pumping rate, keeping other parameters fixed. In
practice this would most closely correspond to varying
the laser intensity. The minimum occurs at
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rm 37+4c
37+4c +4562(1+c)2

1/2

(3.22)

and equals

Em 't/(37+4c)[37+4c +455 (1+c) ]
Av 306(1+c)

(3.23)

For, say, 6= —5/I =2 and c = 1 (for a position at which
the light is linearly polarized), we have the minimum
E =1.47K&v at r =0.23v. On an attempt at further
minimization it becomes evident that the only depen-
dence on detuning in (3.23) enters through the expression

x =5(1+c), (3.24)

6b, r [2r c+v (c —1)] Eit

v(r +v ) v
(3.25)

Here s~ /v-(I/A, ) is small by virtue of the Lamb-Dicke
limit, but the multiplier of Ez /v need not be bounded. It
appears that ~g~

—1 is possible even though the ion is in
the Lamb-Dicke regime. The renormalizations of the
trapping frequencies might be more prominent in polar-
ization gradient cooling than in Doppler cooling.

and that (3.23) is a monotonically decreasing function of
x. It follows that (3.23) has no minimum, but instead a
monotonic approach to the lowest limit
E /Av=( —,

")' = 1.28 as c~—1 and simultaneously
h~ ~ in such a way that x —+ ~.

A process with 6—+ —~, etc., is not possible experi-
mentally, but in 1D lin l lin molasses a j &

=
—,
' j2 =

—,
' ion

might nevertheless be cooled until its excitation energy
E —

—,'Av is less than one oscillator quantum above the
zero-point energy.

The optical pumping rate giving a minimum of temper-
ature may be understood as reflecting a balance between
optical pumping and mechanical oscillations of the ion.
In the case v«r the oscillations of the center of mass
take place on a much longer time scale than optical
pumping. For an ion with the present velocity U optical
pumping is essentially instantaneous, and past velocities
do not affect the internal state. The cooling takes place
similarly to a free atom, except that the ion is confined to
the neighborhood of the trap center. Suppose one then
attempts to lower the temperature, as with a free atom,
by decreasing the intensity; i.e., by decreasing the optical
pumping rate r. By the time one has reached the case
v)) r the ion oscillates back and forth many times during
an optical pumping time, and many oscillation cycles are
averaged over while the ion integrates its equations of
motion to arrive at the internal state. The force therefore
displays only a weak dependence on the current velocity
of the ion. The damping coefficient a-F(U)/U is small,
and the c.m. energy E =D/a is large. Obviously there
must be a minimum of temperature somewhere around
rm

The fractional renormalization of the oscillator fre-
quency reads

1/2

IV. DISCUSSION

We have presented a semiclassical approach to laser
cooling of a trapped multistate ion in an arbitrary light
field, and developed in detail both the Lamb-Dicke limit
and the additional low-intensity limit of the theory. For
a two-state iori we have verified agreement with known
results. This should not come as a surprise: The ap-
proach of I and II was a descendant of our earlier theory
of Doppler cooling of a two-state ion [16], and in a
manner of speaking we have simply closed the circle. For
polarization-gradient cooling, insights have been gained.
Basically, the competition between optical pumping and
mechanical oscillations sets a limit on cooling. In our ex-
arnple the limit was such that the excitation energy of the
ion is about one vibrational quantum above the zero-
point energy.

In our final Fokker-Planck equation the c.m. motion is
treated classically. The ion simply is subjected to a har-
monic restoring force, a light pressure force, and a classi-
cal stochastic diffusion. The diffusion succeeds remark-
ably well, in that the present SC theory even respects the
zero-point energy limit of a harmonic oscillator. We
have pondered on this earlier [26] in the context of a
two-state ion. Having adapted those discussions to the
present case, we have come to believe that quantum
mechanics apparently enters with the explicit cosine fac-
tor in Eq. (2.10b). Without the cosine the motion of the
ion would contribute solely through the classical trajecto-
ry; with the cosine there is a piece of global knowledge
about the nature of particle trajectories present in Eq.
(2.10b). Were it not for the cosine, the SC theory would
readily violate the zero-point energy.

Incidentally, the widely employed semiheuristic
analysis of diffusion [2,7] initiated by Gordon and Ashkin
[27] would miss the cosine factor. While this approach
seems to work for a free atom, it fails dramatically when
applied to a trapped ion.

Semiclassical cooling theory of a two-state ion not only
respects the zero-point energy, but an even stronger state-
ment holds true: The cooling temperature from our SC
Lamb-Dicke calculations exactly coincides with the re-
sult of a fully quantized analysis based on an expansion in
the parameter E~/v [15]. In Sec. III A we have further-
more shown that the same applies to the light-induced re-
normalization of the c.m. oscillator frequency. In the
remainder of the paper we consider the possible agree-
ment between our SC approach and the eventual quan-
tum theories in regard to polarization-gradient cooling.

We recall the basic conditions of validity of the SC
theory: (i) the momentum scale of the c.m. motion must
be larger than the momentum of a characteristic photon,
and (ii) the internal equilibration time of the ion must be
short compared to the time scale over which the c.m.
motion changes appreciably. The first condition is readi-
ly satisfied in the Lamb-Dicke limit. If the length scale I
of the c.m. motion has to be much smaller than the wave-
length A, , then the corresponding momentum scales satis-
fy A/I))A/X. Using the quantum-mechanical length
scale as the size parameter I, we have an alternative in-
equality
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«1. (4.1)

The second condition is more subtle. Given the friction
coefficient a of the c.m. motion for the j =

—,'~j =
—,
' ion

in 1D lin j. lin molasses, Eq. (3.19), the damping rate is
ctlM. The rate of optical pumping must thus satisfy
r ))o./M. With the estimate r-v we have the qualita-
tive condition

«1.
vr

(4.2)

Inequality (4.2) need not be satisfied even though (4.1) is.
However, in a theory in which the ratio cz /v is taken to
be asymptotically small, (4.1) and (4.2) are both satisfied.

All told, we conjecture that our SC theory is equivalent
to an expansion of the full quantum theory to the lowest
nontrivial order in the parameter c~/v. Strange as it

may sound for an approach phrased in terms of classical
particle trajectories, our cooling limit of the order of one
quantum above the zero-point energy should have predic-
tive power. We speculate that a qualitatively similar lim-
it also applies to polarization-gradient cooling of ions
with other j~j +1 transitions and with other types of
polarization gradients.

Note added in proof. After the present paper was sub-
mitted, an article by Cirac et al. [28] on polarization-
gradient cooling of a trapped ion appeared. To the extent
that we have made a comparison, their results agree with
ours.
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