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Doubly excited shape resonances in H™

Y. K. Ho*
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803

A. K. Bhatia
Laboratory for Astronomy and Solar Physics, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771
(Received 17 March 1993)

The method of complex-coordinate rotation is used to investigate doubly excited shape resonances in
H™. We calculate resonance parameters for the 'P° shape resonance lying above the n =2 hydrogen
threshold using Hylleraas-type wave functions. Comparisons are made with experimental measurements
and with other theoretical calculations. In addition, we also report a calculation for *P° and 'D* shape

resonances lying above the n =3 hydrogen threshold.

PACS number(s): 32.80.Dz, 31.20.Di, 34.80.Dp
I. INTRODUCTION

A shape resonance in e ~-H scattering is the result of
the incoming electron being trapped by a potential well
formed by the attractive static and polarization potentials
between the incoming electron and the excited hydrogen
atoms, and a repulsive angular-momentum barrier. Such
a potential well may be able to support both Feshbach-
type resonances and shape resonances lying above the ex-
citation thresholds of hydrogen atoms. One !P° shape
resonance lying above the n =2 threshold has been ob-
served in experiments. The shape resonance has been
studied by the New Mexico team [1-3] in photodetach-
ment experiments and in 15-25 and 1S-2P excitation ex-
periments by McGowan, Williams, and Curley [4] and by
Williams [5,6]. On the theoretical side several methods
have been applied to study the !'P° shape resonance.
These methods include different variants of close-
coupling approximations [7-9]: pseudostate close cou-
pling combined with a multichannel J-matrix technique
[10]; an 18-state (pseudo- and real atomic state) algebraic
variational close-coupling calculation [11]; and an R-
matrix calculation [12]. Other methods to investigate
J
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this shape resonance include the group-theoretical ap-
proach [13,14], hyperspherical-coordinate studies [15],
and the complex-coordinate rotation method in which
products of orthogonal Laguerre functions were used
[16]. In comparing the results for Ref. [11] and Ref. [16],
it is found that while the energies obtained by using the
algebraic close-coupling calculation and that of the com-
plex rotation calculation agree reasonably well, the
difference for their widths is quite substantial. It seems
an independent calculation for this state is worthwhile.
In the present work, the method of complex-coordinate
rotation [17] is used to investigate the 'P° shape reso-
nance lying above the n =2 hydrogen threshold.
Hylleraas-type wave functions are used to take into ac-
count the strong electronic correlation effects. In Sec. II
we present our wave functions and calculations. Results
are shown in Sec. ITII. In addition to the n =2 'P° shape
resonance we have also investigated *P° and 'D*® shape
resonances lying above the n =3 hydrogen threshold.
Results are also shown in Sec. III.

II. WAVE FUNCTIONS AND CALCULATIONS

For !"3P° wave functions we use Hylleraas type [18]

P P T1Y (1) Y 0 (2)] (1)

with k +m +n < w, a positive integer, or zero, and Y is the usual spherical harmonics.
In Eq. (1), r; and r, denote the coordinates for electrons 1 and 2, respectively, and r;, represents the coordinates be-

tween the two electrons.
For D¢ wave functions, we also use Hylleraas type [19]

V=(f+ ) —D3(6,6,9)+V3cos(8,,)D3"(8,8,9)]+(f —F)V3sin(6,,) D2 (6,8, 1)

+(g+8)[ —cos(8,,)D37(8,4,9)+V3D3H(6,4,9)] ,

where D are the rotational harmonics, depending on the
symmetric Euler angles 6,¢,4 [20]. The trial radial func-
tions f and g are of the Hylleraas form and are given by
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It is implied that
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TABLE I. Convergence behavior for the n =2 'P° shape res-
onance in H™ (e=B=0.50 and 6=0.7).

o N E, Ry = ®y
15 816 —0.248 693 0.000 734
16 969 —0.248 690 0.000715
17 1140 —0.248 704 0.000 702
18 1330 —0.248719 0.000 688

f("l,"z”'lz):f(rz,"l,rlz) (4a)
and

g(ry,ryrp)=g(ry,r,ry), (4b)

with kK +m +n <o, where k,m,n are positive integers or
Zero.

The Hamiltonian for the electron-hydrogen system is
given by

H=—-2V}-2V3—=2/r,—2/ry+2/r,=T+V . (5

Atomic units are used in the present calculation, with the
energy units in rydbergs (Ry).

In the complex-coordinate rotation method, the radial
coordinates are rotated through an angle 6:

r—rexp(if), (6)

and the Hamiltonian can be written as
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H=Texp(—2i0)+Vexp(—if) . (7

The eigenvalues are calculated by diagonalizing the ex-
pression

E=(PHD)/(DPD) , (8)

wherein the wave function is real. Since the rotated
Hamiltonian is complex, complex eigenvalues are ob-
tained. The resonance parameters are determined by
finding a root which is stable with respect to the variation
of the nonlinear parameters a,f3, and the angle 0, provid-
ed it is greater than arg(E . )/2. The complex resonance
energy is given by

E.=E,—il/2 . )

The theoretical aspects of the complex-coordinate rota-
tion method [17] have been discussed in previous publica-
tions. For the computational procedures we first use the
stabilization method to obtain optimized wave functions
with which complex-coordinate calculations will be car-
ried out. The use of the stabilization method as a first
step for the method of complex-coordinate rotation has
been demonstrated in a review [17]. Once the stabilized
wave functions for a particular resonance are obtained, a
straightforward complex-coordinate rotation method is
applied, and the so-called “rotational paths” are exam-
ined after the complex transformation r—r exp(if) is
made. We determine the optimized 6 by examining the
resonance complex eigenvalue when it exhibits the most
stabilized characters. This is usually done by employing
smaller basis expansion sets. Once the optimized value
for 6 is obtained, we can examine the convergence
behaviors for the resonance parameters for different ex-
pansion lengths.

TABLE II. Comparison of theoretical calculations for the n =2 !P° shape resonance.

Method E, (Ry) % (Ry) Author
Complex-coordinate, —0.248 72+5X 1073 0.00069+5X 1073 Present
Hylleraas functions calculation
18-state close coupling —0.248 79 0.000 735 Callaway [11]
Complex-coordinate —0.248 70 0.000 52 Wendoloski
orthogonal Laguerre and Reinhardt [16]
functions
R matrix —0.248 656 0.001 16 Pathak, Kingston,
and Berrington [12]
3-state close coupling —0.248 675 0.000 555 Macek and Burke [8]

plus correlation
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TABLE III. The !P° shape resonance of H™ measured above the n =2 level of 10.19892 eV. The re-
duced rydberg for hydrogen atoms is used for energy conversion (1 Ry =13.598 56 eV).

E, (eV) r (eV) Method Author
Theory
0.0177 0.0141 Complex-coordinate, Wendoloski and Reinhardt [16]
orthogonal Laguerre
functions
0.0165 0.0200 18-state close coupling Callaway [11]
0.0183 0.0315 R matrix Pathak, Kingston,
and Berrington [12]
0.0174 0.0188 Complex-coordinate, Present calculation
Hylleraas functions
Experiment
0.018 0.022 Excitation cross Williams [6]
+0.002 +0.003 sections (2P)
0.016 0.021 Excitation cross Williams [6]
+0.002 +0.003 sections (2S)

III. RESULTS AND DISCUSSIONS

different approaches. The first, like the complex-

We use Hylleraas-type wave functions to calculate the
n =21P° shape resonance. Using N =969 terms (0= 16)
the optimized 6 at which the complex eigenvalue is found
to be stable is at 6=0.7. It is noted that such an opti-
mized 0 for a shape resonance is larger than those for
Feshbach resonances (see Ref. [18], for example). Ap-
parently, the use of the larger value of 6 enables the cut
in the complex energy plane to be rotated farther away
from the shape resonance. Table I shows the conver-
gence behavior when different expansion lengths are
used. We deduce the resonance parameters as
E,=(—0.24872+5X107°) Ry, and TI'/2=(0.00069
+5X107%) Ry. It should be mentioned that our calcula-
tion is not a bound calculation. The estimated errors are
deduced from the stabilization characters of the complex
eigenvalues. In Table II we compare our results with
other theoretical calculations. It is seen that our parame-
ters compare quite well with those of the 18-state algebra-
ic close-coupling calculation [11]. Other earlier calcula-
tions for the 'P° shape resonance can be found in a re-
view by Risley [21]. In comparing with various theoreti-
cal calculations, we should point out that the results
shown in Table II are obtained basically using two

TABLE IV. Energy separation A between the !P° shape and
Feshbach resonances (see text for detailed discussion). The
width is for the shape resonance.

Photodetachment Present
Quantity experiment [2] calculation
A (eV) 0.046+0.0006 0.0460+0.0007
I" (eV) 0.022240.0006 0.0188+0.0014

coordinate rotation, as employed in the present calcula-
tion and that in Ref. [16], calculates the resonance pole in
the complex energy plane directly. The second, like the
18-state close coupling or the R-matrix approach, calcu-
lates the S matrix on the real energy axis near the reso-
nance pole and fits the eigenphase sums to a resonance
formula to obtain the resonance position and width. For
a shape resonance occurring near and above a threshold,
the nonresonance background changes rapidly. In the
fitting procedure to extract the resonance parameters
some assumptions of unknown validity have to be made
about such a rapidly changing background.

Table III shows a comparison of our results with those
obtained in the electron-impact excitation experiments
[6]. Parameters obtained in both 2§ and 2P excitation
cross sections are shown here. It is seen that our results
lie within the experimental errors. In the comparison
with experiment, a proper perspective should be made
here. The excitation cross sections are measured at real
energies and the results were fitted to a model to yield the
resonance positions and widths. An ideal theoretical pro-
cedure is to calculate cross sections and the results should

TABLE V. Convergence behavior for the *P° shape reso-
nance lying above the H (n =3) threshold (a==0.33 and
6=0.6).

o N E, (Ry) % (Ry)
15 816 —0.109 432 0.000 851
16 969 —0.109 460 0.000 844
17 1140 —0.109475 0.000 839
18 1330 —0.109 484 0.000 843
19 1540 —0.109 490 0.000 851
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TABLE VI. Comparison of the 3P° shape resonance above the H (n =3) threshold (threshold energy

=—0.11111 Ry).
Complex 28-state close coupling R matrix
Quantity coordinate (Callaway [25]) (Pathak, Kingston, and Berrington [12])
E, (Ry) —0.109 49 —0.1092 —0.1106
+5X107°
% (Ry) 8.5X107* 8.45X107* 6.0X10°°
+5%x10°°

then be folded with the experimental beam width to com-
pare with experiment. Since we have not done so, the
comparison shown in Table II has an unknown error due
to such difficulty.

Next we compare our results with those obtained in the
photodetachment experiment. Special care must be taken
for such a comparison. The experimental energy scale
was calibrated such that the peak of their narrow !P°
Feshbach resonance below the n =2 hydrogen threshold
was adjusted to that calculated in Ref. [10]. However,
because more accurate theoretical calculations for the !P°
Feshbach resonance have appeared in the literature since
then, it is better in a consistent manner to compare the
energy separation between the Feshbach and shape reso-
nances. Table IV shows the comparison. In the table A
is defined as A= E(shape) — E(Feshbach), and the theoret-
ical value of E(Feshbach)=—0.2520992 Ry is taken
from a recent complex-coordinate calculation [22]. To
convert into eV, the reduced rydberg for hydrogen atoms
1 Ry =13.598420 eV is used (see Ref. [23]). It is seen
that the theoretical energy separation of 0.046010.0007
eV is in excellent agreement with the experimental value
of 0.0461-0.0006 eV. The widths for the !P° shape reso-
nance, however, do show some differences even if both es-
timated errors are taken into consideration. Again, the
comparison shown in Table III has an unknown error
due to the theoretical difficulty, as was discussed in the

TABLE VII. Convergence behaviors for the D¢ shape reso-
nance above the n =3 hydrogen threshold (a==0.33).

o} N E, (Ry) —1; (Ry)
6=0.5

15 888 —0.102 507 0.005 761

16 1050 —0.102 484 0.005 767

17 1230 —0.102 488 0.005 759

18 1430 —0.102 502 0.005 758
6=0.6

15 888 —0.102 563 0.005 573

16 1050 —0.102477 0.005 762

17 1230 —0.102 479 0.005 800

18 1430 —0.102 498 0.005 770

last paragraph.

A 3P° shape resonance lying above the n =2 threshold
was recently reported by Cortes et al. [24]. These au-
thors used a stabilization method to estimate the reso-
nance energy but no width was reported. We have inves-
tigated the existence of such a shape resonance, but have
been unable to obtain a stabilized complex eigenvalue
(both in E, and I') lying above the n =2 threshold. This
may be due to the narrowness of its width. The two elec-
trons of this state would occupy different configurational
spaces, and the width for such a state usually is quite nar-
row. More works are needed before the existence of the
3P° resonance lying above the hydrogen n =2 threshold
can be established.

In addition to the n =2 !P° shape resonance, we have
also examined shape resonances lying above the n =3 hy-
drogen threshold. Hylleraas-type wave functions are
used to calculate 3P° and D¢ resonances. We have
identified stabilized complex eigenvalues for these states
lying above the n =3 hydrogen threshold. Table V shows
the convergence behaviors for the *P° state. We deduce
the resonance parameters as E,=(—0.10949+5X107%)
Ry, and I'/2=(8.5X1074£5X107%) Ry. A comparison
with those of R-matrix calculations [12] is shown in
Table VI. It is seen that our width differs significantly
with that in Ref. [12]. Our results are in good agreement
with a recent 28-state algebraic close-coupling calculation
[25].

Table VII shows the convergence behaviors for the 'D®
resonance when different expansion lengths are used. We
deduce the resonance parameters as E,=(—0.10250
+5X107%) Ry and I'/2=(0.00577+5X 107°) Ry. This

TABLE VIII. Doubly excited states with K =0 and T =0
(see Ref. [26]) associated with the H (n =3) threshold (thresh-
old energy =—0.11111 Ry).

State K T E, (Ry) % (Ry) Resonance

IS¢ 0 0 —0.112277 8.2X10™°  Feshbach [27]

3P 0 0 —0.10949  8.5X10™*  Shape
+5X107° +5X10°°

Ipe 0 0 —0.10250 5.77X10”° Shape
+5X1073 +5X1073
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D¢ state and the 3P state are believed to be members of
a rotor series with quantum numbers K =0 and T =0
(see Table VIII). The lowest member of such a rotor
series, the 1S state, was, however, found to lie below the
threshold and became a Feshbach resonance [27]. Calla-
way [25] has also found a D¢ shape resonance lying
about the n =3 threshold. In a 28-state algebraic close-
coupling calculation, he obtained resonance energy
E,=—0.1025 Ry, which is identical to ours, but with a
smaller half-width of I"'/2=0.002 115 Ry.

Y. K. HO AND A. K. BHATIA 48

In summary, we have carried out a complex-coordinate
calculation for shape resonances in H™ using Hylleraas-
type wave functions. Our !P° shape resonance lying
about the n =2 threshold is found to be in good agree-
ment with an 18-state close-coupling calculation and with
electron-impact excitation experiments. We have also re-
ported a calculation for D¢ and 3P° shape resonances ly-
ing above the n =3 hydrogen threshold. Our results are
useful references for future theoretical and experimental
works.

*Present address: Institute of Atomic and Molecular Sci-
ences, Academia Sinica, P. O. Box 23-166, Taipei, Taiwan,
Republic of China.
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