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Double photoionization of helium:
Use of a correlated two-electron continuum wave function

M. A. Kornberg and J. E. Miraglia
Instituto de Astronomr'a y Fisica del Espacio, Consejo Nacional de Investigaciones Cientr'fleas y Tecnicas,

Casilla de Correo No 87., Sucursal 28, I/28 Buenos Aires, Argentina
(Received 1 June 1993)

A correlated two-electron continuum wave function satisfying the correct asymptotic boundary
condition is used to calculate double-photoionization cross sections. It is built up as a product of
three two-body Coulomb continua. As a highly correlated ground-state wave function is employed,
the present results serve as a critical test of the two-electron continuum wave function on this
double process. For all energies, the results exhibit a large discrepancy between the length and
velocity forms. In the high-energy limit, the velocity form agrees quite well with recent synchrotron
measurements and with previous calculations. At low photon energies, the approximation fails to
account for the data in magnitude and shape.

PACS number(s): 32.80.Fb, 32.30.Rj

I. INTRODUCTION II. THEORY

Double photoionization of helium stands as a funda-
mental problem for understanding the effects of electron-
electron interaction (see [1] for a review). Since the he-
lium ground-state wave function can be obtained with
high accuracy, the key problem on the theoretical front
rests in the solution of the final continuum state of the
three-body problem interacting via Coulomb potentials.

It is infrequent to find in the literature manageable
expressions for double-continuum wave functions with
certain degree of reliability. We can mention here the
independent-electron approximation which neglects cor-
relation, the Hartree-Fock continuum with difFerent op-
tions of effective charges [2, 3], the classical description
of two electrons slowly escaping in the Wannier theory
[4], and the asymptotic expressions as the particles are
far apart [5].

We will here concentrate on a final state which is built
as a simple product of three two-body Coulomb continua
[Eq. (6) below]. This distorted wave function was initially
posed in the 1960s to deal with excitation in electron-
hydrogen collisions [6]; later on it was extended to ion-
ization in the context of ion-atom collisions [7]. More
recently it has been studied by Briggs and collabora-
tors in the context of electron-impact ionization [8—10],
in double-ionization of helium by fast electrons [11],and
in the calculation of the asymmetry parameter for double
photoionization [12].

To test the theory, there are several double-
photoionization measurements of total cross sections at
low [13—18] and high [19,20] photon energies. Also, single
difFerential cross sections are available [14], which repre-
sent a further demand for the theory to unfold.

Atomic units will be employed throughout this work
except where otherwise explicitly stated.

A. Double difFerential cross section

The process that we consider is the impact of one lin-
early polarized photon on helium atoms in their ground
state. For double photoionization to occur the photon
energy (E~) must be greater than Eo, where —Eo is the
ground-state energy. Above the double ionization thresh-
old, the ejection of both electrons may take place, with
energies r i and e2 related to the photon and ground state
energies through the conservation law E& + Ep = G] + c2.

The matrix element of interest is

TI, (kg, k2) = (gI ~O( l~@;),

where the operator O~ ) is the matter-radiation inter-
action in the dipole approximation, which can be calcu-
lated in its three different gauges, namely, O ~ ) = r&+ r2,
0( l = V'q+ V'2, and O = ZTrq/rz+ ZT r2/r2, where
I, V, and A denote the length, velocity, and accelera-
tion gauges respectively; and Z~ is the nuclear charge
(ZT = 2 for helium). In Eq. (1) g, ( So~rq, r2) is the ini-
tial ground-state wave function and g& (kq, k2~rq, r2) is
the final double-continuum-state wave function.

The most detailed observable of the double-photo-
ionization process is the fifthfold differential cross sec-
tion (FDCS) d o +/deqdOqd02, where eq is the energy
of one of the electrons whose momentum kq subtends an
element of solid angle dO~. The quantities labeled with
2 refer to the other electron. Therefore [21]

2+ (G')

= (4rr nao)kik2C ie TI,- (kg, k2)~,
drgdOgd02

(2)
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ie" T
i

dA d(P' = iTf.

and the DDCS reads
(G) 8vr'= (4' nao)kik2Cl l

~ ~ ~T&,.
cq sin k3)

(4)
The single differential cross sections are obtained nu-

merically by integrating the DDCS in the usual way. One
further numerical integration is required to obtain the
total cross section; on doing this, it must be considered
that the correctly normalized total cross section is one
half of the integral in the shake-off region [14, 21]. The
DDCS here presented differs from that developed in Refs.
[4, 12]. In that ease, d o +/dei sin0idei is calculated
instead, from which the asymmetry parameter P is ex-
tracted. Our procedure in turn offers a more practical
way to integrate the FDCS.

B. Initial state wave functions

On going beyond the independent-particle model
(Hartree-Fock) for the ground state of the helium atom

whereC~ ~ =E C~ ~ =E, andC~ ~ =E, forthe
length, velocity, and acceleration gauges, respectively.
The unit vector e is the photon polarization direction
(usually along the z axis). In Eq. (2), n is the fine-
structure constant, ao the Bohr radius, and the final-
state wave function is assumed to be normalized to the b
function in the momentum space. The length, velocity,
and acceleration forms of the FDCS give the same re-
sult if both the initial and final wave functions are exact
solutions of the three-body Hamiltonian.

In what follows, we perform three integrals in closed
form to arrive at a double differential cross section
(DDCS) d o /Cei sin 8i2d0i2, describing the electron
energy spectrum and the relative angle distribution, as
was developed in Ref. [22]. If we exploit the fact that the
inner product is rotationally invariant, angular integra-
tions of the FDCS may be easily performed. In the orig-
inal coordinate system xyz vectors k~ and k2 have polar
angles Oi, Pi and 02, P2, respectively. We can perform a
rotation defined by Euler angles [24] a = Pi, P = Oi,
and p = 0, so that in the rotated system x'y'z', kq is
along the z' direction and k2 has polar angles 02, Pz. A
subsequent rotation of the coordinate system with Euler
angles n' = Pz, P' = 0, and p' = 0 leads the new sys-
tem to 2;"y"z", where kq is in the z" direction and k2
is in the x"z" plane. Angle Oi2, taken to be the asymp-
totic angle between ki and k2, is now simply 02'. Taking
into account that the solid-angle element is rotationally
invariant, it may be easily shown that

C. Final-state wave functions

The final-state wave function that we used here—
which we call continuum product of three Coulomb waves
(C3) reads [7—10]

@y (kl k21ri, r2) = F12/k (ZT', i i)'lp+ (ZT', i'2)

XD (62 ki2' ri2) (6)
where gi, (Z; r) = g&(r)D ((, k; r) is the Coulomb con-
tinuum wave function, Qk(r) = exp(ik. r)/(27t. )l ~ l is the
free plane wave,

D ((,k; r) = K(()i'(i(, 1, —ikr —ik r) (7)

is the Coulomb distortion, K(() = exp( —vr(/2)1 (1 —i()
is the Coulomb factor, ( = —pZ/k is the Sommerfeld
parameter, and p, is the reduced mass (Z ) 0 for at-
tractive potentials). As usual, we denote ri2 ——ri —r2,
ki2 ——(ki —k2)/2, (i ———ZT/ki, (2 ———ZT/k2, and

(i2 = 1/(2ki2). In Eq. (6), 'Pi2 ——(1 + Pi2)/i/2, where
Pq2 is the exchange operator.

As the separation of the three particles tends to infinity
Eq. (6) adopts the form

(ki, k2~ri, r2) : 'P»4k, (ri) &k, (»)e' (8)

(ki, k2~ri, r2) = Zz f (ki, ri) ——ZT f (k2, r2)
+-', f (ki2, ri2), (9)

with f (k, r) = —k 1n(kr+k. r). Equations (8) and (9)
are the correct asymptotic behavior of the three-body
Coulomb wave function [8, 28].

By taking (i2 ——0 in Eq. (6), the final state turns

we have used two wave functions developed by Bonham
and Kohl [25] given by

g;(ri, rz) = N, (e 'e "' + e "'e "')(1+Coe "'"")
(5)

It is important to note that the correlation energy of
the initial state plays a fundamental role in the descrip-
tion of the double-photoionization process [21,23]. In the
asymptotic limit A.berg [26] has shown that the accuracy
of the results depends crucially on the fulfillment of the
cusp condition at the nucleus. For helium, this condition
is equal to B,„.~ = (el@/Or2)„, o/g(ri, r2 —0) = —2. If
the initial-state wave function deviates from B,„,p: 2,
the results can vary substantially. Table I shows the pa-
rameters of two wave functions labeled with GS1 and
GS2 with the values of the correlation energies and the
cusp ratios. Also, a multiconfigurational self-consistent-
field wave function developed by Sabelli and Hinze (SH)
[27] (E, „=98%%, B,„,~ = —2.161) was used to contrast
our findings.

TABLE I. Parameters for helium ground-state wave functions of Eq. (5). Values of correlation
energy and cusp ratio are included.

Wave function

GS1
GS2

N;

0.70892
1.63833

2.1832
1.4096

1.1885
2.2058

Cp

0
—0.6054

Ap

0.2420

&corr

33%
96'Fo

&cusp

—1.685
—1.807
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out to be the independent-electron approximation, C2
in our notation, indicating the product of only two
Coulomb waves. In this case the final state reduces to
'Pi2@& (ZT, ri)@k (ZT, r2), which has been extensively
used in double photoionization [21, 23, 29]. It should be
pointed out that both the C3 and the C2 exactly satisfy
the cusp condition at the nucleus.

Independently, a program [22] which uses multiconfigu-
rational self-consistent-field wave functions for the initial
state and a simple product of two Coulomb continua (C2
model) was developed in our group. This program has

served as a permanent check for the present calculations.
In particular, two initial states were employed: the GS1
(which has a multiconfigurational form [30]) and the SH
wave function.

D. Numerical calculations

To calculate T&,. we first need to transform the func-(~)

tion on rq2 in the Fourier space and then integrate sepa-
rately the functions on rz and r2 leading to the following
momentum-space integrals Ji, J2, and J3 defined as

Ji(a, b, z, ZT, ki, k2)
J2 (a, b, z, ZT, ki, k2)
Js(a, b, z, Zz,.k„k2)

g(p; z) I'y

dp g(p z) dr~dr2 rq Pic
h(p; z) 1

xexp( —ari —iki ' ri + ip ' ri)exp( —br2 —ik2 r2 —ip r2),

where we use the notation E~ =i Ei(—i(~, l, ik~ r~ + ik.
~ r~),

g(p z) 1
dri2exp( —ip ri2 —zri2) Ei2,h p;z

z = Ap in h(p; z), and z ~ 0+ or z = Ap in g(p; z). Nordsieck integrals on ri, r2 and ri2 have closed forms [31).
We have developed a program to numerically perform the present three-dimensional integrals on p. The relative

error of integration was set to be less than 1%. The task is quite cumbersome due to the pole at the origin p = 0 in

g(p I z = 0), which can be removed if a cutoK z, is introduced. The final result then requires the limit z ~ 0 . The
calculations of total and single differential cross sections in the present work were done by setting z = 0.005. A total
cross section demands about 20 h on a 10-MfIop Risc-technology computer.

The velocity matrix element is then given by

Tf,. —— O'Pi2 [aJ—i (a, b, z„ZT ,'ki, k2) + bJi (b, a, z„ZT, ki, k2)

+Cpa Ji(a, b, Ap, ZT, ki, k2) + Cob Ji(b, a, Ap ZT', ki, k2)

+Apso J3(a b Ap ZT kit k2) + ApCp J3(b a Ap ZT kl k2)]

and C = 2 NN*(( )i¹(()2¹((i)2/(2vr) swhere ¹(()
is the complex conjugate of the Coulomb factor N(()
defined below Eq. (7). A similar expression is obtained
for the length form including only the J2 integral.

A fundamental test was made to assure the precision
of our calculation of the numerical integration: by taking
(i2 ——0 (C2) and using the GSl wave function, then we
can compare our numerical results with the independent
program [22] mentioned before, which makes use of closed
forms. As z, —+ 0+ both programs must give the same
result within the numerical accuracy (see Fig. 1).

We further study the convergence velocity of our re-
sults, as shown in Fig. 1, where we present one point of
the FDCS as a function of z . By choosing z = 0.005,
we expect relative errors of about 2% and 3%, if GS1 and
GS2 initial wave functions are used, respectively. Sum-
marizing, a total cross section presents a relative error of
less than 5%, after a five-dimensional numerical integral
(three diinensional on p, Hi2, and s'i), and the limit as z,
tends to zero.

III. RESULTS

The electron kinetic-energy distributions in the ve-
locity gauge for different photon energies are presented
in Fig. 2 together with the experimental data [14] at
E~ = 120 eV. For completeness the C2 results using

8.60

)
Or

J3
X

tA'O

7SO-

0,86

0.80—

0.62-

0.60—

026'&

023
0. O.O05

z, (....~ 0.0t

FIG. 1. FDCS as a function of z, . The vectors kq, k2, and
e = z are coplanar. The electron energies are r~ ——~2 ——15
eV, Oq ——90', and 82 ——0 . Solid line: Initial state GS2 and
C3 final state in the velocity (V) and length (I ) forms. Dot-
dashed line: Initial state GSl and C3 final state with (i2 = 0.
The crosses are the results obtained with GS1 initial state and
C2 6nal state employing the independent program developed
in Ref. [22]. The vertical arrow indicates the z, value used in
the calculations.
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the SH ground-state wave function are also included as
the dot-dashed line. At lower energies, the theoretical
shape does not agree with the experimental U-shaped
form, indicating the inadequacy of the present approxi-
mation in this range. However, as the energy increases
the expected U-shaped form is reached; at 1.0 keV the
curve is parabolic. Notice, at 2.0 keV and higher ener-
gies the curve has a flat-top peak at the very center of the
distribution. This feature has already been observed by
Amusia et al. [32], and corresponds to the case where the
wavelength of the photon is about the size of the atom.
Notice, this structure is not present when using the C2
model, as shown in the figure.

For high photon energies, the leading contribution to
the total cross section, when integrating the kinetic-
energy distribution, comes from the regions of the spec-
trum where one electron escapes with almost all of the

120 eV

150 eV

0 0
5.-10 - o o

-4, o 0
0
O~Q

available energy, namely, ej 0 and e2 E~ + Eo, and
vice versa. This implies (i2 ——1/~ki —k2[ -+ 0 and there-
fore the efFect of the correlation, embodied in the mul-
tiplicative term D ((i2, ki2, ri2), tends to disappear, as
seen in Fig. 2 for E~ = 3.0 keV. This is the reason why
our total cross sections including correlation would give
the same high-energy limit as the C2 model if we used.
the same initial state.

Figure 3 shows the ratio of double- to single-ionization
cross sections as a function of the photon energy in the
length and velocity gauges together with available ex-
perimental data, covering from the threshold region [13]
up to the recent high-energy synchrotron measurements
[19, 20]. As single-ionization cross sections, we use the
Coulomb approximation of Stewart and Webb [33] us-
ing the SH wave function for the initial state within the
velocity gauge (see Table II).

Our results present a large length-velocity discrepancy
in the whole range of energy investigated, the velocity
form being the most appropriate for high energies, as pre-
dicted by Dalgarno and Sadeghpour [34]. These authors
have shown that for large photon energies the error when
using an approximate wave function in the length form
remains unaltered whereas in the velocity and accelera-
tion forms the error drops as E and E, respectively.
The good behavior of our velocity formulation at high
energy could be accounted for in this way.

At high energies, the velocity-gauge ratio tends to
1.75%, slightly difFering from the asymptotic ratio 1.68%
predicted by many workers [23, 26, 34]. This small dif-
ference can be attributed to both: first, a deficiency of
initial-state wave function (for GS2, the cusp ratio is
—1.807 instead of —2), and second, errors of integrations
(estimated to be less than 5%). Accepting these short-

0.0
50 100

1P

1 7- 1keV

10"

-9

2keV
N+

& 1P'

1P-1
X
X
Yl I

1P

s s c ~ & s

10
E&(keV)

1Q

1000 2 000
E~(eV)

PIG. 2. Electron kinetic-energy distribution (velocity for-
mulation) as a function of the energy of an electron employing
wave functions GS2 and C3 for the initial and Anal states, re-
spectively. The dot-dashed lines are the results employing SH
and C2 states. Upper figure for E~ = 120, 150, and 200 eV
together with the experimental curve of Ref. [14] at 120 eV
(empty circles). Lower figure for E~ = 1.0, 2.0, and 3.0 keV.

PIG. 3. Ratio a' +/o+(%%uo) as a function of the photon
energy. Solid line: calculations with GS2 and C3 for the initial
and final states, respectively, in the velocity (V) and length
(L) forms. Dot-dashed line: calculations with SH and C2
states. Dashed line: many-body perturbation theory (MBPT)
calculations of Ref. [37]. Cross (x): experimental values of
lief. [13]. Empty circle (o): experimental values of Ref. [14].
Pull circle (~ ): experimental values of Ref. [16]. Triangle (A):
experimental values of Ref. [17]. Square (~): experimental
values of Refs. [1S,20]. The arrow indicates the asymptotic
limit 1.68'%%uo obtained in Refs. [23, 26, 34].
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E~ (keV)

0.084
0.1
0.12
0.15
0.2
0.5
1.0
2.0
3.0
4.0
6.0
8.0
10.0
12.0

cr+ (Mb)

5.41 x 10
3.48 x 10
2.17 x 10
1.19 x 10
5.44 x 10
3.74 x 10
4.24 x 10
4.40 x 10
1.13 x 10
4.31 x 10
1.09 x 10
4.08 x 10
1.90 x 10
1.02 x 10

o.c+~ (Mb)

2 84 x 10
5 44 x 10
486 x10
3.30 x 10
1.69 x 10
1.17 x 10
1.06 x 10
8.95 x 10
2.02 x 10
7 16 x 10
1 75 x 10
6.54 x 10
3.04 x 10
1.63 x 10

o.c+3 (Mb)

2.3
6.2
2.0
2.4
1.3
3.1
1.3
9.2
2.2
8.1
2.0
7.4
3.4
1.8

x10 '
x 10
x 10
x 10
x 10
x 10
x 10
x 10
x 10
x 10
x 10
x 10
x 10
x10 '

comings, our limit is consistent with previous results [23,
26, 34].

The C2 results using the SH initial state produce a
high-energy ratio of 1.60% which also slightly deviates
from the value 1.68%, due probably to the deficit of the
cusp condition. Both velocity calculations, employing C3
and C2, reached the asymptotic limit at about E~ = 4.0
keV, in accordance with Levin et al. 's result [20].

As was observed by Byron and Joachain [23] 0'&2
2+{L)

E~ and as 0.+( ) ~ E~ the ratio in the length form
—5/2 —7/2

increases linearly as E~ —+ oo as shown in Fig. 3; our.=atio using the C3 wave function also behaves linearly
as E~ ~ oo (see Fig. 3), therefore we can infer that

2+(L) —5/2
~e3

At intermediate energies, the calculated ratio is up to
Ave times larger than the data. At lower photon energies
the theory runs well below the data; for example, at E~ =
84 eV the theory gives a ratio of 0.004% while the data
is 0.6% [14].

TABLE II. Total cross sections in the velocity gauge of
single and double ionization of helium by photons of en-

ergy E'~. o, single-photoionization cross sections in the
Coulomb approximation [33] using the SH initial state; ere~,
double-photoionization cross sections using SH and C2 states;
and 0&3, double-photoionization cross sections using GS2 and
C3 states.

IV. CONCLUDING REMARKS

We hase applied a correlated double-continuum wave
function to study double photoionization. A large length-
velocity discrepancy is observed in the whole range of
energy investigated (from threshold to 12 keV), although
the velocity form tends to the correct asymptotic limit.
The correlated final wave function C3 works for photon
energies larger than 1 keV. At lower energies, substantial
deficiencies are observed not only at the level of the to-
tal cross section, but also at the level of electron energy
distributions.

The C3 wave function has been extensively used in
electron-atom collisions and in this work it is firmly
tested, since the initial state used here accounts for most
of the correlation. A direct reading shows the deficien-
cies of the C3 final state for available electron energies
less than 1 keV. And this is not a problem of normaliza-
tion alone, since at E~ = 120 eV it fails also to account
for the shape of the experiments.

The C3 wave function and related functions have been
used in electron-atom collision to explain the Wannier
mechanisms in the threshold region [35]. Further, even in
the context of double photoionization the C3 wave func-
tion has been used to calculate the asymmetry parameter
P [12]. In both cases, the theory accounts quite well for
the shape of the experiments in arbitrary units. How-
ever, in our case, we find that in the low-energy region
the validity of the C3 state worsens, underestimating the
data by orders of magnitude. Anyway, the deficiencies of
the C3 wave function for low available electron energies
should be taken with cautions; in this context, Kamber
et at. [36] have claimed that the photoionization calcula-
tion probes the wave functions in a region of momentum
space diferent from that addressed in charged-particle
impact.
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