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We study the classical collisions of electrons with one-electron atoms or ions in a model where both
electrons are restricted to spherical states. At negative total energy, we calculate the probability for
bound motion of both electrons occurring—as opposed to undelayed direct or exchange scattering. At
positive total energy, we calculate the probability for (e,2e) reactions. There is a finite threshold for the
onset of (e,2e) reactions. Its value depends on the nuclear charge and can be deduced from a simple
transcendental equation. The general behavior of the probability for (e,2e) reactions as a function of en-
ergy is quite similar to the results of quantum-mechanical calculations and to experimental data.

PACS number(s): 03.80.+r, 34.80.Dp, 34.80.Kw, 31.20.Di

I. INTRODUCTION

The correlated motion of two electrons in an atom is
still largely an unsolved problem, even though there has
been considerable experimental [1,2] and theoretical
[3-9] progress in recent years. One of the simplest mod-
els for two electrons interacting with each other and with
a nucleus via long-range Coulomb forces is s-wave heli-
um, where both electrons are restricted to spherical states
with individual angular momentum equal to zero. Classi-
cally s-wave helium corresponds to two spherical shells of
charge —1 expanding and contracting around a fixed nu-
cleus of charge Z.

In a recent paper [10] we presented a comprehensive
account of the bound motion of classical s-wave helium at
negative total energy. Important results were the follow-
ing: periodic orbits are unstable; nonperiodic trajectories
can unambiguously be assigned an ionization time or a
scattering time delay; ionization times impose a fractal
structure on phase space; the initial conditions of nonion-
izing trajectories form a Cantor set; almost all bound tra-
jectories ionize, but the mean lifetime with respect to au-
toionization, averaged over all initial conditions, is
infinite. Fractal structures have also been observed in re-
cent investigations of classical helium in three dimensions
[7,9]. The similarity of many results obtained in [9] and
[10] gives hope that much of the physics of the simpler
and more transparent s-wave model is also relevant for
the realistic three-dimensional case.

The present study of s-wave helium deals mainly with
the case of unbound motion, where at least one of the
electrons has positive energy. If we start with incoming
boundary conditions of one electron, then the outgoing
trajectory may correspond to one bound electron with
negative energy and one free electron with positive ener-
gy, or to two free electrons. The former case corresponds
to direct or exchange scattering, and can occur at nega-
tive, vanishing, or positive total energy. The latter case
corresponds to an (e,2e) reaction and can only occur at
positive total energy. At negative total energy we calcu-
late, as a function of the energy of the incoming electron,
the probability for the occurrence of bound motion as op-
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posed to undelayed direct or exchange scattering. At
positive energy we calculate the probability for (e,2e) re-
actions. A precise study of the possible trajectories re-
veals that, contrary to naive expectation, there is a finite
positive threshold for the onset of (e,2e) reactions, which
is proportional to the binding energy of the initially
bound electron and depends on the nuclear charge Z.

II. MODEL

The Hamiltonian function of classical s-wave helium is,
in atomic units,
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where r_ is the smaller and r. the larger of the radial
coordinates r,r, of the two electrons. Within the re-
gions r, >r, (region 1) and r, <r, (region 2), the equa-
tions of motion generated by (1) are separable and de-
scribe one-dimensional Kepler motion in each of the two
uncoupled coordinates:
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Within each region the energies E; and E, for the two
degrees of freedom are conserved, but the only global
constant of motion is the total energy E=E, +E,. Cou-
pling between the two degrees of freedom occurs on the
line r, =r, in the r;,r, plane, where the potential has a
kink. When a trajectory crosses this line there is a sud-
den change of acceleration but no discontinuity in veloci-
ties. If such a crossing occurs at r; =r, =s, then the en-
ergy 1/s is transferred from the initially outer electron to
the other electron, i.e., after an encounter of the two elec-
trons at r, =r, =s the now outer electron has gained the
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energy 1/s at the expense of the now inner electron [10].

Since the potential in (1) is homogeneous, the equations
of motion can be scaled to energy-independent form. It is
only necessary to distinguish between negative, vanish-
ing, or positive total energy. Each trajectory can be
identified by two parameters, such as an initial position
on the r; axis (r,=0) and the corresponding initial
momentum p, in the r, direction. Alternately, we might
choose the initial partitioning E,/E, or |E,/E,| of the
energies of the two electrons as one of the two indepen-
dent parameters needed to specify a trajectory.

III. RESULTS

A. Negative total energy

When there is bound motion of the two electrons (i.e.,
both E, and E, are negative) then such bound motion ex-
ists between an initial and a final encounter of the elec-
trons on the line r; =r,. Before the initial and after the
final encounter one electron always has positive energy
and there are no further encounters of the two electrons.
The scattering time delay can be defined unambiguously
as the duration of bound motion, i.e., the time between
two encounters initiating and terminating the bound
motion [10].

If we start with incoming boundary conditions of one
electron (electron 1, say, E; >0), then the first encounter
with the initially bound electron 2 (E, <0) at r;=r,=s
need not lead to bound motion of both electrons, even if

-
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the total energy is negative.

If the energy transfer 1/s is less than E, then electron
1, which becomes the inner electron, retains positive en-
ergy at the encounter and then acquires a larger energy at
the subsequent encounter, at which it again becomes the
outer electron. The subsequent encounter is inevitable,
because electron 2 is still bound and electron 1 moves
outwards (with positive energy) after reflection at r, =0.
This simple mechanism for direct scattering after two en-
counters can only occur if the amplitude of oscillation of
the initially bound electron, which is Z / [E2| according
to (2), is greater than 1/E,, i.e., for E,/|E,| > 1/Z.

If the energy transfer 1/s at the first encounter is larger
than |E,|, then electron 2, which becomes the outer elec-
tron, acquires positive energy. This leads to immediate
exchange scattering if there are no further encounters, or
to direct scattering if there is a second encounter. It can
be shown [11] that, if the first encounter of the two elec-
trons does not lead to bound motion (i.e., negative ener-
gies of both electrons), then no further encounters lead to
bound motion. Scattering processes in which the first en-
counter does not lead to bound motion of both electrons
correspond to exchange scattering after just one en-
counter of the two electrons or to direct scattering after
two encounters. In both cases the scattering time delay is
zero if we define it as the duration of simultaneous bound
motion of the two electrons.

Trajectories leading to bound motion or to undelayed
scattering are illustrated in Fig. 1 for the case of negative
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FIG. 1. Trajectories leading to bound motion (a), undelayed exchange scattering (b), and undelayed direct scattering (c) for the

case of negative total energy.
—Z/r.—(Z—1)/r, =—1is also shown.

Here Z=2 and r,r, are

in atomic units. In (a) and (b) the equipotential line
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total energy corresponding to E; <|E,|, 1/|E,| <1/E,.
Figure 1(a) shows initial conditions leading to bound
motion after an initial encounter in the range
1/|E,| <s<1/E;; Fig. 1(b) shows an example of ex-
change scattering for an initial encounter at s <1/ |E,[;
and Fig. 1(c) shows direct scattering for s > 1/E,.

Bound motion occurs for all trajectories whose first en-
counter at r; =r, =s is within the range

1 1

<s<—. 4)
|E, | E,

The probability for bound motion can be obtained by
counting the number of trajectories which, for given ini-
tial energy ratio E, /|E,|, cross the axis for the first time
in the range defined by (4), and comparing with all trajec-
tories of the same initial energy ratio. The unperturbed
oscillations of the initially bound electron 2 may serve as
a clock to measure the time at which the incoming elec-
tron 1 passes a given distance from the nucleus (larger
than Z /|E,| to ensure that it passes prior to the first en-
counter), and we might choose this starting time as the
second parameter defining the trajectories. Such starting
times of the incoming electron define the asymptotic
phase of the incoming oscillatory trajectory. An alter-
nate second parameter is the position of a collision with
the r, axis where r,=0. Because the velocity of the elec-
tron is larger closer to the nucleus, the separations be-
tween collision points with the 7, axis are stretched by a
factor p; to smaller r; for trajectories with uniformly
spaced starting times. We assume a uniform distribution
of trajectories with respect to starting times.

Figure 2 shows (for Z =2) the resulting probability for
bound motion as a function of the energy ratio E, /|E,|
of the incoming electron energy to the binding energy of
the initially bound electron. The kink at
E1/|E2|=I/Z=O.5 corresponds to the onset of unde-
layed direct scattering for s > 1/E/, as in Fig. 1(c).

B. Positive total energy

For positive total energy we have E; > |E,| and direct
and exchange scattering are possible, as are (e,2e) reac-
tions in which both electrons leave the nucleus with posi-
tive energy. Which reaction follows from given initial
conditions again largely depends on the position s of the
first encounter of the incoming electron 1 with the initial-
ly bound electron 2.

If s>1/|E,|, then electron 2 remains bound after the
first encounter, and after electron 1 is reflected at r, =0
there is a second encounter at which the already positive
energy of electron 1 gains a further increment, while elec-
tron 2 remains bound: we have direct scattering after two
encounters. If s=1/ |E2|, then the outer electron 2 has
exactly vanishing energy and a second encounter leading
to bound motion of electron 2 is also inevitable.

If s <1/E;, then electron 1 loses the energy 1/s>E,
and becomes bound at the first encounter; electron 2,
which is now the outer electron, moves away with posi-
tive energy, which corresponds to exchange scattering, if
there is no further encounter. If a second encounter does
occur, it invariably leads to direct scattering and not to
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FIG. 2. Probability of bound motion of both electrons occur-
ring for Z=2 as function of the ratio E, /|E,| of the energy of
the incoming electron to the binding energy of the initially
bound electron.

an (e,2e) reaction [11].

A necessary condition for the occurrence of (e,2e) re-

actions is thus that the position s of the first encounter of

the two electrons lie in the range (see Fig. 3)
1 1

— S<s<

(5)
E, |E,|

However, not all trajectories satisfying (5) lead to an
(e,2e) reaction. If, after the first encounter, the outer
electron (electron 2) is moving inwards or if it is moving
outwards too slowly, then a second encounter can lead to
bound motion of electron 2 and hence to scattering. The
most favorable conditions for electron 2 escaping are
when it acquires the maximum energy allowed by (5) [11].
This occurs if s=1/E, and then, after the first en-
counter, we have

E¢=0, ES=E, r,<r,. 6)

The corresponding trajectory is illustrated for a fixed ini-
tial energy E, of the incoming electron and different total
energies E in Fig. 3. After the initial encounter at
s=1/E, the trajectory is reflected at the r, axis, and
then both electrons move outward. The velocities are
given by

an _, (22 )
dt r
)]
dr _ 172
Ty |£ 1+EH ,
dt ry
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where plus signs describe outward and minus signs in-
ward motion of the respective electrons. An equation for
the path in the 7,7, plane can be obtained by dividing
the two equations (7):

ry Er,+7Z—1

ry zZ

172
dry

=+
dr,

(8)

The motion between the first encounter at »; =r, =s and
the reflection at the r, axis is described by (8) with a
minus sign in front of the square root, and there is a plus
sign for the subsequent motion when both electrons are
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moving outwards.

After reflection at r; =0, the inner electron 1 is initially
faster than the outer electron 2, i.e., dr, /dr, <1, as is ob-
vious from Eq. (8), and there may be a second encounter
of the two electrons. If this encounter occurs closer than
r;=r,=1/E to the nucleus, then the energy transfer is so
big that electron 2 becomes bound and we have direct
scattering. As we show below, this is inevitable for
sufficiently small E, and hence the onset of (e,2e) reac-
tions does not occur exactly at £ =0.

At given energy the most favorable conditions for an
(e,2e) reaction are given by (6). If there is, even under
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FIG. 3 Trajectory corresponding to the “most favorable conditions” for an (e,2e) reaction according to Eq. (6) (for Z=2). The in-

itial energy of the incoming electron is E;=1.17 in all cases. The short fat line shows that part of the diagonal, defined by Eq. (5),
where a first encounter of the two electrons must necessarily occur in order to avoid scattering. (a) corresponds to E, = —1.03 so
that the total energy is below the threshold (=~0.17) for the onset of (e,2e) reactions. Electron 1 is captured after a second encounter
at s <1/E. The same happens for other trajectories not corresponding to the most favorable conditions, i.e., for an initial encounter
at s> 1/E,. In (b) E,= —1, so the total energy corresponds to the threshold for (e,2e) reactions. The critical trajectory continues
after the first encounter at s =1/E; and reflection at the r; axis to touch the diagonal with unit gradient at s=1/E. At energies
above the threshold (c) the “most favorable” conditions define a trajectory along which electron 1 never catches up with electron 2
after the first encounter and both electrons escape. The dashed line is the locus of points defined by (9) where both electrons have the
same velocity (in region 2). (The dotted line is its formal extension into region 1.)
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these conditions, a further encounter closer than
ri=r,=1/E and therefore direct scattering, then no
(e,2e) reaction is possible at all. Such an encounter can
only occur if the outer electron 2 is not faster than the
inner electron 1 (dr, /dr; =1). The locus of points where
dr, /d¥, is unity corresponding to equal velocities of both
electrons follows from (8):

_(Z—Dr,

= 9
2T Z—Er, ©

[Note that (9) is derived from Eq. (7), which are valid
only in region 2, r; <r,.] If the trajectory reaches the
line (9) before reaching the diagonal r,=r,, then the
outer electron 2 is now faster than electron 1 and it
remains faster since the negative acceleration is smaller
for the outer electron. Thereby a further encounter is im-
possible and the trajectory describes an (e,2e) reaction.
The minimal energy for (e,2e) reactions is given by a crit-
ical trajectory which just reaches the diagonal with equal
velocities of both electrons (dr,/dr;=1). This takes
place at r,=r,=1/E, which can be seen from (9) [see
Fig. 3(b)]. If the total energy is smaller than the energy
of this critical trajectory, the outer electron is slower and
is overtaken by the inner electron at a point
ry=r, <1/E, which leads to direct scattering.

Thus the minimal energy needed for (e,2e) reactions to
be possible is defined by the existence of a critical trajec-
tory which starts at »;,=r,=1/E, (E, being the initial
energy of the incoming electron) and touches the diago-
nal with unit gradient at », =r,=1/E, E being the total
energy. This critical value of E can be deduced by ele-
mentary integration of Eq. (8), which leads to a transcen-
dental equation for the ratio

E E X

- , = : 10
ETIE, ’ 1B, 1-x (10)

X

namely,

VZ—1+x +vVx

2 —VZx(Z—1+x)+(Z—1)VZIn 2
VZ +1

—2(1+x¥*)=0. (1D

Equation (11) defines finite thresholds for the onset of
(e,2e) reactions for any charge Z =1 of the nucleus. The
ratio of the threshold energy to the binding energy of the
initially bound electron, E /|E,|, is 1 for Z=1, roughly
0.169 777 for Z =2, and decreases monotonically with Z,
reaching 0.010 11 for Z =100 (see Fig. 4).

For a given energy E,; above the threshold defined by
(11), all trajectories whose first encounter on the line
ry=r,=s is just beyond s =1/E, lead to an (e,2e) reac-
tion with no further encounters. Larger values of s corre-
spond to less energy transfer to the outer electron 2, and
there may be a second encounter. Before s reaches the
upper limit 1/|E,| given by Eq. (5) a situation is reached,
where the outer electron 2 is too slow to avoid capture at
the second encounter. The stretch of values of s between
1/E, and this upper limiting value leads to (e,2e) reac-
tions, and the probability for (e,2e) reactions can be cal-
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FIG. 4. Finite threshold for the onset of (e,2e) reactions ac-
cording to Eq. (11). The ratio of total energy to binding energy
of the initially bound electron is plotted as a function of the nu-
clear charge Z.

culated by comparing with all possible trajectories. As in
the calculation of the probability of bound motion above
(Fig. 2), we assume that the trajectories are uniformly dis-
tributed with respect to starting times of the incoming
electron relative to the oscillation of the initially bound
electron.

Figure 5 shows resulting probabilities for (e,2e) reac-
tions as functions of the ratio E, /|E,| of the initial ener-
gy of the incoming electron to the binding energy of the
initially bound electron for various values of Z. The posi-
tion of the maximum is at E, /IEZ\ ~4 and is virtually in-
dependent of Z. The probabilities do not increase pro-
portional to 1/Z* in accordance with the frequently dis-
cussed scaling law for (e,2e) cross sections [12]; in the
present case the decrease with Z is closer to a 1/Z
behavior, especially for high energies.

A comparison of our purely classical calculation with a
quantum-mechanical calculation by Callaway and Oza
[13] is shown in Fig. 6 for Z=1. Callaway and Oza ob-
tained the elastic and first two inelastic scattering cross
sections in a quantum-mechanical calculation restricted
to s-waves and singlet states. Higher inelastic cross sec-
tions were extrapolated on the basis of the Born approxi-
mation and the total reaction cross section was deduced
from the elastic transition amplitude via the optical
theorem. The fraction assigned to (e,2e) reactions was
obtained by subtracting the elastic and inelastic scatter-
ing contributions from the total cross section. Figure 6
shows the ratio of the resulting (e,2e) cross section to the
total cross section together with the probability for (e,2e)
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FIG. 5. Probabilities for (e,2e) reactions as functions of the
ratio of the initial energy of the incoming electron to the bind-
ing energy of the initially bound electron for various values of
the nuclear charge Z.
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FIG. 6. Probabilities for (e,2e) reactions on neutral hydrogen
(Z=1). The solid line shows our classical s-wave calculation;
the diamonds are the results of a quantum-mechanical calcula-
tion [13] in which the contribution due to (e,2e) reactions is ob-
tained by subtracting calculated elastic and inelastic scattering
cross sections from a total reaction cross section derived from
the elastic transition amplitude via the optical theorem.

FIG. 7. Probabilities and cross sections for (e,2e) reactions
on hydrogen (Z=1). The diamonds are experimental cross sec-
tions from [12] in 1077 cm?. The solid curve is the result of our
classical s-wave calculation. The curve was rescaled to have the
same height at maximum as the experimental data.

reactions in the classical calculation. Agreement is quite
good considering the different underlying theories and
inevitable uncertainties in the quantum calculation.

Finally, Fig. 7 shows, again for Z =1, the probability
for (e,2e) reactions in the classical s-wave calculation in
comparison with experimental results for (e,2e) cross sec-
tions on real hydrogen. The calculated curve has been
scaled so that the height of the maximum agrees with the
experimental value. The general shapes of the classical
s-wave probability and the real physical cross section are
quite similar, the main difference being in the slower
falloff of the classical s-wave probabilities at higher ener-
gies. One way of translating the dimensionless probabili-
ty into a cross section would be to multiply by an area,
such as the inverse square of the wave number. Such an
area would correspond to the range of impact parameters
one might assign to zero angular momentum of the in-
coming electron. In Fig. 7 this multiplication would cor-
respond to dividing the solid line by the incoming energy
E,. The resulting curve would then fall off faster than
the experimental data towards higher energies.

IV. SUMMARY

Within the model of classical s-wave helium we have
calculated the probabilities for bound motion occurring
at negative total energy and the probabilities for (e,2e)
reactions at positive total energy. The onset of (e,2e) re-
actions is not at total energy zero, as might be naively ex-
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pected, but at a finite threshold. This can be understood
by realizing that, when both electrons have very small
positive energies, the inner electron is always faster and
overtakes the other electron, which then becomes bound.
The finite threshold is proportional to the binding energy
of the initially bound electron and has a monotonically
decreasing dependence on the nuclear charge Z. Precise
values of the threshold can be deduced from the transcen-
dental equation (11).

The general behavior of the probability for (e,2e) reac-

tions calculated as a function of the energy of the incom-
ing electron in the classical s-wave model agrees qualita-
tively with comparable quantum-mechanical calculations
and with experimental data.
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