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A generalized deformed oscillator giving the same spectrum as the Morse potential is constructed
through the use of quantum-algebraic techniques. The model of n coupled anharmonic oscillators
of Iachello and Oss [Phys. Rev. Lett. 66, 2976 (1991)],suitable for the description of vibrational
spectra of polyatomic molecules, is subsequently written in terms of such generalized deformed
oscillators. In addition to clarifying the relation of the model of Iachello and Oss to other models
using coupled oscillators for the description of vibrational molecular spectra, the present formalism
allows for the construction of a large class of exactly soluble models with no extra computational
effort. As an example, the way of including a coupling of the Darling-Dennison type is shown.

PACS number(s): 31.15.+q, 33.10.Cs, 02.20.—q

I. INTRODUCTION

Quantum algebras (also called quantum groups) [1—4]
are receiving recently much attention in physics. From
the mathematical point of view they are q deformations
of the universal enveloping algebras of the corresponding
Lie algebras. When the deformation parameter q is set
equal to 1, the usual Lie algebras are obtained. Quan-
tum algebras are concrete examples of Hopf algebras [3,
4]. Initially used for solving the quantum Yang-Baxter
equation [5], they are now finding applications in several
branches of physics, especially after the introduction of
the q-deformed harmonic oscillator [6, 7]. Applications in
conformal field theory [8], quantum gravity [9], quantum
optics [10], nuclear physics [ll, 12], as well as in the de-
scription of spin chains [13] have already appeared, while
in atomic physics attention has been focused on the hy-
drogen atom [14, 15].

Rotational spectra of diatomic molecules [16, 17], de-
formed nuclei [18,19], and superdeformed nuclei [20] have
been described in terms of the q-deformed rotator hav-
ing the symmetry SU~(2), the deformation parameter w2

(with q = e' ) found [19] to correspond to the softness
parameter of the variable moment of inertia model. The
implications of the SU~(2) symmetry on the electric tran-
sition probabilities connecting the rotational levels have
also been studied [21). Vibrational spectra of diatomic
molecules have been described in terms of q-deformed
harmonic [22—25] and anharmonic [26, 27] oscillators hav-
ing the SU~(1,1) symmetry. WKB equivalent potentials
for these oscillators have been determined [28, 29], the
WKB equivalent potential corresponding to the SU~(1,1)
symmetry found [29] to be a deformation of the modified
Poschl-Teller potential, which is connected to the Morse
potential by a known transformation [30].

On the other hand, a powerful method for the al-
gebraic description of vibrational spectra of polyatomic
molecules has been recently introduced by Iachello and
Oss [31—33]. In this method, each bond in a poly-
atomic molecule is replaced by a Morse oscillator. The
model is obviously superior in comparison to models at-
tempting the description of vibrational spectra of poly-
atomic molecules in terms of coupled harmonic oscillators
[34—37], since it incorporates anharmonicities in a natural
way. It is also much easier to use than the vibron model
[38, 39], in which rotations and vibrations are treated si-
multaneously.

Since it is by now understood that the q-deformed os-
cillator is also a case of an anharmonic oscillator [40],
it is reasonable to try to construct creation and annihi-
lation operators describing a Morse oscillator, in a way
similar to the description of the usual harmonic oscillator
in the occupation number representation ("second quan-
tization"). These operators can then be used in formu-
lating the model of n coupled anharmonic oscillators of
Iachello and Oss [31—33] in terms of deformed oscillators.

In this paper erst we are going to construct creation
and annihilation operators giving the same spectrum as
the Morse potential. Subsequently, the model of n cou-
pled anharrnonic oscillators of Iachello and Oss will be
written in terms of these oscillators. In this way the
relation of this model to existing models using coupled
oscillators for the description of vibrational spectra of
polyatomic molecules [34—37] will be clariFied. Further-
more, it will be demonstrated how a large class of ex-
actly soluble models for the description of vibrations of
polyatomic molecules can be constructed with no extra
computational effort, by taking advantage of the freedom
in the choice of the deformed oscillators involved and the
simplicity of the occupation number representation for-
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malism.
In Sec. II of this paper a generalized deformed oscilla-

tor giving the same spectrum as the Morse potential will
be constructed, while in Sec. III the model of n coupled
anharmonic oscillators of Iachello and Oss will be writ-
ten in terms of such generalized deformed oscillators, its
relation to existing models will be examined, and the
construction of additional exactly soluble models will be
discussed. Finally, in Sec. IV discussion of the present
results and plans for further work will be given.

II. A GENERALIZED DEFORMED OSCILLATOR
FOR THE MORSE POTENTIAL

Solving the Schrodinger equation for the Morse poten-
tial [31,41, 42]

If (5) holds, then it is also true that

aalu = g(ata),

where the function g(x) is defined by

g(x) = F(1+f(x))

(s)

(9)

If ln) is a base of eigenvectors of the number operator N

Nla) = ala), (10)

[a+ 1] = g([n]) or f([a+ 1]) = 1+ f([a]), (12)

then from Eq. (6) one has

ala) = v'[a]la —1) a'la) = v'[a+ 1]la+1), (»)
where [a] is a function of n. Furthermore from Eq. (9)
one has

V(x) = D (1 —e *)

one obtains the energy spectrum

E(v) = D —4A—(Av —v ),
where

1
from which we conclude that [45]

[al = F(a).
(2) The eigenvector l0), corresponding to the zero eigenvalue

of the number operator N, satisfies the following relation

v =0, 1, . . . ,
—or

JV —1

2 (3) if F(0) = 0 [or f(0) = 0], then al0) = 0. (14)

(where JV is even or odd) and

2D
m' 2m

' (4)

In this paper we assume that the function F(x) is zero
when x = 0.

The number operator N defined by Eq. (7) satisfies
Eqs. (6). The following identities are also useful:

[a, N] = a, [at, N] = —at.

It can be shown [45] that

(6)

The anharmonicity constant x, = 1/JV, defined by
Cooper [43], is a perturbational parameter for the Morse
potential, measuring the deviation from the harmonic-
oscillator limit, which is obtained at x, ~ 0.

Our first aim is to construct a deformed oscillator giv-
ing the same spectrum as in Eq. (2). Deformed oscil-
lators giving the spectrum of a Poschl-Teller potential
have already been studied in [44], where the method of
[45] was applied. This method gives the deformed oscilla-
tor directly from the energy spectrum. The Poschl-Teller
spectrum coincides with the spectrum of the Morse po-
tential up to an energy shift, therefore the oscillator al-
gebra of [44] can be transferred to the case of the Morse
potential.

A general deformation of the harmonic oscillator can
be given by the basic relation [45]

f(aa") —f(a a) = 1,

where at (a) are creation (annihilation) operators and
f(x) is a real analytic function defined on the real positive
axis. In the case of the usual harmonic oscillator one has
f(x) = x, which leads to the usual boson commutation
relation [a, at) = 1.

The number operator N satisfies, by definition, the
commutation relations

and

a!a = F(N) = [N],

a, ai = [N+1] —[N],

aalu = F(N+ 1) = [N+ 1],

(15)

(a, ai ) = [N + 1] + [N].

(16)

If h(z) is an entire function, then the following properties
are true:

h(N) (at) = (a!) h(N + m),

h(N+m)(a) = (a) h(N).

(17)

The eigenvectors of the number operator N are gener-
ated by the formula

ln) = (a')"Io)
[n]!

where

(19)

[n]! =
E ~

k=1
[k] = F(k)

4 5 4 h

k=1
(20)

These eigenvectors are also eigenvectors of the energy
operator

H = —(aalu + aia),
A

2

N = f(ata). (7) corresponding to the eigenvalues
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E„=—([n + 1] + [n]) = —[F(n + 1) + F(n)].
Then Eq. (2) can be written in the form

22

E(v) = E'(v) + 2AA' —D,
If the energy spectrum is given by a definite real function
of the number n+ 1/2

E„= H—(n+ —,'),
2

then

~(*+ -', ) = —,'[F(*+1)+F( )]

(23)

one obtains the usual harmonic oscillator. For

The specific properties of the generalized deformed os-
cillator formulated above are fixed by the structure func-
tion F(n). By choosing

F(n) = n,

i.e. , the spectrum of the generalized deformed oscillator
constructed here is the same as the spectrum of the Morse
potential up to an additive constant.

III. MODEL OF n COUPLED
GENERALIZED DEFORMED OSCILLATORS

Iachello and Oss [31—33] introduced recently a model
of n coupled anharrnonic oscillators for the description
of vibrational spectra of polyatomic molecules. In this
model each bond i in a polyatomic molecule is replaced
by a Morse oscillator. The model Hamiltonian has the
form

(26) H=Eo+) AC+) A C +) AM„, (34)
one obtains the q-deformed harmonic oscillator of Bieden-
harn [6] and Macfarlane [7], while by selecting

the Q-deformed oscillator of Arik and Coon [46] can be
generated. For Q ) 1 the spectrum of this oscillator
increases more rapidly than the equidistant spectrum of
the usual harmonic oscillator, while for Q ( 1 its spec-
trum increases less rapidly than the equidistant one, i.e.
it is compressed, bearing similarity to the spectrum of
the Morse oscillator.

We now look for a structure function which will give
a spectrum similar to that of Eq. (2). Since Eq. (2)
contains a polynomial quadratic in v and in addition we
wish to keep F(0) = 0, the structure function should be
of the form

(A;, v, iC, iA, , v, ) = —4(A', v, —v, ). (35)

The Casimir interaction C,~ is diagonal in the basis
~A„v„A~, v~), its matrix elements being

(A„v„JV, , v, iC,, iA'„v;, A;, v, )

= 4[( '+ )' —( '+ )(A'+A )], (36)

where C, gives the spectrum of the ith Morse oscillator,
while the interactions among the various Morse oscilla-
tors are described by C,~ and M,z, the Casimir and Ma-
jorana interactions, respectively. The eigenvalues of C,
in the basis ~A„v, ) are given by

F(V) = aqV+ bqV (28)
while the Majorana interaction M,~ has diagonal matrix
elements

Using Eqs. (2) and (24) we easily conclude that a solution
to the problem is provided by the structure function

(A;, v, , JV, , v, ~M~, ~A, , v, , A', , v, ) = v,A', + v,A, —2v, v,

(»)
F(V) = V(A + 1 —V). (29) and nondiagonal matrix elements

Using the basis ~A, v) of eigenfunctions of the "number
operator" V, one has in the place of Eqs. (10) and (11)
the relations

V[A', v) = viA', v),

a ~A, v) = QF (v)
~
JV, v —1),

atiA, v) = QF(v+1)iA, v+1).
The structure function of Eq. (28) leads then to a spec-
trum

('F(v) + F(v + 1))E'v = —4A
2 )

= —4A(A'v —v ) —2AN.

(A„v, + 1,A~, v~
—1

i M;~ ~A;, v, , JV~, v~)

u~(v, + 1)(A, —v, )(A~ —v~. + 1), (38)

(A';, v, —1,&,v, + I~M,, ~A;, v, ,u, v, )

v, (v~ + 1)(A~ —v~)(A, —v, + 1). (39)

ata; = F(V,), a,at = F(V, + 1),

We are now going to express these results in terms
of the generalized deformed oscillator equivalent to the
Morse potential, introduced in the previous section. Hav-
ing in mind that
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and noticing that

(n* ~,')IA' v') = IF(V. + I) + F(V.)][A', v. )

= (2A, v, —v,
' + A;) ~A;, v, ),

it is clear that the operator

C, = 2(A, —(a, , at)) = 2[A, —F(V,) —F(V, + 1)],

(42)

has the eigenvalues given in Eq. (35).
Our next aim is to express the Casimir operator C,j in

terms of generalized oscillators. Noticing that

[a, , a, ] ~A, , v, ) = [F(V, + 1) —F(V)]~A;, v, )
= (A, —2v, ) A„v, ), (43)

[a, , at][a, , a ]~A;, v, , JV„v~) = [F(V, + 1) —F(V)][F(Vj + 1) —F(V, )]]A', , v, , Aj v~)

= (A', —2v, ) (A, —2v, ) ~A, , v, , A, , v, ),

it is easy to verify that the operator

(44)

C,~
= 2(A, —(a, , at f + A~ —(a~, ai ) —A,A~ + [a, , at] [a~, a~t]), (45)

has the matrix elements given in Eq. (36).
Finally, we wish to express the Majorana operator M,j in terms of generalized oscillators. Noticing that

ata~~A„v, , A~, v~) = F(V, + l)F(V~)~A, , v, + 1,A~, v~ —1)

(v, + 1)(A, —v, )v, (JV, —v, + 1)~A;, v, + I,A;, v,. 1)

and using Eq. (44) it is easy to verify that the operator

1 t t 1
(47)

H = Eo+) A', (a, , atj+) A', [a, , a,"][a,, a~t]

has the matrix elements given in Eqs. (37)—(39).
Using Eqs. (42), (45) and (47), the Hamiltonian of Eq.

(34) can then be written as

where the brackets indicate the usual q numbers of Eq.
(26). This structure function has been used by Chang
and Yan for the description of vibrational molecular spec-
tra in [22, 23]. If p is allowed to be an appropriate func-
tion of the angular momentum J, a description of both
rotational and vibrational molecular spectra is obtained
[24, 25]. For 6 = 0 the usual q-deformed harmonic oscil-
lator [6, 7] is obtained.

(iii) Another example of exactly soluble model, accord-
ing to (i), is given by the structure function [47]

+ ) x'„(a,'a, + a,'.a, ), (48)
F(N) = [N+cN ], (50)

F(N) = [A + bp], (49)

where the constants Ep A A. j A', can be easily ex-
pressed in terms of the constants ko, A, ,A,~,A,~ of Eq.
(34) and A;, A', .

A few comments are now in order.
(i) The Hamiltonian of Eq. (48) is fully equivalent to

the one of Iachello and Oss [Eq. (34)], when the gener-
alized deformed bosons used in it are characterized by
the structure function of Eq. (29). However, the present
formalism can be also used with generalized deformed
bosons characterized by other structure functions related

.to vibrational molecular spectra. Thus the present for-
malism offers as a bonus a large number of exactly soluble
models at no further computational cost.

(ii) An exactly soluble model [as an example of com-
ment (i)] can be obtained by using the structure function

where again the brackets indicate the usual q numbers
of Eq. (26). For q = 1 the brackets go away and this
structure function is equivalent to the one characterizing
the Morse potential [Eq. (29)], used here. For q g 1
this structure function represents a q deformation of the
Morse potential, an approach alternative to the use of a
potential described by an expansion in terms of Morse
functions. It should be recalled at this point that im-
proved descriptions of vibrational spectra of diatomic
molecules have been obtained in terms of q-deformed an-
harmonic oscillators having the U~(2) D Oz(2) [26] and
SUq(l, l) [27] symmetries. WKB equivalent potentials
giving the same spectrum as these q-deformed anhar-
monic oscillators have been obtained in [29]. They are q-
deformed versions of the modified Poschl- Teller potential,
which is connected to the Morse potential by a known
transformation [30]. It is therefore clear that the need
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for q-deformed versions of the Morse potential occurs in
these cases as well.

(iv) In the case of polyatomic molecules having spe-
cific symmetries, such as the benzene [32, 33] or octahe-
dral A Ys molecules [31], the coefficients in Eq. (48) get
simplified, since the arguments used in Refs. [31—33] are
still valid. In the two examples just mentioned (benzene,
octahedral molecules), all bonds are equivalent, so that
lV, = JV, A! = A' for any i, A', = B for any i and j. For
the ofF-diagonal couplings, described by the last term in
Eq. (48), difFerent cases have to be considered. In the
case of octahedral A Ys molecules, for example, one has
to distinguish between adjacent and opposite bonds, as
in [31],while in the case of benzene nearest-neighbor cou-
plings, next to nearest-neighbor couplings and opposite
bond couplings, as in [32, 33], have to be considered.

(v) The expression of the model of n coupled anhar-
monic oscillators of Iachello and Oss in terms of general-
ized deformed oscillators is also helpful in clarifying the
connection between the present model and earlier models
using coupled oscillators for the description of molecular
vibrations. The usual Hamiltonian for the description of
vibrational modes of polyatomic molecules reads [34]

( dl(+).):*'~ I
v'+ —*

I I
uk+ —I,

„),. ( 2) 4
(51)

H = &~p(ni + n2+ 1) + —[(ni + 2) + (n2+ 2) ]2

+cr12(nl + 2) (n2 + 2) +
2

(ai a2 + a2ai)t (53)

used for the description of vibrational spectra of ABA
triatomic molecules, is also a special case of Eq. (48). In
particular, the first two terms of the Hamiltonian of Eq.
(53) are contained in the second term of the Hamiltonian
of Eq. (48), while the third (fourth) term of Eq. (53)
corresponds to the third (fourth) term of Eq. (48).

(viii) Kellman has also used for the description of ABA
triatomic molecules the Hamiltonian [37]

where d, ,dg are the degeneracies of the corresponding
modes. It is clear that the first term of the Hamiltonian
of Eq. (51), as well as the parts of the second term with
i = k, are equivalent to the second term in Eq. (48),
while the parts of the second term of Eq. (51) with k ) i
are included in the third term of Eq. (48).

(vi) Another example is provided by the Hamiltonian
of Kellman [35]

H = (aiai + a2a2 + 1) 1+—
~

——(a,a2 + a,ai),
1 ) 1

M) M

(52)

which is included in the first, second, and fourth terms
of Eq. (48).

(vii) Another Hamiltonian by Kellman [36]

F(v, + 2)F(v, + 1)F(vz)E(vz —1). (55)

For simple (not deformed) oscillators, for which Ii (v;) =
v, , eq. (55) gives the Darling-Dennison result, while in
the case of generalized deformed (anharmonic) oscillators
the Darling-Dennison coupling is the lowest-order term in
an expansion using the anharmonicity constants as small
parameters.

(ix) A Hamiltonian recently treated is [49]

d

H = apI + bp ) a, a, + cp ) (a, a~+a a;)
a,~ =1(i&g)

d

) (atat + a,a, ),
& i=1(~&2)

d

+dp) [(,) +a ]+ p

(56)

the second (third) term of which is contained in the sec-
ond (fourth) term of the Hamiltonian of Eq. (48), while
its fourth and fifth terms are not included in Eq. (48).

IV. DISCUSSION

In this paper a generalized deformed oscillator giving
the same spectrum as the Morse potential was first con-
structed. Subsequently, the model of n coupled anhar-
monic oscillators of Iachello and Oss [31—33] was written
in terms of such generalized oscillators. In addition to
clarifying the relation of the model to existing models us-
ing coupled oscillators for the description of vibrational
spectra of diatomic molecules [34—37, 49], the present for-
rnalism allows for the construction of a large class of ex-
actly soluble models with no extra computational effort.
As' an example, the way of including a term giving the
Darling-Dennison coupling has been demonstrated.

Applications of some of the above-mentioned exactly
soluble models to vibrational spectra of specific poly-
atomic molecules should be carried out in order to check
the relative significance of the various contributing terms.

The spectrum of the q-deformed harmonic oscilla-
tor can be also obtained from solving the q-deformed
Schrodinger equation [50] for the usual harmonic oscil-
lator potential. The q-deformed Schrodinger equation

H = h~, (n, + 2) + h~, (n + i) + '(—n, + i)2

+—(n. + —,')'+ p,.(n, + —,')(n. + —,')
+b(a~ata a +atata, a, ), (54)

of which the first four terms are equivalent to the second
term of Eq. (48), while its fifth term is contained in the
third term of Eq. (48). The last term of the Hamiltonian
of Eq. (54) is not contained in Eq. (48). This term is
suitable for reproducing the Darling-Dennison normal-
mode coupling [48]. In the case of the exactly soluble
models expressed by the Hamiltonian of Eq. (48), it is
a trivial task to include such a term. The corresponding
matrix elements are then

(JV, , v, + 2, JV~, v~ —2~a~a, a~a~~A;, v, , jV~. , v~}
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for the hydrogen atom has also been studied recently
[15]. It will be interesting to construct the q-deformed
Schrodinger equation for the Morse potential and check
the changes inflicted by the q-deformation on the spec-
trum. It will also be of interest to construct the q-
deformed Schrodinger equation for the modified Poschl-
Teller potential and check the relation between its eigen-
values and. the spectrum of the q-deformed anharmonic
oscillator with SU~(l, l) symmetry of Ref. [27], for which
the WKB equivalent potential has been shown [29] to
be a q deformation of the usual modified Poschl-Teller
potential. The q-deformed version of the vibron model

[38, 39] of molecular structure as well as of the interact-
ing boson model of nuclear structure ([51]; see [52, 53]
for recent overviews) are also of interest; a step in this
direction has been taken already in [54]. Work in these
directions is in progress.
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