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We study doubly excited ridge states using hyperspherical coordinates. Viewing the two electrons as a
pair, as we did for 'S states in a previous paper [Phys. Rev. A 46, 6933 (1992)], here we extend to the
L =1 states. By diagonalizing the potential energy within manifolds of fixed grand angular momentum,
we get simple, even analytical, expressions for the effective charge. Upper bounds for the energies of the
L =1 states are derived through the Runge-Kutta numerical procedure.

PACS number(s): 31.50.+w, 31.10.+z

I. INTRODUCTION

This paper reports the results for doubly excited 'P?,
3po, 1p¢, and 3P° resonant states in H~ and He. This
work is an extension of our previous work [1] in which
we only considered 'S states and had also neglected major
radial-derivative coupling terms.

Experimental and theoretical work has shown that
doubly excited states fall broadly into two classes [2,3],
distinguished by the nature of their excitations. The two
electrons may have either comparable or disparate excita-
tion. Correspondingly, the states have been named as
“ridge” and ‘‘valley,” respectively. Our previous paper
has dealt with symmetrical ridge states of L =0. In such
states the two electrons are equivalent in their excitation
relative to the residual “grandparental ion” [4]. In this
paper we deal with similar L =1 states. As before, we
continue to use hyperspherical coordinates which are
defined as R =(r?+r2)""? and a=tan"!(r,/r;). In this
coordinate system, R measures the size and
Q=(a,0,,¢,0,,¢,) denotes the orientation of the elec-
trons in the six-dimensional configuration space of the
system. In these coordinates, the system’s potential can
be written as
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where  0;,=cos !(r;'r,) and  cos6;,=cos6,cosd,

+sin6,sinf,cos(¢; —¢,). The potential energy C /R de-
pends explicitly on 6,,. It then seems natural to choose
6,, as one angular coordinate as we did before for 'S.
However, we prefer to use (6,¢;,0,,¢,) as angular coor-
dinates because of other advantages when L+0. In Sec.
II we will give details of the calculations and discuss the
results briefly in Sec. III.

II. CALCULATIONAL PROCEDURE

The two-electron Schrddinger equation in hyperspheri-
cal coordinates is
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The squared grand angular momentum operator A2 in
these variables is given by

. _ . d
A?*= —[sina cosa ] 2% sin’a cosza—d—(—x—
11 13
e e (2b)
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where 12 and I3 are the squared orbital angular momen-
tum operators [2] for the two electrons.
The eigenvalues and eigenstates of A% are
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A=l+1,4+2ng-=0,1,2,..., (3b)

q);'q:clx’zLM(Q):c[¢chlllzLM(Q)
(e S e
X ety e Q)] (3c)
1 .

—ﬁ if 117512
c=1 (3d)

5 L=l

.1
¢nRC1]IZLM(Q)=N,,RC1112(coslla)(sm ‘)
XY 1, 1m(T1,T,)

X2F1(_ch,ch+ll +12

+2,1,+%;sin’a) , Ge)
Y, L m(TpT)= 3 (LI, LM|l;my,1,m;)
1°2 mym,
X leml(?l)ylzmz(?2) , (39)
and
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N e (2nge+20,+ Dinge+10 |12
"rchihy QL+ 1) | (ngc+1,)(2ngc+21+1)
201+ 1, +2nge +2) g+ + L+ 1 |12 Ge)
nkc!ﬂ' ) 8
[
Here Y is the familiar coupled spherical harmonic which (D |ICla,0,,)|® . .. )
nrclily P2 el

includes a Clebsch-Gordan coefficient, ,F; is a hyper-
geometric function which, for the integer values of the ra-
dial correlation quantum number ny- of interest, is pro-
portional to a Jacobi polynomial, and Noeeliy is a nor-
malization constant.

In the previous paper we restricted ourselves to the
L =0 case where the above equations simplify dramati-
cally. When L =1, we have two cases: if /I, with
|I,—1,]=1, then A (=1, +1,+2ng) and parity are odd,
whereas if [;,=1,, A (=I,+1,+2ngxc) and parity are
even. In the next three subsections, we will discuss even-
and odd-parity states separately.

A. P° states

In P? states, the two individual angular momenta /,
and [, are not equal and Y} 1,10 does not simplify as in the

L =0 case. The wave function in this case is

1
q)chlllz(Q)—"T;‘E[‘anclllle(Q)

npctS

)R, o] @

with § =0 for singlet states and S =1 for triplet states.
The matrix elements in each A subspace are

<q>nR01112|C(a’612)|q)n' ) . (5)

’agt
RCIIIZ

It is useful to divide the charge operator into

C(ayelz)zU(a)+ W(a,elz) s (6)
with
Ula)=— zZ__ .Z , (7
cosa sina
W(a,0,)=[1—sin(2a)cosf;,] /% . (8)
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We have dropped the indices S, 7, L, and M because
these values are already fixed.

Only the second term in (9) involves the coupling of
different spherical harmonics. We briefly outline how to
calculate this coupling. Expanding W(«a,6,,) in the form
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(8 (’)‘(1)’) being a 3-j symbol and {112 1%1 £} a 6-j symbol.
Then, with standard expressions for these symbols [5], we
get
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TABLE I. Eigenvalues of effective charge operator C;, for ! P° states of He with A <11.
Q 0 1 2 3 4 5
A
1 —5.35011
3 —4.624 53 —6.924 50
5 —4.33924 —5.806 63 —7.559 65
7 —4.169 30 —5.34584 —6.26637 —8.31188
9 —4.05000 —5.07998 —5.71090 —6.87170 —8.70776
11 —3.95792 —4.901 39 —5.386 90 —6.224 12 —7.19248 —9.21080
where g, =(l,+1]+k)/2and g,=(l,+15+k)/2. The last term in (13) is given by
172
X(X+1INX—2k—1)(X—2k
B(X)=(— ¥ X+ 1 X = 2k) : (14)

(21, —1)21,(21, + 1)(21, —1)217(21; +1)

if X=k+I1,+1{,l,=1,—1, and I;=I}—1, and the same expression with subscripts 1 replaced by 2 if

X=k+1,+11+2,1,=1,+1,15,=I{+1, whereas

(X —20))(X =214 —1)(X =2, +1)(X —21,+2)

172
(15)

B(Xx)=(—)*

if X=k+I1,+1}, I,=1,—1 and ;=1 +1, with primed
and unprimed entries interchanged when X =1/, +1] +k,
I,=1,+1,and I5=1|—1.

Inserting the coupling coefficient 4 into (9), and
evaluating the a integral numerically, we can diagonalize
the matrix in (5). Results are given in Table I and the ei-
genvalues plotted vs the quantum number Q in Fig. 1 for

-11.0 T T T T

-
N

Q

FIG. 1. Effective charge for !P° states. Results of numerical
diagonalization of (9) are shown as continuous curves. Crosses
give maximum eigenvalue as given by the approximate analyti-
cal expression in (17).

(217 +1)(21) +2)(217 +3)21, —1)21,(2]+1)

’

A =27. The eigenvalues are labeled by Q=0,1, ..., the
maximum value of Q is J(A—1).

B. Eigenvalues for ! P° states

As in the previous paper, we again find that the ex-
treme eigenvalues are well approximated by the diagonal
matrix elements with the lowest and highest ngz- values.
In either of these cases, ® in (4) takes a simple form and
the matrix element can be evaluated analytically. We are
interested in only the lowest eigenvalue for each A to get
the most attractive potential. This has /;,=1 and /,=0
and the highest value of nzc=(A—1)/2. When ng¢ is
even, the corresponding states are called n,, and when

ngc is odd, the corresponding states are called n_. The
wave function, therefore, reduces to
0 T T T T
=
\; -0.83 [ b
oo}
1.66 1 1 1 1 .
0 2 4 6 8 10
VR
FIG. 2. Potential wells U(R)=(A+3/2)A+5/2)/

2R*+Chp—(n-1)2/R, withA=1,3,5,7,9, 11, and 13 and Z=2
for 'P°.
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TABLE II. Eigenvalues of effective charge operator C,¢ for 'P¢ states of He with A <24.

0 0 1 2 3 4 5
A
4 —6.08498
8 —5.17068 —7.325 64
12 —4.81808 —5.99767 —8.15896
16 —4.61589 —5.46740 —6.61824 —8.15896
20 —4.47798 —5.16878 —5.96346 —7.10498 —9.29145
24 —4.37441 —4.971 64 —5.59152 —6.37359 —7.51786 —9.712 56

1

Q)= —_—
(D}‘"RC( ) N}‘"RC cosa sin(2a)

{(nge+2)sin[2(nge+1)a]

+(ngc+1)sin[2(ngc+2)al} Y0101, T,)

_)nRC+S 1

+ -
( sina sin(2a)

{(ngc+2)sin[2(nge +1a]

_(nRC+1)Sin[2(nRC+2)a]}YOI]O(?I’?Z) ) (16)

where Ny, =2/[(ngc+1)(ngc+2)w]'/? is the normali-

zation constant.
The evaluation of matrix elements of C

Cro=t-172 = Pop, (D) C(a,0,)| @y, (2)),  (17)

analytically requires some algebra, details of which are
given in [6]. For large A this expression for the effective

-12.0 T T T T T T T T T T T

FIG. 3. Effective charge for !P¢ states. Results of numerical
diagonalization of (9) are shown as continuous curves. Crosses
give maximum eigenvalue as given by the approximate analyti-
cal expression in (22).

charge simplifies further:
Cigmin 12 == H{Zly—3+I(4A+10]-1} ,  (8)

where y=0.57721 is Euler’s constant. With this
effective charge, we have potential wells for each of the A
values as displayed in Fig. 2.

C. P°states

In P° states, the two individual angular momenta [/,
and /, are equal. The wave function in this case is (for
M =0)

0
-0.2 -
2
5
-0.4 |
-0.6 | 1 1 ! 1
0 2 4 6 8 10
VR
FIG. 4. Potential wells U(R)=(A+3/2)A+5/2)/

2R*+C,p=(—1),4/R, with A=4, 8, 12, 16, 20, 24, and 28 and
Z =2 for 'Pe.
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P 1 L (=P y1o(€2)
S+1+n
=1[1+(—1) K)o n(Q) - (19)

For singlet states, ngc is odd, and for triplet states, it is
even. Upon diagonalizing the effective charge operator
C(a,6,,) in a A subspace, eigenvalues for ! P¢ states are as
shown in Table II. The plot of the eigenvalues vs the
quantum number Q as a continuous curve is given in Fig.
3. The maximum Q value is }(A—4). The most attrac-
tive eigenvalue that we are interested in has the highest
ngc- In 'P°states, this means ngc=(A—2)/2, 1, =1,=1.
The wave function has a simple form

d>kch(Q) {(ngc+3)sin[2(nge+ 1))

=N S S
MrE sin?(2at)
—(nge+1)sin[2(nge+3)al}

X Y1110(T1T,)

where

NMRC:2/[(nRC+1)(nRC+3)7T]”2. 1)
The effective charge
Cro=t—ara= (Prn, (D)|C(a,01))| Py, (2))
(22)

can again be evaluated and an approximate analytical ex-
pression derived [6]. This effective charge can be
simplified further as

Cromin—s1/s==—"+{Z[y —2+In(41+10)]
+(Z—1)+0.15] . (23)

Using these effective charges, we get the potential wells
for each A as shown in Fig. 4.

D. Coupled potential wells

In order to get more accurate results, we need to con-
sider the coupling between different A. As observed be-
fore, in each A subspace only the lowest potential wells
seem to play a dominant role. Therefore, we will only
keep the lowest eigenvalue for each A. However, we now
also calculate the off-diagonal matrix elements between
different A:

Cuv =(<I>MRC(Q)|C(a,G,z)ICD)L,nI,(C(Q)) . (24)

For any A,,,, we can diagonalize the matrix given by (17)
and (24) by retaining A values from 1 to A,,, for !P°
states and from 4 to A, for 'P° states at each R value.
From the corresponding eigenvalues at each R, we con-
struct the potential wells Uy(R) as shown in Fig. 5 for
'P° and Fig. 6 for 'P¢ states. If we choose A, =121 we
need to diagonalize numerically 61X 61 matrix elements
in the 'P° case and 30X 30 in the 'P° case.
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FIG. 5. Potential curves for 'P° by diagonalizing the matrix
given by (17) and (24) with A=1,3,5,7,9, 11, and 13 and Z =2.

To solve for the eigenvalues of doubly excited states,
the eigenvectors obtained above at each R provide a basis
Py (R; Q) for expansion of the full wave function in (2a):

WY(R,Q)=3 Fy(R)Yy(R;Q) . (25)
N
Inserting this into the Schrodinger equation (2a) leads to

coupled differential equations for F(R), or equivalently
for G(R)=R*/?’F(R). Multiplying by ¥ (R;Q) and in-

0

-0.2 b E
—
~
s

z
jaw]

-0.4 -

-0.6 1 1 L 1

0 2 4 6 8 10

FIG. 6. Potential curves for !P¢ by diagonalizing the matrix
given by (22) and (24) with A=4, 8, 12, 16, 20, 24, and 28 and
Z=2.
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TABLE III. Eigenvalues (in a.u.) calculated by Eq. (30) for H™ !P° states, where A, = 121.

Eigenvalue
HK, TR Present Other [Ref.] Ref. [15] Ref. [16] Ref. [12] Expt. [Ref.]
»(0,0)9 —0.487 68
20,1)F  —0.12608 —0.12601 [11] —0.12605 —0.12604  —0.128 13 [19]
3(1,0)5 —0.11928 —0.12424 [11] —0.12440 —0.124 328
51, —0.05702 —0.06165 [14] —0.06272 —0.06272 —006271  —0.06258 [20]
4(2,0); —0.05163 —0.058 34 [13] —0.05857 —0.05857 —0.05857
A2,1)F —0.03282 —0.03678 [11] —0.037 15 —0.03718 —0.03713 —0.037 14 [20]
5(3,0)4 —0.02798 —0.03423 [13] —0.03429 —0.03429
s(3,1)F —0.02067 —0.02452 [11] —0.02452 —0.024 52 [20]
s(4,0)5 —0.01652 —0.02258 [10] —0.022 63
f(4,1)  —001174 —0.01752 [11] —0.01736 —0.01733 [20]
tegrating over £, we get Each of the potential wells Uy(R) converges to the dou-
Ll a2 4Gy, ble }ilonizatio_n llimiilas before in 1the ;:Ease ((;i(’) ;S states. fl"lor
-2 ) each potential well, we can solve Eq. numerically.
% 2 | dR 2OV RByy+2- 50" <¢N ¢N> We use the fifth-order Runge Kutta method to solve this
equation. The eigenvalues are given in Table III for H™
+ <¢ . >GN’ R) and in Table IV for He for !P° whereas Table V provides
dR dR? similar results for LP¢ states. The 'P? states can be loose-

+Upn(R)Gy(R)=EGyN(R) .  (26)
The equation can be written as [7]
2
diz+2E I—2UR)+W(R) |G(R)= @7)
where
_ A C
Q(R)—<\I/N 2R2+7{ ¢N> (28)
and
a2
WRY=2(y | o ) g+ (e [z o) - 29

The first approximation ignores all the couplings be-
tween different channels to get a set of uncoupled
differential equations:

d2

—g7 T2ET2UNR)

G(R)=0 . (30)

ly described as the NsNp and (N — 1)sNp configuration.
Similarly 'P¢ states can be loosely described as the
(N —1)pNp configuration but more suitably with pair
quantum numbers [7] as indicated in the tables.

Plots of the eigenvectors 3, are also of interest to
display their distribution in a and 6,,. Figures 7 and 8
show such plots as a function of @, with 0,, held fixed at
m, for 'S and 'P° states, respectively. Our earlier paper
[1] on 'S had not provided such plots. The values of R
chosen for these displays are approximately near the
minima of the wells, that is, near where F(R) has most of
its amplitude. Note the concentration of the lowest S
eigenvectors near a =1 /4. The 'P° states have, however,
a node at this point enforced by symmetry [8]. Figure 9
is a similar study of 'S eigenvectors but now as a function
of 6,, with a held fixed at w/4. This shows that the
lowest eigenvector is maximally concentrated near
O, =m

Now we discuss the effects of d /dR and d?/dR? cou-
plings. The matrix W(R ), which appears in (27), arises
from the R dependence of ¥. Because the two matrices U
and W usually do not commute, they cannot be diagonal-

TABLE IV. Eigenvalues (in a.u.) calculated by Eq. (30) for He !P° states, where A, = 121.

Eigenvalue
SK DR Present Other [Ref.] Ref. [16] Expt. [Ref.]
,(0,0)8 —2.13987 —2.12160 [10]
,(0,1)5 —0.679 64 —0.692 80 [17] —0.693 13 —0.69298 [21]
3(1,0)5 —0.587 62 —0.59707 [17] —0.59707
(L DT —0.31172 —0.33760 [10] —0.33563 —0.33392 [22]
4(2,0)5 —0.277 34 —0.27070 [10] —0.28595
J2,0)F —0.17775 —0.19556 [11] —0.194 54 —0.194 4 [23]
5(3,0)4 —0.161 40 —0.168 30 [10] —0.178 82
s(3, 1) —0.11440 —0.12799 [11] —0.12643 —0.1261 [23]
6(4,0)5 —0.10477 —0.11155 [10] —0.11917
o4, 1) —0.079 30 —0.08924 [11] —0.088 60 —0.0881 [23]
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TABLE V. Eigenvalues (in a.u.) calculated by Eq. (30) for He and H™ 'P¢ states, where Ap,, = 120.

He H™
n(K,T)# Present Ref. [16] Ref. [14] Present Ref. [12] Ref. [16]
3(0,1), —0.58398 —0.05625 —0.123 69
JH1,1)5 —0.27790 —0.27899 —0.05497 —0.05600
5(2,1)4 —0.16421 —0.16552 —0.03142 —0.03305 —0.03132
6(3,1)5 —0.10776 —0.10993 —0.01937 —0.02182
(4,1)g —0.075 67
3(5,1)7 —0.05822
o(6,1)5 —0.04061
2 1 T T T
(b)
L
1.5 0.3 R=1.0 l
-0.5
1
}o 1.3
0.5
-2
0
2.7
0.5 + — . -3.5 - —
0 0.3 0.5 0.8 1.1 13 1.6 0 0.3 0.5 0.8 1.1 1.3 1.6
04 o
6 T T 2 T —T— T
(c) R=20.0 (d)
| R=20.0
4 0 =n 1.5 1 4
12 0 =m
12
2 i
T 1
> 0 | 05 T W
2 r B
0 i
.4 E
05 | J
'6 ~ it .
0 0.3 0.5 0.8 1.1 13 1.6 -1 -
0 0.3 0.5 0.8 1.1 1.3 1.6
o
o

FIG. 7. Eigenvector distributions ¥y (in arb. units) vs a for 1S states, A=12 and 6,,=m: (a) the lowest eigenvector, (b) the second
lowest eigenvector, (c) the second highest eigenvector, and (d) the highest eigenvector. The value of R (in a.u.) is indicated.
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1.5

1

0.5

S50

-0.5

1

1.5

0 0.3 0.5 0.8 1.1 1.3 1.6
o

FIG. 8. Eigenvector distributions ¥ (in arb. units) vs a for !P° states, A=13 and 6,,=m: (a) the lowest eigenvector, (b) the second
lowest eigenvector, (c) the second highest eigenvector, and (d) the highest eigenvector.

ized simultaneously. But in our case the R dependence
comes wholly from the coeflicients in
Py =3 an(R )d>MRC(Q). This property makes the prob-
lem much simpler, because (¢yl¥y)=8yy, and
(¢Ynyldy/dR ) =0, these brackets involving integration
over (. The W(R) term in the Schrodinger equation
gives a positive contribution to the energy. Therefore,
when we include this term in the Schrodinger equation
we will get an upper bound of the energy. In our case
W(R ) can be expressed as

— d? d d
K(R )—% aNA(R);'R—zaN:A(R)‘f‘Z%(ZN}LHGN%E .

(31

As in the Born-Oppenheimer approximation, if we
neglect the off-diagonal term of W, the Schrédinger equa-

tion becomes

d2
dR?

+W(R)+2[E—U(R)] (G(R)=0. (32)

Modifying the Runge-Kutta algorithm, and solving Eq.
(32) numerically we get the eigenvalues shown in Table
VI for He and H™ in !P° states and in Table VII in 'P¢
states. :

III. RESULTS AND DISCUSSION

Tables I and II give the diagonalization results for the
effective charge operator in a A manifold. Table III gives
the eigenvalues for H™, and Table IV for He in 1po and
Table V for !P¢, as calculated from (30) with individual
potential wells. Tables VI and VII give the improved re-
sults from (32) including coupling between wells; these
are upper bounds on the energies of the 'P states. Simi-
larly, by coupling A=1,3,5,...,121, /,=1, [,=0, and
S=1, we get the eigenvalues for 3P’ states, and upon cou-
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TABLE VI. Eigenvalues (in a.u.) calculated by Eq. (32) for
He and H™ !P° states, where A,,,,=121 and d /dR and d?/dR?
terms are included.

TABLE VII. Eigenvalues (in a.u.) calculated by Eq. (32) for
He and H™ !P° states, where A, =120 and d /dR and d/dR?
terms are included.

Eigenvalue
SK T He H™
,(0,0)9 —2.11552 —0.48620
,(0,1)F —0.64131 —0.124 46
5(1,0)5 —0.55077 —0.11799
(LD —0.284 63 —0.05592
2,0)5 —0.25345 —0.050 68
J2,0)F —0.162 62 —0.03180
5(3,0)5 —0.147 61 —0.027 10
S(3,1)5 —0.098 43 —0.019 87
(4,0)5 —0.097 53 —0.01553
o4, 1) —0.07499 —0.01082
1.7 T T
R=1.0 (a)

> -171 [

Eigenvalue

JK DA He H™
3(0,1)y —0.57902 —0.12331
(1L, 1)5 —0.27259 —0.054 89
5(2,1)4 —0.15997 —0.03067
o(3,1)5 —0.104 86 —0.108 73
(4,1)¢ —0.07392 —0.01222
8(5,1)7 —0.056 65

o(6,1)g —0.039 89

27 1

1.3 1

=27 T

-1.67

-1.683

-1.697

-1.723 1

-1.737

-1.75

FIG. 9. Eigenvector distributions ¥, (in arb. units) vs 6,, for 'S states, A=12 and a=7/4: (a) the lowest eigenvector, (b) the
second lowest eigenvector, (c) the second highest eigenvector, and (d) the highest eigenvector.
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TABLE VIII. Eigenvalues (in a.u.) calculated by Eq. (30) for He and H™ *P° states, where A, = 121.

He H™
JK DR Present Other [Ref.] Ref. [16] Present Other [Ref.] Ref. [16]
,(0,099 —2.15607 —0.487 87
(1,005 —0.77875  —0.78196 [9] —0.14271
4(0,1)5 —0.57371  —0.58281 [9] —0.11912  —0.12425 [14]
3(2,0)5F —0.36050  —0.35 [15] —0.35038 —0.06712  —0.06828 [13]
AL1)5 —0.265 46 —0.27948 —0.05147  —0.0553 [12]
3,00 —0.204 73 —0.20008 —0.03839  —0.03959 [12] —0.03936
s(2,1)5 —0.15275 —0.16514  —0.02784
5(4,0)5 —0.02438 —0.02568 [18] —0.02568

TABLE IX. Eigenvalues (in a.u.) calculated by Eq. (30) for He and H™ P¢ states, where A,,,, = 120.

He H™
JK TR Present Ref. [11] Ref. [16] Present Ref. [18] Ref. [16]
(0, 1) —0.709 27 —0.71519 —0.12415
5L, D)5 —0.340 83 —0.33609 —0.059 50 —0.063 76 —0.06276
A2,1)F —0.196 28 —0.194 44 —0.034 59 —0.03723 —0.037225
s(3,1)5 —0.126 71 —0.126 39 —0.02242 —0.024 58 —0.024 575
4,1 —0.08794 —0.014 68 —0.01738
A5,1)F —0.063 94 —0.009 85
4(6,1)F —0.047 82
o7, 1)e —0.034 54

pling A=2,6,10,...,118, S=1, [,=I,=1, and
npc=(A—2)/2, we get the eigenvalues for *P° states.
Table VIII gives the eigenvalues for He and H™ in P°
states and Table IX in 3P Our P° results compare
favorably with other theoretical calculations in Refs.
[9-18] and experimental results in Refs. [19-23]. We
also compare our P¢ results with Ho’s [16] latest results.
Our results are accurate to the second digit and may be
attributed to our only retaining the dominant potential
well in each A manifold. The main advantage of our
method is that it is simple and physically clear. Because
we have analytical expressions for most of our matrix ele-
ments, our calculations are simple and fast, whereas the
other results we compare with need large-scale numerical
calculations. We can, therefore, easily extend to very-

high-lying doubly excited states, although we do not re-
port the results here because there are no other data to
compare with. This method can also be extended to
higher L states, with the only added difficulty that analyt-
ical expressions for matrix elements are more complicat-
ed. Another direction of improvement would be to in-
clude more potential wells in each A manifold to yield
more accurate eigenvalues.
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