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Electron-pair analysis for doubly excited ridge states. II. L = 1
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We study doubly excited ridge states using hyperspherical coordinates. Viewing the two electrons as a
pair, as we did for 'S states in a previous paper [Phys. Rev. A 46, 6933 (19921], here we extend to the
L = 1 states. By diagonalizing the potential energy within manifolds of fixed grand angular momentum,
we get simple, even analytical, expressions for the effective charge. Upper bounds for the energies of the
L = 1 states are derived through the Runge-Kutta numerical procedure.

PACS number(s): 31.50.+w, 31.10.+z

I. INTRODUCTION

This paper reports the results for doubly excited 'P',
P', 'P', and P' resonant states in H and He. This

work is an extension of our previous work [I] in which
we only considered 'S states and had also neglected major
radial-derivative coupling terms.

Experimental and theoretical work has shown that
doubly excited states fall broadly into two classes [2,3],
distinguished by the nature of their excitations. The two
electrons may have either comparable or disparate excita-
tion. Correspondingly, the states have been named as
"ridge" and "valley, " respectively. Our previous paper
has dealt with symmetrical ridge states of L =0. In such
states the two electrons are equivalent in their excitation
relative to the residual "grandparental ion" [4]. In this
paper we deal with similar I.=1 states. As before, we
continue to use hyperspherical coordinates which are
defined as R = (r

&
+ rz )'~ and a =tan '(rz /r, ). In this

coordinate system, R measures the size and
A=(a, 8„$„8z,gz) denotes the orientation of the elec-
trons in the six-dimensional configuration space of the
system. In these coordinates, the system's potential can
be written as

1

2

&'+ —" «a,
R

+ + (R i %(R,Q))

=ER'"e(R,n) . (2a)

The squared grand angular momentum operator A in
these variables is given by

-2 d
A = —[sina cosa]

dA
2 d

sin icos a
dc'

g2 g2
+ +

cos a sin a
(2b)

A @ I I LM(Q)=l((k+4)4 I I LM(Q) (3a)

A, =l&+12+2nzc 0, 1,2, . . . ,

+nsc I ) IzLM ( 0 ) —C [Pnncl ) lzLM( 0 )

(3b)

where I, and 12 are the squared orbital angular momen-
tum operators [2] for the two electrons.

The eigenvalues and eigenstates of A are

C(a, 8,z)
V(r r )=

R R
Z

coscx

Z
sine

I) + lz —L+S+n~c

Xttln«I, I,LM(Q)] (3c)

+ 1

[ I —sin(2a )cos8,z]'

where 8&z=cos '(r, rz) and cos8,z=cos8, cos8z
+sin8, sin8zcos(P, —Pz). The potential energy C/R de-

pends explicitly on 0&2. It then seems natural to choose
I9,2 as one angular coordinate as we did before for 'S.
However, we prefer to use (8„$&,8z, gz) as angular coor-
dinates because of other advantages when LAO. In Sec.
II we will give details of the calculations and discuss the
results briefly in Sec. III.

II. CALCULATIONAL PROCEDURE

if l, &lz
1

2
C=

if I, =l2,1

1i . 12
I I LM(A)=N„ I I (cos 'a)(sin 'ct)

X Yi I LM(rl, rz)

XzFI( nltc, n~—c+l, +lz

+2, lz+ —,';sinzct),

Yl I LM(r&, rz)= g (l&izLM litm&, lzmz)
1 2

mi)m2

(3d)

(3e)

The two-electron Schrodinger equation in hyperspheri-
cal coordinates is and

X Y, (r, )Y, (r, ), (3f)
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11+12+I
NnRC1112

l2! (2niic+ 212+ 1)!(nzc+I, )!

(2I2+ 1)! (ni, c+ l2 )!(2niic+2l, + 1)!

2(l, + l2+ 2ni, c+2)(n~c + I, +12+1)!

nzc
(3g)

Here F is the familiar coupled spherical harmonic which
includes a Clebsch-Gordan coei5cient, 2F, is a hyper-
geometric function which, for the integer values of the ra-
dial correlation quantum number nzc of interest, is pro-
portional to a Jacobi polynomial, and X„11 is a nor-

RC 1 2

malization constant.
In the previous paper we restricted ourselves to the

L =0 case where the above equations simplify dramati-
cally. When i.= 1, we have two cases: if l, &lz with

Ili —l2I =1, then A, (=I&+12+2nzc) and parity are odd,
whereas if I, = l2, 1, ( = I, + I2+ 2n~c ) and parity are
even. In the next three subsections, we will discuss even-
and odd-parity states separately.

—f f dQC(a, H, ~)4„

sin 2ada U(a)&b„ i i 4, , 5, , , 5, , ,0 4 RC 1 2 RC1112 1111 1212

+ f f d0 W(a, H, ~)@„ i i 4, , (9)

We have dropped the indices S, ~, L, and M because
these values are already fixed.

Only the second term in (9) involves the coupling of
different spherical harmonics. We briefly outline how to
calculate this coupling. Expanding W(a, Hi2) in the form

A. P'states

In P' states, the two individual angular momenta I&

and I2 are not equal and 71»0 does not simplify as in the
1 2

L =0 case. The wave function in this case is

tan o,
Pk(cosHi~),

k=0
O~a~-7T

4

[1—sin(2a)cosH, ~] cot e
Pk(cosH, 2),sina

(10)

+( ) itp i, i, io(11)] (4)

(g &—
4 2

with S=O for singlet states and S=1 for triplet states.
The matrix elements in each A, subspace are

define 4 [k, I„lz,I', , I z ] as

2 [k, I i, l2, I', , I ~ ]

( Yi I lol Pk(cosH12) Yi, i 'io
1 2 1 2

It is useful to divide the charge operator into

C(a, Hi2) = U(a)+ W(a, Hi2),

with

U(a) =- z
cosa sana

(6)

(IillC"III'i &(I2IIC "Illa &

I, I2 L
X I/ I/

where

(I;IIC "Illa' & =( —) '~(2I;+1)(2IJ+1)

I, k I

0 0 0 (12)

W(a, Hi2) = [1—sin(2a)cosH i&]

Then

(o o o ) being a 3-j symbol and I
',

,
', k] a 6-j symbol.

Then, with standard expressions for these symbols [5], we
get

g I

(gi —Ii )!(gi—k)!(gi —I'( )!

k, li, l~, l i, l2 ]= —)
' ' ' 'Q(2li + 1)(2lq+ 1)(2l i + 1)(212+1)

I /2
(2g, —2l, )!(2g,—2k )!(2g,—2l', )!

X
(2g, + 1)!

I /2
(2g2 —

2I2 )!(2g2—2k )!(2g2—21 q )!

(2gz+ 1)!
g t

B(X),
(g, —I, )!(g,—k )!(g2—I,')!

(13)



48 ELECTRON-PAIR AN ALYSIS FOR DOUB LY. . . . II. 3569

TABLE I. igenvalues of effective ce ective charge operator Cz for 'P'

0 1

r z& or P'states of He with X~1

2

r z or P' ' 1.

1

3
5
7
9

11

—5.350 11
—4.624 53
—4.339 24
—4.169 30
—4.05000
—3.957 92

—6.924 50
—5.806 63
—5.345 84
—5.079 98
—4.901 39

—7.559 65
—6.266 37
—5.71090
—5.386 90

—8.311 88
—6.871 70
—6.224 12

—8.707 76
—7.192 48 —9.210 80

X(X+1)(X—2k —1)(X—2k
(2l I

—1)2l 2, ( 1, + 1)(2l' —1)2l' (21' +i+1)

where g, = (l, + l' +k )/2 andg2=(l2+l2+k /2.2 2 /2. The last term in (13) is

~(X)=( —)x

2 /2. in is given by
1/2

(14)

(15)

if X=k + l& +l ] l = I
l +l '+ l'= l 1 l2 = l
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'
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(2l', +1)(2l'+2 2 ',—,, +1)( l, +3)(2l, —1)2l, (2l, +1

if X=k+l(+l ), l =l-2=l& —1 and I' =l'
ries interchan ed

e

l' =l +1 'ndl'=l' 1
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TABLE II. Eiigenvalues of effective char eive c arge operator C&0 for 'P' s

0 1

or states of He with A, ~24.

2

12
16
20
24

—6.084 98
—5.170 68
—4.818 08
—4.615 89
—4.477 98
—4.374 41

—7.325 64
—5.997 67
—5.467 40
—5.168 78
—4.971 64

—8.158 96
—6.618 24
—5.963 46
—5.591 52

—8.158 96
—7.104 98
—6.373 59

—9.291 45
—7.517 86 —9.712 56

(Q)=N
RC AnRC (n

cosa sin(2a) 1 ac+2)sm[2(n11c+ 1)a]

RC

+ nRc+ 1)sin[2(nRc+2)a] I Y1010 1 2)

1

sina sin(2a)

nRC+ 1)sin[2(nRc+2)a] I Y0110 1~ 2

I

(16)

C

C) g (q, )/2
= (C q„(A) C(a, 0 ) ~Ca, ,2 @q„(Q)), (17)

analyticall rey equires some algebra d

[ ]. or arge A, this expression f thor e effective

-12.0

where X& =2=2/[(n Rc+1)(nRc+2)1r ' is

zation constant.

is the normali-

The evaluation of mat
'

a rix eiements of

charge simplifies further:

C, , = —4
XQ=(2.—1)/2 Iz[ Y +1 (4~+n 10)]—1] (18)

where y =0.577 21
effective charge h

is Euler's constant. With th is

ye in Fig. 2.
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(19)

For singlet states n zc is odd, and for triplet states, it is
even. Upon dia onalizin

'
g

'
g the effective charge operator

a, 0,2) in a A, subspace, eigenvalues for 'P' ts ates are as
e eigenvalues vs theshown in Table II. The plot of the ei

quantum number ~b ~ as a continuous curve is given in Fig.
4

— . e most attrac-3. The maximum Q value is —'(A, —4). Th
tive eigenvalue that we are interested in h th h' has e ig est

n P states, this means n =(A.—2)I2, I, = 2=
The wave function has a simple form

(Q)=N&„' nI (nzc+ 3)sin[2(nzc + 1)a]

X Yiiio(r„r2),

(nzc—+ 1)sin[2(nzc+ 3)a] ]

(20)

-1 . 66
0

where

=2/[(n~ c+ 1)(n~c+ 3)~]' (21)

FIIG. ~. Potential curves for 'P' by dia onalizin
0

y an 4) with A, =1, 3, 5, 7, 9, 11, and 13 and Z=2

The effective charge

(22)

can again be evaluated and an approximate analytical ex-
pression derived [6]. This effective char e can

4
Cig —(i 4)y4 —=

I Z [1 2+ iii(4A, + 10

the ei env
To solve for the eigenvalues of doubl exou y excited states,
e eigenvectors obtained above at ea h R deac provide a basis

g&(R;0) for expansion of the f 11 fu wave unction in (2a):

4'(R, 0)=g F~(R )Q~(R; 0) .
N

(25)

Inserting this mto the Schrodinger equation (2a) leads to
coupled differential equations for F(R)or, or equivalently
or )=R F(R). Multiplying by 1t&(R;fl) and in-

+ (Z —1)+0.15 j . (23)

Using these effective char es w
f hA,or eac as shown in Fig. 4.

arges, we get the potential wells

D. Coupled potential wells

In order to et m
sider the

g ore accurate results we ne d t
coupling between different A, . As ob

ee o con-

fore, in each X subs a
s o served be-

su space only the lowest potential wells

—0. 2

(24)

diagonahze the matrix given by (17)
and 24 by retaining X values from 1 to A, for '

rom t e corresponding eigenvalues at each R, we con-

need to diagonalize numerically 61 X 61 matrix clem
in the P'case.

—0. 6

FIG. 6. Potential curves for 'P' b d'
y iagonalizing the matrix

given by (22) and (24) with k=4, 8 12 16
Z=2.

, 20, 24, and 28 and
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TABLE III. Eigenvalues (in a.u. ) calculated by Eq. (30) for H 'P' states, where A, ,„=121.

„(z,T)„" Present Other [Ref.]
Eigenvalue

Ref. [15] Ref. [16] Ref. [12] Expt. [Ref.]

,(o,o)',

,(0,'1),
3(1,0)2
3(1,1)3+

4(2, 0)
g(2, 1)4+

,(3,'0);
s(3, 1)s+

6(4 0)s
6(4, 1)6+

—0.487 68
—0.126 08
—0.11928
—0.057 02
—0.051 63
—0.032 82
—0.027 98
—0.020 67
—0.016 52
—0.011 74

—0.12601 [11]—0.12424 [11]—0.061 65 [14]—0.05834 [13]—0.03678 [11]—0.03423 [13]—0.02452 [11]—0.022 58 [10]—0.01752 [11]

—0.126 05
—0.124 40
—0.062 72
—0.058 57
—0.037 15

—0.062 72
—0.058 57
—0.037 18
—0.034 29
—0.024 52
—0.022 63
—0.017 36

—0.12604
—0.124 328
—0.062 71
—0.058 57
—0.037 13
—0.034 29

—0.12813 [19]

—0.062 58 [20]

—0.037 14 [20]

—0.024 52 [20]

—0.017 33 [20]

tegrating over 0, we get

d' dG&' d
z Gn (R %@~ +2 g~ g~.)2 dR2 dR dR

d2
+ ~ ~ G~R

dR

+2E I 2U(R )+—8'(R ) G(R ) =0 .
dR

where

(27)

and

U(R (=('(I~
z

+—((~) (28)

( PN' d(( PN) d(( (4N' ~ QN) (29)

The first approximation ignores all the couplings be-
tween different channels to get a set of uncoupled
differential equations:

d2
+2E —2U~(R) G(R)=0 .

dR
(30)

+ U~(R )G~(R ) =EG~(R) . (26)

The equation can be written as [7]

Each of the potential wells Uz(R) converges to the dou-
ble ionization limit as before in the case of 'S states. For
each potential well, we can solve Eq. (30) numerically.
We use the fifth-order Runge Kutta method to solve this
equation. The eigenvalues are given in Table III for H
and in Table IV for He for 'P' whereas Table V provides
similar results for 'P' states. The 'P' states can be loose-
ly described as the NsNp and (N —1)sNp configuration.
Similarly 'P ' states can be loosely described as the
(N —1)pNp configuration but more suitably with pair
quantum numbers [7] as indicated in the tables.

Plots of the eigenvectors 1t(z are also of interest to
display their distribution in a and 0,2. Figures 7 and 8
show such plots as a function of a, with 0&z held fixed at
m, for 'S and 'P' states, respectively. Our earlier paper
[1] on 'S had not provided such plots. The values of R
chosen for these displays are approximately near the
minima of the wells, that is, near where F(R) has most of
its amplitude. Note the concentration of the lowest 'S
eigenvectors near u =m. /4. The 'P' states have, however,
a node at this point enforced by symmetry [8]. Figure 9
is a similar study of 'S eigenvectors but now as a function
of 8&2, with a held fixed at n/4 This sh.ows that the
lowest eigenvector is maximally concentrated near
0,2=~.

Now we discuss the effects of d/dR and d /dR cou-
plings. The matrix W(R ), which appears in (27), arises
from the R dependence of P. Because the two matrices U
and 8'usually do not commute, they cannot be diagonal-

TABLE IV. Eigenvalues (in a.u. ) calculated by Eq. (30) for He 'P' states, where k,„=121.

„(x,T)~

,(o,o)',

2(0, 1)~+

3( 1. , 0)~
3(1, 1)3+

4(2,0);
4(2, 1)4
,(3,o);
s(3, 1)s+

6(4,o)
6(4, 1)6+

Present

—2.139 87
—0.679 64
—0.587 62
—0.311 72
—0.277 34
—0.177 75
—0.161 40
—0.11440
—0.104 77
—0.079 30

Eigenvalue
Other [Ref.]

—2.121 60 [10]—0.692 80 [17]—0.59707 [17]—0.337 60 [10]—0.270 70 [10]—0.19556 [ll]—0.168 30 [10]—0.12799 [11]—0.11155 [10]—0.08924 [11]

Ref. [16]

—0.693 13
—0.597 07
—0.335 63
—0.285 95
—0.194 54
—0.178 82
—0.126 43
—0.119 17
—0.088 60

Expt. [Ref.]

—0.69298 [21]

—0.33392 [22]

—0.1944 [23]

—0.1261 [23]

—0.088 1 [23]
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TABLE V. Eigenvalues (in a.u. ) calculated by Eq. (30) for He and H 'P' states, where A, „=120.

H
Ref. [12]

He
Ref. [16]n(x, T)' Ref. [16]Ref. [14]

—0.056 25

PresentPresent

—0.123 69
—0.054 97
—0.031 42
—0.019 37

(0, 1)
4(1, 1)3
~(2, 1)4
6(3, 1)s
7(4, 1)6

,(5, 1);
9(6, 1)8

—0.583 98
—0.277 90
—0.164 21
—0.107 76
—0.075 67
—0.058 22
—0.040 61

—0.056 00
—0.033 05

—0.278 99
—0.165 52
—0.10993

—0.031 32
—0.021 82

0.3 R=1.0
1,5

-0.5

-1.3

-2.7

-3.5-0.5
0.80.3 0.5 1.3 1.60.3 0.5 0.8 1.3 1.6

R=20.0
R=20.0

1.50
12 0

12

0 0.5

-0.5

1.61.30.80.50.3
0.80.3 0.5 1.3 1.6

FICs. 7. Eigenvector distributions P~ (in arb. units) vs a for 'S states, A, = 12 and 0,2=m: (a) the lowest eigenvector, (b) the second
lowest eigenvector, (c) the second highest eigenvector, and (d) the highest eigenvector. The value of R (in a.u. ) is indicated.
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1.5

0.5

CO Q

-0.5

0.3 0.5 0.8 1.3 1.6
-1.5

0.3 0.8 1.3 1.6

4.3

R=20.0

e ~
12

(c)

2.7

Q

-0.7

-2.3

0.3 0.5 0.8 1.3 1.6
0.3 0.5 0.8 1.3 1.6

FIG. 8. Eigenvector distributions g~ (in arb. units) vs a for 'P' states, A, = 13 and 0,2=~. (a) the lowest eigenvector, (b) the second
lowest eigenvector, (c) the second highest eigenvector, and (d) the highest eigenvector.

ized simultaneously. But in our case the R dependence
comes wholly from the coefficients in
f~=gqa~q(R)@q„(Q). This property makes the prob-

lem much simpler, because ( g& ~ p&, ) =$&&,, and
(gz if~/dR ) =0, these brackets involving integration
over Q. The W(R ) term in the Schrodinger equation
gives a positive contribution to the energy. Therefore,
when we include this term in the Schrodinger equation
we will get an upper bound of the energy. In our case
W(R ) can be expressed as

tion becomes

G + W(R)+2[E —U(R)] G(R )=0 .
dR

(32)

III. RESULTS AND DISCUSSION

Modifying the Runge-Kutta algorithm, and solving Eq.
(32) numerically we get the eigenvalues shown in Table
VI for He and H in 'P' states and in Table VII in 'P'
states.

a(2 d dW(R ) =g a&~(R) a~ &(R)+2 g a&& g&,&

(31)

As in the Born-Oppenheimer approximation, if we
neglect the of-diagonal term of F, the Schrodinger equa-

Tables I and II give the diagonalization results for the
effective charge operator in a A, manifold. Table III gives
the eigenvalues for H, and Table IV for He in 'P', and
Table V for 'P', as calculated from (30) with individual
potential wells. Tables VI and VII give the improved re-
sults from (32) including coupling between wells; these
are upper bounds on the energies of the 'P states. Simi-
larly, by coupling A, =1,3, 5, . . . , 121, I, =1, i&=0, and
S= 1, we get the eigenvalues for P' states, and upon cou-
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TABLE VI. Eigenvalues (in a.u. ) calculated by Eq. (32) for
He and H 'P' states, where A, ,„=121and d/dR and d /dR
terms are included.

TABLE VII. Eigenvalues (in a.u. ) calculated by Eq. (32) for
He and H 'P' states, where A, ,„=120and d/dR and d /dR
terms are included.

EigenvalueEigenvalue
„(z,T)„' He H„(z,T)' He H

3(o, 1 )2

4(1, 1)3
s(2, 1)4
&(3, 1)s
p(4, 1)6

,(5, 1),
9(6, 1)8

—0.579 02
—0.272 59
—0.15997
—0.104 86
—0.073 92
—0.056 65
—0.039 89

—0.123 31
—0.054 89
—0.030 67
—0.108 73
—0.012 22

2(0,0)1
,(0, 1)2+

3(1 0)2
3(1,1)3
4(2, 0)3
4(2, 1)4+

,(3,'0);
s(3, 1)s+

6(4 0)s
6(4, 1)6+

—2.115 52
—0.641 31
—0.550 77
—0.284 63
—0.253 45
—0.162 62
—0.147 61
—0.098 43
—0.097 53
—0.074 99

—0.486 20
—0.124 46
—0.11799
—0.055 92
—0.050 68
—0.031 80
—0.027 10
—0.019 87
—0.015 53
—0.010 82

1.7

(aj R=1.0
R=1.0

2.7
1.6

1.31.5

01,4

-1.31.3
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FIG. 9. Eigenvector distributions g~ (in arb. units) vs H, z for 'S states, A, =12 and a=a. /4: (a) the lowest eigenvector, (b) the
second lowest eigenvector, (c) the second highest eigenvector, and (d) the highest eigenvector.
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TABLE VIII. Eigenvalues (in a.u. ) calculated by Eq. (30) for He and H 'P' states, where A, ,„=121.

„(z,T)' Present
He

Other [Ref.] Ref. [16] Present
H

Other [Ref.] Ref. [16]

z(0, 0)&

,(1,0)~+

,(0, 1);
3(2,0)3+.(1,'1);
4(3,0)g+

5(2, 1)4
5(4,0)5+

—2.15607
—0.778 75
—0.573 71
—0.360 50
—0.265 46
—0.204 73
—0.152 75

—0.78196 [9]—0.58281 [9]—0.35 [15] —0.350 38
—0.279 48
—0.200 08
—0.165 14

—0.487 87
—0.142 71
—0.119 12
—0.067 12
—0.051 47
—0.038 39
—0.027 84
—0.024 38

—0.12425 [14]—0.06828 [13]—0.0553 [12]—0.039 59 [12] —0.039 36

—0.025 68 [18) —0.025 68

TABLE IX. Eigenvalues (in a.u. ) calculated by Eq. (30) for He and H P'states, where A, „=120.

„(rc,T)~~

,(0, 1)~+

3(1, 1)3+

4(2, 1)4+.

g(3, 1)5+

6(4, 1)6

,(5, 1)7+

,(6, 1)8+

,(7,'1),

Present

—0.709 27
—0.340 83
—0.19628
—0.126 71
—0.087 94
—0.063 94
—0.047 82
—0.034 54

He
Ref. [11]
—0.715 19

Ref. [16]

—0.336 09
—0.19444
—0.126 39

Present

—0.124 15
—0.059 50
—0.034 59
—0.022 42
—0.014 68
—0.009 85

H
Ref. [18]

—0.063 76
—0.037 23
—0.024 58
—0.017 38

Ref. [16]

—0.062 76
—0.037 225
—0.024 575

pling A, =2,6, 10, . . . , 118, S=1, I& =12 =1, and

nzc =(k —2)/2, we get the eigenvalues for P' states.
Table VIII gives the eigenvalues for He and H in I"
states and Table IX in I". Our I" results compare
favorably with other theoretical calculations in Refs.
[9—18] and experimental results in Refs. [19—23]. We
also compare our P' results with Ho's [16] latest results.
Our results are accurate to the second digit and may be
attributed to our only retaining the dominant potential
well in each k manifold. The main advantage of our
method is that it is simple and physically clear. Because
we have analytical expressions for most of our matrix ele-
ments, our calculations are simple and fast, whereas the
other results we compare with need large-scale numerical
calculations. We can, therefore, easily extend to very-

high-lying doubly excited states, although we do not re-
port the results here because there are no other data to
compare with. This method can also be extended to
higher L, states, with the only added difhculty that analyt-
ical expressions for matrix elements are more complicat-
ed. Another direction of improvement would be to in-
clude more potential wells in each A, manifold to yield
more accurate eigenvalues.
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