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Two electrons in an external oscillator potential: Particular analytic solutions
of a Coulomb correlation problem
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The problem of the Schrodinger equation for two electrons (interacting with Coulomb potentials) in

an external harmonic-oscillator potential is revisited and shown to be solvable analytically for a particu-
lar, denumerably infinite set of oscillator frequencies. Solutions are given for ground and excited states
in the singlet and triplet spin configurations.

PACS number(s): 31.20.Di, 03.65.Ge, 31.20.Tz, 36.90.+f

I. INTRODUCTION

There are few one-electron problems in quantum
mechanics which can be solved analytically, for example
the hydrogen atom or the harmonic oscillator, and even
fewer many-body problems such as particles interacting
with harmonic-oscillator potentials. We are going to
draw attention to the fact that there is a system with
genuine Coulomb correlations which is exactly solvable:
two electrons in an external harmonic-oscillator poten-
tial. By "exactly solvable" we mean that the problem of
a six-dimensional partial differential equation will be re-
duced to finding the real roots of a polynomial. Howev-
er, the exact simple solution discussed here exists only for
a certain infinite set of discrete oscillator frequencies.
The solution comprises ground and excited states. More-
over, an approximate closed-form solution will be dis-
cussed which provides accurate results for small oscilla-
tor frequencies.

Former work on this problem comprises the analytical
solution for the ground state of one particular oscillator
frequency [1], solutions with an interparticle potential
which necessarily has a linear term [2], perturbation
theoretical treatments [3], and several numerical calcula-
tions [4—6]. We want to mention that the solution
presented in [1]agrees with the simplest of our solutions.

There are many of applications for this system. The
one considered here is to study the increasing importance
of correlations with decreasing density in a finite system.
This can be accomplished by turning down the oscillator
frequency so that the wave function spreads out more
and more. A similar study of the correlation effects has
been done by Bryant [7] for a two-dimensional square
well with infinitely high barriers solving the Schrodinger
equation numerically. In a forthcoming paper [8] we
studied the Wigner crystallization into a paired phase
with two electrons per lattice site. In this case the exter-
nal oscillator potential is provided by the compensating
homogeneous background sphere. The ideas of the
present paper can also be applied to the two-dimensional
case, where a homogeneous magnetic field can be taken
into account without additional complications [9]. This
leads us directly to the analytical solution of the two-
electron quantum dot. An application of quite another

kind is the test of the approximations and numerical al-
gorithms for the ¹ lectron Coulomb correlation prob-
lem in an arbitrary external potential.

II. FACTORIZATION

r=l2 I] (2)

R= —,'(r, +r2), (3)

in which the Hamiltonian decouples:

q2+ ] ~2r2+ ) q2 +~2R2 —II1
(4)

Because H is independent of spin, the total wave function
can be factorized as follows:

g(1,2) =y(r)g(R)y(s„sz ) .

The Pauli principle demands that if y is symmetric
against particle exchange (triplet state) then y must be
antisymmetric [p( —r)= —y(r)], and if y is antisym-
metric (singlet state) then we have p( r)=p(r—) In ei-.
ther case there is no constraint on g'(R) because R is sym-
metric in itself. Thus the Pauli principle is reduced to
picking out solutions of definite parity and combining
them with the appropriate spin part.

It follows from (4) that the Schrodinger equation
Hg=EP separates into

To be self-contained, we first review the separation
(see, e.g., [4]) of the Schrodinger equation into five equa-
tions which can be solved readily, and one radial
Schrodinger equation of the interparticle coordinate
which will be discussed in Sec. III. The Hamiltonian of
the system in question reads*

H = ——'V +—'cd r ——'V +—'cd r + 1
2 & T~ ~ r 2 r

1 2

where r, and r2 are the position operators of the two par-
ticles. Atomic units 6=m =e=1 are used throughout.
Now we introduce the difference vector and the center of
mass as new variables:
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where m, =—,'o) and c'= —,'e., and

[ —
—,
' VR+ —,'coRR ]g(R)=v1'g'(R), (7)

and the approximate ground-state wave function is

1/4

In any case, the approximate eigenvalues are
(6)

= Vo+ co, [rn + —,
' ], m =0, 1, . . . , (16a)

where coR=2co and g'=2g. To establish a full analogy to
well-known problems, we defined new oscillator frequen-
cies and energies for either problem and the total energy
is E=E+g. The normalization condition for g can be
split into fdray(r)~ =1 and fdR(g(R)~ =1. The solu-

tion of the three-dimensional oscillator problem for the
center of mass (7) is well known and needs no further
consideration. Now we turn to the relative motion of
both electrons. Here we introduce spherical coordinates
which separate the modulus r from the angular coordi-
nates r =r/r, giving rise to the ansatz

where Y& are the spherical harmonics, and u(r) is deter-
mined by the radial Schrodinger equation

1 d 1 2 q 1 1 l(1+1) 1

2dr 2 ' 2r 2 r
+—corr +——+ u(r)=e'u(r) .

(9)

Because of Y& ( —r)=( —1)'Yi (r), we see that all eigen-
solutions satisfy the Pauli principle and that solutions
corresponding to even (odd) I belong to the singlet (trip-
let) state.

uo(r)=
—(1/2)m (r —r )e 0

7

with Vo and co, depending on l. It turns out that (16a) is
the better, the smaller co, is (see Sec. IV). For large co, the
electron density is high and the independent-particle pic-
ture (electron-electron interaction neglected) should ap-

ply, which gives

E' =co,[2m+ —', ], m =0, 1, . . . . (16b)

B. Exact solution

Introducing reduced variables into (9),
p=Qco, r, c,"=2m, '/co„and splitting off the asymptotic
solution for r ~~:

u(p)=e "" t(p), (17)

The curves for the ground state in both limiting cases are
shown in Fig. 1. Obviously the independent-particle pic-
ture fails completely in describing the relative motion of
the electrons for low densities or co,.

III. SOLUTION OF THE RADIAL
SCHRODINGER EQUATION

A. Approximate solution

Equation (9) defines an effective potential

V~= —'cur +——+1 1 l(1+1) 1
e 2 r 2 2

which can be expanded around its minimum position ro
in a Taylor series:

V,q= Vo+ ,'co, (r ro) +——
where ro is the solution of

0.5
~

—
r

t

0. /1

]

]
0. :3

]

t

0. 1

I I I I I I I I I I

1=0

1 l(1+1)
ro ro

2 r r
(12)

3 ~r
V =—

2 2
(14)

coe 3/ 3co~ . (15)

and Vo and co, are given by Vo = V,ff( ro ) and
tl

co, = V,s(ro ). ro can be viewed as the classical distance of
the electrons in the ground state. For I =0 we find a sim-
ple solution in closed form:

—(2 2) —1/3

2/3

0.0- j I I .i

0 100 200 300 400 500

FIG. 1. Exact solutions (crosses) for l =0 and n (15, which
lie in the chosen c' and co, ranges. Some solutions are supple-
mented by two numbers describing the order of the correspond-
ing polynomial n and its number of zeros N, . The full line is the
result for the ground state in the Taylor-expansion approxima-
tion, and the dashed line refers to the independent-particle pic-
ture (electron-electron interaction is neglected).
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leaves us with

p t" 2p—t'+ (s"—1)p—

A power-series expansion

1
p —1(1+1) t =0 . (18)

CO~

t(p) p Xa p
v=o

(19)

where m = l + 1 (the irregular solution m = —1 is
dropped) transforms (18) into a recurrence relation for
the coefBcients a:

ao&0,
1

2(l+1)+co,
1 1a, = . a, +[2(l+v) —1 —e"]a, 2 . for v~2 .

r

(20a)

(20b)

(20c)

a =F(l, v, E",co„)ao . (21)

Now we assume that the series of a terminates at a cer-
tain v=n:

Now we are looking for the condition that defines the
discrete eigenvalue spectrum. Unfortunately, this is not
straightforward as for the harmonic-oscillator or the hy-
drogen problems, because (20) is a three-step recurrence
relation. In our problem, termination of the power series,
which guarantees normalization, can be reached in the
following way. Using (20) we can determine a, for arbi-
trary v:

I

longs to the reduced energy given by (24).
Finally, we want to mention that additional informa-

tion about the function E'(co, ) can be obtained by applica-
tion of the Hellman-Feynman theorem to Eq. (9), giving

=co,Idr[u(r)] r
8co~

This can be calculated exactly for those co, for which
analytical solutions have been found.

. . . ,a„(%0, a„=0, a„+i—0, . . . ,

so that the order of the polynomial t(p) is n +l.
To reach this situation we must guarantee that a„=0

and a„+,=0. The first condition is fulfilled if

C. Results

To make things more clear, we first consider some spe-
cial cases. For n =2 and arbitrary 1, (24) provides the re-
duced energies

E(l, n, s",co, ) =0,
and for the second we rewrite (20c) as

1

(n +1)(n+2l+2)

(22)
c.
"=2l+5

and from (20a) —(20c), (21), and (24) follows

a„+[2(l+n+1)—1 —e"]a„
COf

1 1 1

2(2l + 3 ) 2(l + 1) co,

(23) which has the zero

2 ~
7 (27)

and find that the bracket in (23) must vanish:

E"=2(l+n)+1 . (24)

1

4(l+ 1)
(28a)

Formulas (22) and (24) are two equations for E" and co,
which must be fulfilled simultaneously and which define
the energy spectrum. Unfortunately, we cannot find the
energy spectrum for a given oscillator frequency co,
straightforwardly. Equation (24) allows us to calculate
the reduced energies c" for a given n and l. On the other
hand, insertion of (24) into (22) provides an equation for

Thus the energies for n =2 and arbitrary l are

~r „2l+5 1

2 8(1+1) i 4
(28b)

The corresponding radial wave functions u (r) read (apart
from a normalization factor)

E(l, n, 2( l +n ) + 1,co, ) =0 . (25)
((+ i)& —r /8((+ i)

2(I + 1)
(28c)

Thus (25) determines which oscillator frequency co, be- For n =3 and arbitrary l, the solutions are
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1

4(41+5)
2l+7

8(4l+ 5)
((+ i)e —r Is(4!+5)

2

2(l + 1) 4(l + 1)(4l +5)

(29a)

(29b)

(29c)

Let us now consider the case l=0 and arbitrary n. In
this case n is the order of the polynomial t(p). The corre-
sponding F 's up to n =11 are easily calculated, giving
rise to the solutions in Table I. (The result up to n =5
can be obtained in closed form. ) We want to stress that
solutions found in this way are not necessarily ground

states. To which step of the excitation a solution belongs
depends on the number of nodes of the polynomial t(p)
for p) 0. Generally, we find that for a given n, the num-
ber of real positive roots of the equation F(ro, )=0 is
X =int(n /2), and that among the N„eigensolutions for
t(p) that with the smallest co, has zero nodes (ground
state), that with the second largest co„has one node
(first-excited state), etc.

Some more solutions for l=0 are shown in Fig. 1. A
practical way for finding the solution for a given cu, and l
is to calculate the solutions for some ~, in the range of in-
terest and to interpolate between the energy values.
However, Fig. 1 and Table I demonstrate that for the
most interesting case of small co, the Taylor expansion
discussed in Sec. III A often might be good enough. An

TABLE I. Energies for l=0 and n ~11. N„ is the number of real positive nodes of t(p) [and of
u (r)], e'r is from the Taylor expansion for the ground state as described in Sec. III A, and e;'„, includes
the improvement added in Sec. III C.

N„
C CT

(%)

20

0.6250

0.1750

0.5915

0.1715

5.36

1.97

0.6250

0.1750

0 (fitted)

—0.023

54.7386
5.26137

0.0822
0.8553

0.0814
0.8062

1.02
5.74

0.0822
0.8553

0.026
0 (fitted)

115.299
24.7010

0.0477
0.2227

0.0474
0.2166

0.63
2.73

0.0477
0.2228

0.049
—0.045

208.803
64.8131
6.38432

0.0311
0.1003
1.0181

0.0310
0.0986
0.9528

0.43
1.63
6.41

0.0311
0.1003
1.0181

0.055
0.005
0 (fitted)

342.366
132.638
28.9962

0.0219
0.0565
0.2587

0.0218
0.0559
0.2495

0.31
1.11
3.56

0.0219
0.0565
0.2588

0.054
0.041

—0.062

523.102
235.301
74.1774
7.41903

0.0162
0.0361
0.1146
1.1457

0.0162
0.0358
0.1119
1.0655

0.24
0.80
2.35
7.00

0.0162
0.0361
0.1146
1.1457

0.050
0.058

—0.019
0 (fitted)

10

758.124
379.925
148.942
33.0088

1054.54
573.625
260.427

83.0152
8.39091

0.0125
0.0250
0.0638
0.2878

0.0100
0.0183
0.0403
0.1265
1.2514

0.0125
0.0249
0.0627
0.2755

0.0099
0.0182
0.0398
0.1227
1.1577

0.19
0.61
1.69
4.28

0.15
0.48
1.29
3.01
7.48

0.0125
0.0250
0.0638
0.2879

0.0100
0.0183
0.0403
0.1265
1.2513

0.045
0.064
0.022

—0.045

0.041
0.064
0.047

—0.004
0 (fitted)

1419.47
823.515
415.764
164.445
36.8097

0.0081
0.0140
0.0277
0.0699
0.3124

0.0081
0.0139
0.0274
0.0683
0.2971

0.12
0.39
1.02
2.27
4.89

0.0081
0.0140
0.0276
0.0699
0.3123

0.037
0.062
0.060
0.036
0.035
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gro+u(r/ro) for 1=0 n=2, 10,30
4

r +n(r/r„) for 1=0 n=2, 10,30

1 — /

/

2
r/r G
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r./). ,
1.5

FIG. 2. Radial part u (r) of the internal wave function g(r)
for the ground states to l =0 and n =2 (full), 10 (dashed), and 30
(dotted), which belong to the solutions co, =0.25, 9.4828 X 10
and 3.2429 X 10 '. ro is the classical electron distance as
defined in Sec. III A.

FIG. 3. Electron density n(r) corresponding to the solution
shown in Fig. 2.

improved closed-form expression also for larger co, is ob-
tained by interpolation between the small- co, approxima-
tion (16a) and the large- co, approximation (16b):

C(2N, + ,' )a), +&3(N—„+—,
' )co,

co'~'+
IIlt 25 /3 I' P+ —P

CO~ M~

(30)

where the constant C is fitted to reproduce the exact en-

ergy value for the lowest available I/co„and the ex-
ponent is optimized to provide the lowest rms error for
the remaining exact energy values. In this way we find
for h =0 and X, from 0 to 4 for C the values 0.521245,
0.833802, 1.16225, 1.51111,and 1.91576, and for P the
values 0.24, 0.22, 0.20, 0.19, and 0.19. The results of this
interpolation formula are also shown in Table I. As seen,
the accuracy of this interpolation formula is better than
0.1%. Qf course, any approximation in finding the solu-
tion for a given co, can be avoided by resorting to a nu-
merical solution of the ordinary difFerential equation (9)
by standard methods.

IV. DISCUSSION

In this section we will discuss some physical conse-
quences. Correlations are most appropriately discussed
by means of the pair-correlation function:

G(r)=(g x5(r, —r —r) g)
i &j

= f d r'Ig(r +r', r')I

which is determined by the internal wave function )p(r)
only. In Fig. 2 the radial part u (r) of )p(r) is given for
l =0 and three co, values. We see that the probability for
the electrons to have a certain distance r gathers around
the classical distance ro. The variance of the distribution
is smaller than the smaller co„and consequently the den-
sity, is. This is obvious because for decreasing density the
interaction energy dominates and governs the properties
(as in the Wigner crystal). The same tendency is seen in
the charge density:

n(r)=(g x 5(r —r, ) )))

2

=2fd'r'I q (r') I' g r+—
2

which is a convolution integral between the internal and
center-of-mass motions, and which is drawn in Fig. 3.
For high densities, correlations are unimportant and both
electrons seek independently from each other to minimize
the potential energy in the external potentials. This re-
sults in a density centered at the origin. In this limit a
one-particle picture applies. But with decreasing co, the
importance of correlations increases and the electrons ap-
proach a model where they are distributed on a sphere
shell with diameter ro. Thereby they are always located
at antipodal points. The last fact follows immediately
from the pair-correlation function.
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