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Energy levels and transition amplitudes for alkali-metal atoms in the Brueckner approximation
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We use the 8-spline approximation to solve the Brueckner equation. The Brueckner equation is ob-
tained from Dyson equation for the one-particle propagator by cutting the kernel at second order in the
electron-electron interaction. Thus the Brueckner approximation is a straightforward extension of the
frozen-core Dirac-Fock approximation to include second-order correlations in a self-consistent way. We
also give the explicit expression for the gauge-invariant transition in the Brueckner approximation. The
numerical results of energies and transition amplitudes for alkali-metal atoms in the Brueckner approxi-
mation differ from experimental values by percentages ranging from 0.1% to 2%, increasing from Li to
Cs. These results are comparable to existing accurate theoretical values.

PACS number(s): 32.70.Cs, 31.10.+z, 31.20.Tz

I. INTRODUCTION

For the alkali-metal atoms, the simplest nontrivial ap-
proximation is the (frozen-core) Dirac-Fock (DF) approx-
imation in the relativistic case. This approximation is
historically derived from the variational method to yield
a differential equation for one-particle orbitals, namely,
the DF equation. The DF equation can be solved numer-
ically without difficulty. Energy levels and transition am-
plitudes in the DF approximation differ from experimen-
tal values by 1 —10% for the alkali-metal atoms [1].

One way to improve theoretical values for energy levels
and transition amplitudes is using the many-body pertur-
bation theory (MBPT) to compute the high-order contri-
butions [2]. Blundell, Johnson, and Sapirstein have
shown that the energy levels can be brought to within 1%
error of experimental values for some valence states of
alkali-metal atoms if up to third-order corrections in
MBPT are included [3]. However, the perturbative
corrections to the transition amplitudes are known not to
produce results as good as in the case for energy levels.
Explicit perturbative calculations up to second order, us-
ing the DF orbitals, for some transition amplitudes of Cs
were given in our previous work [4]. In that work one
clearly saw that infinite subsets of high-order contribu-
tions have to be included in order to get good results for
transition amplitudes. As we have mentioned in previous
work [4], one of such infinite subsets of high-order contri-
butions comes from random-phase-approximation-
(RPA)-type contributions [5]. Another comes from using
the Brueckner orbitals [6]. The RPA-type contributions
for alkali-metal atoms have been given in Ref. [7]. In this
paper we use the Brueckner orbitals to compute transi-
tion amplitudes for alkali-metal atoms. In Sec. II we
define the Brueckner approximation using a Green's-

I

II. THE BRUECKNER APPROXIMATION

A. Energies and wave functions

From the field-theoretical approach, the one-particle
orbitals can be obtained by considering a one-particle
propagator [8]. The exact one-particle propagator
satisfies Dyson's equation,

where 6'& ' is the one-particle propagator with the
electron-electron interaction V neglected. The kernel in
Dyson's equation can be expanded order by order in V:

K =X"'+X"'+O(V') . (2)

Dyson's equation can be solved approximately by cutting
the kernel K at some order of V. Accordingly, we will
call the approximation nth order if (n + 1)th and higher-
order terms in kernel K are neglected. The zeroth-order
approximation is clearly the independent-particle approx-
imation. Its corresponding one-particle orbitals are hy-
drogenic. The first-order approximation has been shown
to yield the DF equation [8]. Using the same technique
employed in Ref. [8], one can easily show that under
second-order approximation the wave functions satisfy
the following equation:

(..—H, ) ~v) =X'"~v)+X'"~v), (3)

where Ho is hydrogenic Hamiltonian. c. is the term en-

ergy of orbital ~v). Xi'~~v) and Xi '~v) are given by

function formalism [8]. Numerical results with a discus-
sion are presented in Sec. III. We conclude our work in

Sec. IV.

X"'~v) =g [(a.
~
V~av) ], (4)

1

2X' '~v) = g [(a V~ij ) ][(ij ~
V~av) ]+g [(i.

~
V~ab ) ][(ab ~

V~iv) ],
E~+ C~ 6; CJ. b

. &v+&s ~aa, t,j

1050-2947/93/48(5)/3555(6)/$06. 00 48 3555 1993 The American Physical Society



3556 S. S. LIAW 48

with (m ~
~
V ~st ) and (mn

~
V ~st ) defined as

(m ~V~st)= f 4 (r')V(r —r')%, (r'))dr' %,(r)

and

(mn
~ V~st ) = f+ (r')g„(r")V(r' —r")g, (r')g, (r")dr'dr",

respectively. The brackets [ ] in Eq. (5) denote antisymmetrization, i.e.,

[(mn
~ V~st ) ]= (mn V~st ) —(mn

~
V~ts ) .

(7)

In Eq. (5), the indices a and b stand for hole states; their corresponding sums range over the core. The indices i and j
stand for particle states; their corresponding sums range over all positive states outside the core.

Note that the expectation value of X' ',

(v(X' '[v) = g [(av( V(ij ) ][(ij ( V(av) ]+ g [(iv( V(ab ) ][(ab (
V(iv) ],C~+ Ca Ct E~ abi~v i a b

(9)

is equal to the second-order correlation energy E' ' in
perturbative calculation if ~v) and E are replaced by
their DF counterparts.

We will call the second-order approximation the
Brueckner approximation because the wave functions un-
der this approximation are similar to the Brueckner or-
bitals used by others [9]. Equation (3) will be referred to
the Brueckner equation, and its eigenfunctions and eigen-
values are accordingly called Brueckner wave functions
and Brueckner energies, respectively.

B. Transition amplitudes

The transition amplitude in the hydrogenic approxima-
tion between the initial state ~n ) and the final state ~m )
is given by

u „(co)=f P' ' (r)(iy„)g'„'(r)A "IM(r)dr, (10)

where P' ' and g'„' are hydrogenic wave functions of
states

~
m ) and

~
n ), respectively; y„ is the standard

Dirac matrix and A"„I~ is the amplitude of the photon
field with definite energy co, angular momentum I., and
projection M. Grant has shown that this transition am-
plitude is gauge invariant [10].

Intuitively, one would think the transition amplitude in
the DF approximation is given by the right-hand side of
Eq. (10) with the hydrogenic wave functions replaced by
the DF wave functions. But numerical results show that
this form of transition amplitude is not gauge invariant in
the DF approximation. It was first discovered by Feld-
man and Fulton [11] that the gauge invariance of the
transition amplitude in the DF approximation can be re-
stored by adding a nonlocal contribution to the local
form of Eq. (10). This nonlocal contribution comes natu-
rally from the Green's-function formalism based on quan-
tum electrodynamics. From the perturbative point of
view, the nonlocal contribution is equivalent to the sum
of a subset of all order contributions. Because the equa-
tion satisfied by the transition amplitude with the nonlo-
cal contribution added is similar to a RPA equation [12],
the nonlocal contribution is sometimes called the RPA-
type contribution. Numerical results of the RPA-type

I

contribution show that they not only make transition am-
plitudes in the DF approximation gauge invariant, but
also contribute substantially [7,13]. Thus any subsequent
approximation should take the RPA-type contribution
into consideration.

It is straightforward to extend the results of Feldman
and Fulton [11] to the Brueckner approximation. In ad-
dition to the local form of Eq. (10), we have nonlocal con-
tributions due to the first- and second-order kernels, X'"
and X' '. The transition amplitude between states ~m )
and

~
n ) in the Brueckner approximation can be given as

A „(co)=u „(co)+Z"„'(A)+Z'„'(A),

where u „ is the local contribution given by Eq. (10) with
the hydrogenic wave functions replaced by Brueckner
wave functions. Z~'„'(A) is the RPA-type contribution.
Explicitly, it can be written as [7]

Z"„'(A)=g [(an
~
V~im ) ]A„(co)

1

a, i ~n ~m ~a i

(12)

which would be equivalent to the expression of first-order
perturbative correction [Eq. (2) of Ref. [4] ] if the nonlo-
cal matrix elements A„and A,, on the right-hand side
are replaced by the local ones u„- and u;„respectively.
Let us denote the first-order perturbative correction by
Z"„'(u). Z' „'(A) comes from photon insertions into X' '.
Its explicit expression can be obtained from the expres-
sion of second-order perturbative corrections, Z~ „~(u),
which is given in Eq. (4) of Ref. [4], by replacing all u„
with A„. A diagrammatic representation of Eq. (11) is
given in Ref. [4]. The transition amplitude A „(co) can,
in principle, be obtained by solving the set of self-
consistent algebraic equations for all matrix elements
A„(co). Without the term Z' „~(A), Eq. (11) has exactly
the form as in the DF approximation [13] and can easily
be solved in the B-spline approximation as long as the
Brueckner wave functions and energies have been ob-
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TABLE I. Energy levels in the zeroth-, first-, and second-order approximations. The numbers in
parentheses are percentage errors.

Li

State

2$

2p &/2

2p

Hydro genlike

—1 ~ 125 17
—0.50006
—0.50002

DF
—0.19632(0.9)
—0.128 64(1 ~ 2)
—0.128 64(1.2)

Brueckner

—0.19798(0.1)
—0.13003(0.2)
—0.13003(0.2)

Experiment'

—0.198 14
—0.13024
—0.13023

Na 3$ i/2
3p i/2

3p3/2

—6.733 08
—3.786 21
—3.783 16

—0.182 03(3.6)
—0.10949(1.9)
—0.10942(1.9)

—0.188 38(0.2)
—0.11137(0.2)
—0.11129(0.2)

—0.188 86
—0.11160
—0.11152

4$ ~/2

4p 1/2

4p3/2

—11.325 67
—7.243 78
—7.229 74

—0.147 49(7.5)
—0.095 71(4.6)
—0.095 50(4.6)

—0.160 16(0.4)
—0.10047(0. 1)
—o.1oo ls(o. 1)

—0.159 52
—0.100 35
—0.10009

Rb

Cs

5$1/2
5p 1/2

5p3/2

6$1/2

6p1/2
6p3/2

—27.729 80
—19.221 93
—19.101 28

—43.067 96
—31.542 77
—31.151 62

—0.13929(9.3)
—0.090 82(5.6)
—0.089 99(5.4)

—0.127 37(11.)
—0.085 62(7. 1)
—o.os3 7s(6.5)

—0.155 00(1.0)
—0.096 57(0.4)
—0.095 44(0.3)

—0.14642(1.8)
—0.093 19(0.9)
—0.090 39(0.7)

—0.153 51
—0.096 19
—0.095 11

—0.143 10
—0.092 17
—0.089 64

'Reference [19].

tained from Eq. (3). The transition amplitude of the form
given by Eq. (11) can be proven formally to be gauge in-
variant in the same way as in the case of the DF approxi-
mation [11].

III. NUMERICAL RESULTS AND DISCUSSIONS

Our object is to solve the Brueckner equation, Eq. (3),
and then compute the dipole transition amplitudes, Eq.
(11). Results of energies are given in atomic units. Re-
sults of transition amplitudes are given in their corre-
sponding reduced matrix elements, also in atomic units.

To solve Eq. (3), we use the B-spline approximation
[14] to generate a pseudospectrum of the complete set of
orbitals. Thirty piecewise polynomials of order 7 are
used as bases. First, the DF orbitals with angular
momentum l ~ 6 are used in the right-hand side of Eq. (3)
to get a new set of orbitals. This set of orbitals are then
substituted into the right-hand side of Eq. (3) again. The
process of iteration converges very fast. For the energy
of the lowest valence state for each alkali-metal atom,
taking the energy of the Ss state of Rb, for example, the
results of the first and second iterations differ by 0.4%%uo,

and those of the second and third iterations differ by
0.04%. The use of the results of the second iteration
should be acceptable for the accuracy we need. Notice
that the term X' '~v) depends on the energy of state ~v),
c . We use the energy of the lowest valence state for each
a. value [a=l( —l —1) if j=l —

—,'(l+ —,')] to generate the
pseudospectrum. For example, in Cs we use c.6, to gen-
erate 30 s orbitals, c.6 to get 30p, /2 orbitals, and so on.~ 1/2
This should be an acceptable approximation since the
hole-state energies are present in the denominators of Eq.
(5) and the expectation value of X' ' is several hundred
times smaller than that of X"'.

TABLE II. Second-order correlation energy E' ' for Cs.

State This work Johnson et al. [5) Dzuba et al. [6]

6$ &/2

6p &/2

6p3/2

—0.017 62
—0.006 87
—0.006 16

—0.017 75
—0.006 91
—0.006 18

—0.01601
—0.006 52
—0.005 83

Table I lists the energy of the three lowest valence
states for each alkali-metal atom under zeroth-, first-, and
second-order approximations. Dzuba et al. [6] have also
tried to solve the Brueckner equation for the case of Cs.
Their results for Brueckner energies are in better agree-
ment with experimental values than ours. However, by
comparing the results of the second-order correlation en-

ergy E' ', we see that our results are consistent with the
results of Johnson, Idrees, and Sapirstein [5], while the
results of Dzuba and co-workers [6,15] have a few per-
cent discrepancy (Table II). Because the calculation of
E' ' will result in the accuracy of Brueckner energies and
wave functions, we thus believe their good agreement
with experiment is fortuitous.

The Brueckner wave functions and energies obtained
from Eq. (3) can now be used to compute transition am-
plitudes, Eq. (11). To obtain the gauge-invariant transi-
tion amplitudes, one has to solve the infinite set of cou-
pled algebraic equations of all the matrix elements A„. it
is too complicated to be solved. We therefore first
neglect the term Z' „'(A) on the right-hand side of Eq.
(11). The transition amplitudes under this approximation
can be solved using the method described in Ref. [13].
The second-order contribution is then included by pertur-
bation, namely, by adding the value of Z~„'(u): The
justification is as follows. By comparing perturbative re-
sults of photon insertions to X'" and the RPA-type con-
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tributions, namely, Z"„'(u) and Z"„'(A), respectively
(Table III), we see that these two values are of compara-
ble size for all transitions; either the DF or Brueckner or-
bitals are used. We expect that the nonlocal contribu-
tions Z' „'(A) will be close to the values of their corre-
sponding perturbative results Z' „'(u). Since Z' „'(A) con-
tributes very little to the transition amplitudes [0.02%
Li) —1.4% (Cs)], even if we had introduced 50% error in
Z~ „'(A) by using Z~ „'(u), our final results for transition
amplitudes would have only 0.01% (Li)—0.7% (Cs) error,
which would not deteriorate the accuracy we expect for
the Brueckner approximation. The length and velocity
forms of our final results differ from each other by 0.02%
(Li) —0.2% (Cs). Their average values are listed in
column 8 of Table IV. Transition amplitudes in the
zeroth- and first-order approximations are also listed in
Table IV for comparison.

Our results for transition amplitudes in the Brueckner
approximation differ from experimental values by 0.5%
for the lightest atom (Li) and 1.2% for the largest one
(Cs). Rubidium somehow has a larger error than cesium.
This is not what one would expect since the accuracy of
Brueckner energies for Rb are better than that for Cs
(Table I). Except Rb, the accuracy is consistent with the
accuracy of energy levels, where the percentage error
ranges from 0.1% to 1.8% (see Table I).

The transition amplitudes under the Brueckner ap-
proximation are by no means the most accurate theoreti-
cal results. For Li, Weiss has done an extensive
configuration-interaction calculation [16]. Blundell et al.
have extended MBPT to an all-order calculation [17].

Their results for transition amplitudes are larger than ex-
perimental values by 0.4% and 0.3%, respectively. Blun-
dell, Johnson, and Sapirstein have also reported their all-
order calculation [18] for Cs. Their results are 4.525
(length) and 4.492 (velocity) for transition 65 ~6p, &2, and
6.370 (length) and 6.328 (velocity) for 65~6p3&z. These
results differ from measured values by less than 0.5%.
Nevertheless, the Brueckner approximation offers a sys-
tematic approach to all atoms or ions with a core plus
one electron. It is accurate even for large atoms such as
cesium (2% level of accuracy. ) In addition, with the help
of finite-basis methods, the numerical work is very sim-
ple.

IV. CONCLUSION

From a Green's-function formalism the hydrogenic,
Dirac-Fock, and Brueckner approximations can be ob-
tained systematically by cutting the kernel in Dyson's
equation at zeroth, first, and second order, respectively,
in electron-electron interactions. The transition ampli-
tudes in these approximations can also be given in a
gauge-invariant form. The energies and transition ampli-
tudes in the Dirac-Fock approximation have been corn-
puted previously. In this paper we have used the 8-spline
method to solve for wave functions and energies and to
compute the transition amplitudes in the Brueckner ap-
proximation. Compared with experimental values, ener-
gies have percentage error ranging from 1% to 11% in
the Dirac-Fock approximation and 0.1% to 1.8% in the
Brueckner approximation, increasing from Li to Cs.

TABLE III. Results of Z" '( u ), Z" '(A), and Z' '( u ) using the DF and Brueckner orbitals.

Li

Transition

2S )/2 ~2p 1/2

2s &/2 ~2p3/2

length
velocity
length
velocity

Z'»(u)

—0.012
—0.059
—0.016
—0.083

DF orbitals

Z(»(~)
—0.013
—0.080
—0.020
—0.112

Z"'(u)

0.0006
—0.0004

0.0009
—0.0005

Z"'(u)
—0.012
—0.061
—0.017
—0.087

Brueckner orbitals

Z(»(~)
—0.014
—0.083
—0.020
—0.118

Z"'(u)

0.0007
—0.0004

0.0009
—0.0006

Na 351/2 ~3p1/2

3S i/2 ~3p3/2

length
velocity
length
velocity

—0.038
—0.002
—0.054
—0.003

—0.043
—0.004
—0.061
—0.005

0.0028
0.0075
0.0040
0.0110

—0.041
—0.003
—0.058
—0.003

—0.047
—0.005
—0.066
—0.006

0.0032
0.0082
0.0045
0.0116

4S1/2 ~4p1/2

4S1/2 ~4p 3/2

length
velocity
length
velocity

—0.158
—0.020
—0.222
—0.026

—0.144
—0.029
—0.217
—0.036

0.017
0.031
0.024
0.044

—0.172
—0.025
—0.242
—0.033

—0.166
—0.036
—0.234
—0.048

0.019
0.033
0.026
0.047

Rb 51/2 ~Sp 1/2

SS j/2 ~Sp3/2

length
velocity
length
velocity

—0.224
—0.028
—0.310
—0.030

—0.213
—0.033
—0.297
—0.034

0.027
0.042
0.036
0.060

—0.245
—0.036
—0.340
—0.041

—0.231
—0.043
—0.321
—0.048

0.030
0.044
0.041
0.062

Cs 6S1/2 ~6p 1/2

6S1/2 ~6p 3/2

length
velocity
length
velocity

—0.334
—0.056
—0.453
—0.055

—0.303
—0.062
—0.413
—0.050

0.044
0.062
0.059
0.087

—0.372
—0.071
—0.498
—0.074

—0.334
—0.078
—0.449
—0.076

0.050
0.062
0.066
0.088



48 ENERGY LEVELS AND TRANSITION AMPLITUDES FOR. . . 3559

TABLE IV. Transition amplitudes in zeroth-, first-, and second-order approximations. GI stands for "gauge invariant. "The num-
bers in parentheses are percentage errors.

Li

Transition

2s in ~2p i/2

2s 1 /2 ~2p 3/2

length
velocity
length
velocity

Hydrogenlike

(Local =GI)

1.414

2.000

Local

3.365
3.430
4.759
4.851

DF

GI

3.351
(1.4)
4.739
(1.4)

Local

3.335
3.404
4.717
4.815

GI'

3.321
(0.5)
4.696

(0.5)

Brueckner

Experiment

3 305

4.674b

Na 31/2~3p i/2

3$1/2 3p 3/2

length
velocity
length
velocity

0.943

1.335

3.690
3.651
5.218
5.162

3.647
(3.8)
5.157

(4.2)

3.584
3.536
5.068
4.999

3.540
(0.8)
5.006

(1.2)

3.513

4 947

4$1/2 ~4P 1/2

4$1/2 ~4P 3/2

length
velocity
length
velocity

1.409

4.544
4.429
6.439
6.258

4.400
(7.8)
6.222

(7.8)

4.269
4.122
6.035
5.824

4.120
(1.0)
5.825

(0.9)

4.08'

5 77'

Rb 5$1/2 ~Sp 1 /2

5S1/2 ~Sp3/2

length
velocity
length
velocity

0.800

1.139

4.819
4.639
6.801
6.538

4.606
(12)

6.504
(10)

4.440
4.234
6.260
5.961

4.237
(3.2)
5.$78

(1.4)

4.11

5 90

Cs 6s 1/2 ~6P 1/2

6$1/2 ~6P3/2

length
velocity
length
velocity

0.770

1.101

5.278
5.037
7.426
7.063

4.975
(10)

7.013
(10)

4.761
4.488
6.674
6.268

4.474
(1.1)
6.286

(1.2)

4.52'

6.36'

'The values listed are actually the averages of the length and velocity forms. These two forms differ by less than 0.2%.
Reference [20].

'Reference [21].
dReference [22].
'Reference [23].

Transition amplitudes have percentage error ranging
from 1.4%%uo to 12%%uo in the Dirac-Fock approximation and
0.5% to 1.2% in the Brueckner approximation (rubidium
excluded. ) Roughly speaking, the accuracy has been im-
proved by one order of magnitude from the Dirac-Fock
approximation to the Brueckner approximation. In addi-
tion, the energies and transition amplitudes have the
same level of accuracy in either approximation.

The Brueckner approximation can be applied to all sys-
tems with a nondegenerate core plus one electron. In
particular, one can take the core to be a closed subshell,
such as in the case of boron and aluminum isoelectronic
sequences. The correlation between the valence electron
and the core is known to be much more important than it
is in the case of alkali-metal atoms. The Brueckner ap-
proximation, having taken the second-order correlation
into consideration, will be a much better model than

Dirac-Fock-approximation for these systems. Numerical
work on these systems is currently under study.

One point that needs to be stressed is that the energies
and transition amplitudes in each nth-order approxima-
tion based on the Green's-function formalism are gauge
invariant. Also, corrections to the nth-order approxima-
tion can be calculated by perturbation. In particular, the
corrections to the Brueckner approximation can be ob-
tained by calculating perturbative contributions due to
the third-order kernel. The computation is straightfor-
ward, but a great amount of CPU time is expected.
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