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Bound states in the continuum from supersymmetric quantum mechanics
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Starting from a potential with a continuum of energy eigenstates, we show how the methods
of supersymmetric quantum mechanics can be used to generate families of potentials with bound
states in the continuum (BIG's). We also find the corresponding wave functions. Our method
preserves the spectrum of the original potential except it adds these discrete BIC's at selected
energies. Specifically, we compute and graph potentials which have bound states in the continuum
starting from a null potential representing a free particle and from both the attractive and the
repulsive Coulomb potentials.

PACS number(s): 03.65.Ge, 11.30.Pb

I. INTRODUCTION

In 1929, von Neumann and Wigner [1] realized that it
was possible to construct potentials which have quantum-
mechanical bound states embedded in the classical en-
ergy continuum (BIC's). Further developments by many
authors [2—6] have produced more examples and a bet-
ter understanding of the kind of potential that can have
such bound states, although as yet there is no fully sys-
tematic approach. These authors have also suggested
possible applications to atoms and molecules. Further-
more, these works have shown that such BIC's appear
mainly in certain oscillatory potentials whose envelopes
fall ofF fast enough to lead to normalizable wave functions
but suKciently slowly such that the difFerent maxima are
able to "conspire" to create a captive state. Friedrich
and Wintgen [5] have given the example of two conspir-
ing resonances and also of a hydrogen atom in a uniform
magnetic field. Robnik [6] has shown in a similar way
that a simple separable Hamiltonian can develop bound
states in the continuum. In his examples too, coupled
channels are responsible for the creation of the BIC. Such
a BIC is a very fragile structure a small perturbation
of the potential transforms it into a decaying resonance.
Nevertheless, Capasso et al. [7] have recently reported
direct evidence for BIC's by constructing suitable po-
tentials using semiconductor heterostructures grown by
molecular-beam epitaxy. Finally, it is interesting to note
that BIC's have found their way into a text [8], illustrat-
ing for students the surprising possibility of the existence
of quantum-mechanical bound states in the classical con-
tinuum.

Recently, extensive work has been devoted to generat-
ing isospectral potentials by the methods of supersym-
metric quantum mechanics (SUSYQM) [9—14]. Start-
ing &om the Schrodinger equation for a potential, whose
ground-state wave function is known, this method per-
mits one to generate families of new potentials, which
may look quite difFerent from the original one, but have
exactly the same spectrum [12—14]. These methods are
based on procedures invented by Darboux [15] and gen-
eralized by Crum [16]. In this paper we extend the usual
SUSYQM formalism for obtaining isospectral potentials

and apply it to potentials with a continuum of scatter-
ing states to generate new potentials with bound states
in the continuum. We show that, while the wave func-
tions in the continuum of the original potential are non-
normalizable, the ones generated by SUSYQM are nor-
malizable thus representing a bound state. In particular,
we construct one-parameter and. two-parameter families
of supersymmetric partner potentials with one and two
bound states in the continuum.

In Sec. II, we present the development of the one-
parameter family in SUSYQM to generate potentials
with a single bound state in the continuum. The proce-
dure is valid for any spherically symmetric potential V(r)
which vanishes as r ~ oo. We illustrate our procedure
with two explicit examples: (a) free particle V—:0 on the
half-line and (b) attractive and repulsive Coulomb poten-
tials. In Sec. III, we generalize the SUSYQM method to
the two-parameter family of isospectral potentials and
show that it generates two bound states in the contin-
uum. Section IV contains a summary of our results. The
method can readily be extended to an arbitrary number
of BIC's.

II. THE ONE-PARAMETER
FAMILY OF BIC'S

The radial s-wave Schrodinger equation for the reduced
wave function u(r) (in units where h =2m=1) is

—u" + V(r) u(r) = E u(r),

where we have scaled the energy and radial variables such
that all quantities are dimensionless. A prime denotes
differentiation with respect to r. For any potential that
vanishes at infinity, Eq. (1) has a classical continuum of
positive energy solutions which are clearly not normaliz-
able.

Using the formalism of SUSYQM and the Darboux [15]
procedure for deleting and then reinstating the ground
state uo(r) of a potential V(r), one can generate a fam-

ily of potentials V (r; A) which have the same eigenvalues
as V(r) These isospec. tral potentials are labeled by a
real parameter A. Since uo here is normalizable, the pa-
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V(r; A) = V(r) —2[in(Ip+ A))"

4upuQ 2up

Ip + ~
+

(Ip + W)"

where

Io(r)—: u p (r') dr'.

Let us recall the main steps in obtaining Eq. (2). First,
one writes the Hamiltonian H = —&", + V(r) in factor-
ized form H = AtA, with the operators

d t d
A = —+ W(r), At = — + W(r).

dr dp

The superpotential is given by W(r) = —up/up. The su-
persymmetric partner Hamiltonian is

t
d'

II+ ——AAt = — + V+(r),

where

rameter A can vary in the ranges A ) 0 or A & —1. The
isospectral potential V(r; A) is given in terms of the orig-
inal potential V(r) and the original ground-state wave
function up(r) by [12—14]

Theorem. Let up(r) and uq(r) be any two nonsingu-
lar solutions of the Schrodinger equation for the poten-
tial V (r) corresponding to arbitrarily selected energies Ep
and Eq, respectively. Construct a new potential V(r; A)
as prescribed by Eq. (2). Then, the two functions

and

up(r; W) = up(r)
Q + (4)

ul(r ~) (El EG)ul + up W(up ul) (5)

[where W denotes the Wronskian function W(up, uq) —:
upuz —uqup] are solutions of the Schrodinger equation
for the new potential V(r; A) corresponding to the same
energies Ep and E~.

While the new potential in Eq. (2) and the new
wave functions in Eq. (4) were originally inspired by
SUSYQM, the easiest proof of the above theorem is by di-
rect substitution. One simply computes —u,"+ V(r; A)u,
(i=0,1), with the wave functions u; given in the theo-
rem. After straightforward but tedious algebraic manip-
ulations, one gets E,u, , thus establishing the theorem.
The algebra is considerably simpli6. ed by using the fol-
lowing identity for the Wronskian function of two solu-
tions of the Schrodinger equation:

d
W(up, ug) = (Ep —Eg)upui.

v+(.) = w + w' = v(.) —2
~

—
~

.I

&up)

If the potential V (r) has eigenfunctions u (r) at energies
E, then the SUSY partner potential V+(r) has the same
energy eigenvalues as V(r) with eigenfunctions Au (r),
except that there is no ground state at E = 0 since
Aup(r) = 0. This is the standard procedure for delet-
ing the ground state and obtaining V+(r). To reinsert
the ground state, one asks for the most general superpo-
tential W(r) such that

V+(r) = W'+ W'

and this can be shown to be [17]

d
W(r; A) = W(r) + —ln [Ip(r) + A],

dr

with Ip given in Eq. (3). Thus the entire family of poten-
tials V (r; A) = W2(r; A) —W'(r; A) has the same super-
symmetric partner potential V+(r) obtained by deleting
the ground state.

In all previous work, up was taken to be the nodeless,
normalizable ground-state wave function of the starting
potential V(r). However, for the purposes of this paper,
we can generalize the above equations to the case where
up(r) is any solution of Eq. (1) with arbitrary energy Ep
If up(r) has nodes, this leads to singular superpotentials
and to singularities in the partner potential V+(r). How-
ever, when the original state at Ep is reinserted, the re-
sulting family of potentials V(r; A) is free of singularities
[18]. Our results are best summarized in the following
statement.

In the present work, we take up to be a scattering so-
lution at a positive energy Ep ——k of a potential V(r)
which vanishes at r=oo. Taking up(r = 0) = 0 satisfies
one of the required boundary conditions, but clearly up
oscillates as r ~ oo and has an amplitude which does
not decrease. Consequently, the integral Ip(r) in Eq. (3)
now grows like r at large r and up is now square inte-
grable for A ) 0, while the original wave function up was
not. Negative values of A are no longer allowed. There-
fore, we see that all the potentials V(r; A) have a BIC
with energy Ep. Note from Eq. (4) that up has the
same zeros as the original up. At zeros of up, V(r; A) and
V(r) are equal. All the other oscillatory solutions of the
Schrodinger equation with V (r) get transformed into os-
cillatory solutions to the new Schrodinger equation with
V(r; A) with the same energy. In particular, note that
uq(r; A) remains a non-normalizable scattering solution
of the corresponding Schrodinger equation.

We note that the new potential V(r; A) in Eq. (2) and
the BIC at energy Ep are formed using the corresponding
wave function up(r). Any other state, say uz(r), is trans-
formed into a solution of the new Schrodinger equation
by the operation given in Eq. (4) which involves both up

and uq. Column 3 of Table I gives a convenient overview
of the relationship of the potentials V and V and the
solutions of the corresponding Schrodinger equations.

We now give two examples to explicitly illustrate how
one applies the above procedure to obtain potentials pos-
sessing one BIC.

A. Free particle on the half-line

Here we consider the case V = 0, the free particle on
the half-line 0 & r & oo. We choose up ——sinkr, the
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TABLE I. The one-parameter fainily of potentials V(r; A) (central column) depends on the
parameter A and has one bound state in the continuum at energy Eo with wave function uo. Note
that all other new states represented by u& at E& are not normalizable. The right column shows the

two-parameter family of potentials V(r; A, Ai), depending on the parameters A and Ai, which now
has two normalizable states uo and ui in the continuum. Both families of potentials are generated
from the non-normalizable scattering states up and ui of the original potential V(r). Using the
theorem described in the text, in the first step one produces a BIC at energy Eo and in the second
step a BIC at energy Ei. While it is customary to denote the lower-energy state by Eo, this is not
necessary for our approach; Eo can also be above E&.

Potentials

V = V —2[In(Ip + A)]" V = V —2[In(II + Ai)]"

tCp

Wave functions

ui ——(Ei —Ep)ui + upirV(up, ui)
1

thy the
~1+~1

up = (Ep —EI)up + uIIrV(ui, up)

spherical wave solution, corresponding to energy Ep ——

k ) 0, which vanishes at r = 0. The integral Ip given in
Eq. (3) becomes

Ip = [2kr —sin(2kr)]/(4k).

We observe that Ip ~ r/2 as r —i oo.
The potential family V, defined in Eq. (2), becoines

B. Coulomb potential

Starting from the potential V = Z/r, for either posi-
tive or negative values of Z, one can easily construct the
one-parameter family of isospectral potentials possess-
ing a normalizable positive energy wave function. Here
the unbound, reduced l = 0 wave function satisfies the

with

32 k2 sin kr 8 k sin(2kr)
Dp I I I I2 I I I I

I

I I I I
I

I I I I

(a)-

Dp(r; A) = 2kr —sin(2kr) + 4kA.

V has a BIC at energy Ep ——k with wave function

up(A) = 4k sin kr/Dp (IO)

1
/

0

For special values of the parameters k and A, the po-
tential V and its BIC wave functions are shown in Figs.
1(a) and 1(b). The original null potential has now be-
come an oscillatory potential which asymptotically has a
1/r envelope. The new wave function at Ep ——k also
has an additional damping factor of 1/r which makes it
square integrable. As up appears in the numerator of V,
Eq. (2), every node of up is associated with a node of
V, but not every node of V produces a node of up. The
value of the eigenenergy Ep clearly is above the asymp-
totic value, zero, of the potential. Evidently, the many
oscillations of this potential, none of them able to hold
a bound state, conspire in such a way as to keep the
particle trapped.

The parameter A which appears in the denominator
function Dp(r; A) plays the role of a damping distance; its
magnitude indicates the value of r at which the monoton-
ically growing integral Ip becomes a significant damping
factor, both for the new potential and for the new wave
function. This is illustrated graphically in Figs. 1(a)
and 1(b), which are drawn for very different values of A.
(Note that the wave functions shown in the figures are
not normalized. ) The parameter A must be restricted
to values greater than zero in order to avoid inanities in
V and in the wave functions. In the limit A —+ oo, V
becomes identical to V.

—2.— X = 0.5
k = 1.0

I I I I I I I I I I I I I I
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FIG. 1. Two examples of potentials V(r) (solid) and the
associated BIC wave functions up(r) (dashed) in the one-
parameter family starting from V(r) = 0 for k = 1.0. (a)
is for small A (A = 0.5) and (b) for large A (A = 5.0).
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Schrodinger equation Eq. (1), which can be written in
standard form

gluo+
I

1-2- luo = o
p)

with p = ~Er and 4I = Z/2~E.
For both positive and negative g, the solutions involve

confluent hypergeometric functions which in the asymp-
totic limit approach sine waves phase shifted by a log-
arithmic term. Useful expressions for these solutions in
the regions near and far from the origin are available in
the literature [19,20]. Stillinger and Herrick [2], follow-
ing the method of von Neumann and Wigner [1], have
constructed BIC potentials and wave functions for the
case of the repulsive Coulomb potential. Here we use our
theorem to construct a one-parameter family of isospec-
tral potentials containing a BIC. The proced. ure is the
same for both positive and negative Z, the only diKer-
ence being in the sign of g. The formal expressions for
the BIC potentials and wave functions have been given
above, Eqs. (2) and (4), in terms of uo.

For both the attractive and the repulsive Coulomb po-
tentials, the positive energy solution of Eq. (11) can be
written in the usual form [19, 20, 2] as the real function

tric field for similar reasons. For potentials, such as
V(2:) = —Vo sech (x), the integral Io, Eq. (3), is not
convergent if the starting point is chosen at —oo, and it
gets negative contributions if the starting point is selected
at finite x values. This leads to a vanishing denomina-
tor function in the expressions for some wave functions
which makes them unacceptable.

III. THE TWO-PARAMETER FAMILY OF
POTENTIALS

In Sec. II, we have seen that a straightforward pro-
cedure exists using the SUSY technique for generating
a completely isospectral one-parameter family of poten-
tials and that these potentials have a bound state in
the continuum if we select as a starting point a posi-
tive energy solution of the Schrodinger equation for any
potential V(r). We now show how this procedure can
be extended to construct two-parameter families which
contain two BIC's.

In constructing the new wave functions for the one-
parameter family, Eq. (2), we observe that the denomi-
nator function given in Eq. (4) was all that was needed

uo(p) = Co(q) e '~M(l —ig, 2, 2ip),
2.5 I I I I

I
I I I I I I I I

I

I I

where 0.0

&o(6) = (e " ') Il(I+i6) I

and M(a, tI, z) is Kummer's function. Using tabulated ex-
pressions for the Coulomb wave functions [20] and doing
the integral for Io numerically, we have obtained the BIC
wave functions for representative values of A. The corre-
sponding one-parameter family of potentials obtained by
the SUSY procedure is given in Eq. (2) with Vo ——Z/r.

The results are displayed. in Figs. 2 and 3. Figure
2(a) shows the BIC partner to the attractive Coulomb
potential for A = 1, k = 1, and Z = —2. Figure 2(b) shows
the (unnormalized) wave function of the bound state in
the continuum for this potential at Fo ——k . Figure 3(a)
shows the BIC partner potential to a repulsive Coulomb
potential for A = 1, k = 1, and Z = 6, while Fig. 3(b)
shows the corresponding wave functions. For comparison
the original Coulomb potentials and wave functions are
also shown by dotted curves. It is seen that the potential
which holds a bound state of positive energy shows an
oscillatory behavior about the Coulomb potential Vc, as
is also evident from the form of Eq. (2) for V. Since
the oscillating component vanishes whenever uo vanishes,
we have V = V at each node of uo. Compared to
the original, unnormalizable wave function, the BIC wave
function in both cases shows a damped behavior due to
the denominator function. This is also seen in the figures.

A similar behavior is also expected for other radially
symmetric potentials with a continuous spectrum of posi-
tive eigenvalues. For one-dimensional potentials, the sit-
uation is not so clear-cut. Our method works for the
Morse potential, which is steeply rising on the negative
x axis with correspondingly damped wave functions. It
also works for the case of a particle in a constant elec-
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Z = —2
k = 0.5

= 0.25

—10.0
0

I I I I I I I I I « I I I

I 4 I 4
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I

I I

A, = 0.25

—2
0

I I I I I I I I I I I I I I I I

2 4 6

FIG. 2. (a) The BIC potential (solid) derived from the
attractive Coulomb potential, which is also shown for com-
parison (dotted). Observe how the BIC potential oscillates
around the original Coulomb potential. (b) The correspond-
ing BIC wave function (solid) and, for comparison, the orig-
inal Coulomb wave function (dotted). The damping of the
BIC wave function, which makes it normalizable, is evident.
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V(r; A, AI) = V —2[in(Ig + AI)]"

+4uyu~ 2u~

II + Ag (II + Ai)
(14)

with the solutions of the corresponding Schrodinger equa-
tion

to create the BIC, while the operation in Eq. (5) ensured
that the wave functions for all the other states, there rep-
resented by u~, are a solution to the new potential. Note
again that there is nothing special about the ordering of
the two energy values nor the relative magnitude of Ep
and E~, therefore we can repeat this procedure by apply-
ing the theorem to the wave functions and the potential
of the one-parameter family, but this time we transform
the state at E~ into a BIC. The state at Ep, which al-
ready is a BIC, is transformed in the step of Eq. (5),
suitably modified, to become a solution to the new po-
tential. In this way we obtain the two-parameter family
of potentials

up ——(Eo —EI )up + uI W(uI, up),

1
'll ] 'fly )Ig+ Ag

(16)

and

p dp.

u, (r') dr',

involving the original wave functions only. Making use
of Eq. (5) for uI, we get

The precise relationship of the new potential and its wave
functions, which are now both BIC s, is illustrated in the
last column of Table I.

While the compact form of Eqs. (14)—(16) explicitly
shows the method of construction, it is useful to observe
that the integral Iq can be conveniently recast into a
simpler form which contains integrals of the form

r 2 2uoWII = (El Eo) uy +
0 Ip+A 2

+2(EI —EP) W dr'.
Ip+ A

0

I I I I I I I I I I I I I I

The second term is integrated by parts as

r 2 2uP 2 (, —lV

(I.+A)
W '"'"" = I.+A, ' 2lVW'

(Io+ A)

(20)

0 5 10 j.5 20 We now use Eq. (6) for the derivative of a Wronskian
function of two solutions of the Schrodinger equation to
rewrite the second term and observe that it exactly can-
cels the last term in Eq. (19). We therefore have

I I I I
[

I I I I

I
I I I I

i
I I I I

(b)- -W (r)I ( ) =, , + (E —E.)' I ( )
0 + (21)

0

Here we have made use of the fact that our boundary
conditions imply that W(0) = 0.

As an example, we evaluate the two-parameter poten-
tial

—2
0

Z = 6.0
k = 1,0

1
I I I I I I I I I I I

5 10
I I I I

20

V = V —2 ln (Io+ A) (EI —Eo) II

W'(.)
Io+A )

(22)

FIG. 3. (a) The BIC potential (solid) derived from the
repulsive Coulomb potential, which is also shown for compar-
ison (dotted). Again, the BIC potential oscillates around the
original Coulomb potential. (b) The corresponding BIC wave
function (solid) and, for comparison, the original Coulomb
wave function (dotted). The damping of the BIC wave func-
tion, which makes it normalizable, is evident.

The argument of the logarithm can be rewritten as

(EI —Eo) IpII —W (r) + AAI +A(EI —Ep) I] + A] Ip.

(23)

We happen to have transformed first the state at en-
ergy Ep into a BIG and then, in the second step, the state
at Eq, which introduced the parameters A and Aq. I et us
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a potential V(r) which has a continuum of positive en-

ergy states. The only requirement that V(r) must sat-
isfy in order that it have such a continuum is that it
approaches a constant as r ~ oo. Then the solution of
the Schrodinger equation with the potential V(r) is os-
cillatory at large r, which we can take to be of the form
sin(kr). Therefore the integral Io, Eq. (3), will be of the
form of a constant plus f sin (kr') dr', where ro can
always be found such that for r & ro the solution of
the Schrodinger equation is approximately proportional
to sin(kr). This means that Io ——cq+r/2+sin(kr)/(4k),
where cq is a constant. Therefore, uo, Eq. (4), will vanish
at large r as I/r, making it a normalizable state. Thus
our procedure for constructing a BIC from an initial po-
tential V(r) is actually valid for any spherically symmet-
ric potential which approaches a constant as r ~ oo.
The situation is more complex for one-dimensional po-
tentials as discussed in the text. The SUSY procedure
has in common with the original von Neumann —Wigner

[I] method that it makes the wave functions normaliz-
able by generating a denominator function which grows
with r as r ~ oo. In the case of V = 0, our denom-
inator function, containing Io, is a special case of the
form used by von Neumann and Wigner. We illustrated
the one-parameter method for two interesting and ana-
lytically solvable cases: V(r) = 0, the free particle, and
V(r) = Z/r, the Coulomb potential. The procedure was
readily extended to obtain two-parameter families with
two BIC's at arbitrarily selected energies.
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