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Energy levels of the quartic double well using a phase-integral method
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Approximate energy eigenvalues for the double-well quartic oscillator are calculated using the phase-
integral method of Froman and Froman up to the fifth-order approximation. By means of appropriate
transformations, the integrals appearing in the quantization condition are expressed in terms of integrals
solved in previous papers. Different approximations are discussed. In general, the results are very good.

PACS number{s): 03.65.Sq, 03.65.6e, 02.60.—x

I. INTRODUCTION

Double-well potentials appear often in physics and
have been a subject of permanent interest over the years
from both the classical and the quantum points of view.
For quantum double-well potentials, a great variety of
methods have been implemented to study their eigenval-
ues and other properties (see, e.g. , Ref. [1] and references
therein). Among these quantum double wells, the most
studied [2] is the quartic,

V(z)=v2z +v4z

where U2 &0 and U4 & 0. This is not an easy problem: the
perturbation expansion of the eigenvalues 6'„(v2, v4) in
powers of v4 is divergent [3], and the variational methods
are not devoid of difficulties [4].

An old and well-known approximation able to deal
with the quartic double-well is the JWKB method to first
order [5—7]. This procedure is equivalent to the phase-
integral method of Froman and Froman of first order [8].
But for higher-order approximations, this last method is,
for several reasons [9,10], preferable to the JWKB
method. These reasons are related to the appropriate
handling of the wave-function connection problem and
the lack of flexibility of the higher-order JWKB method
in dealing with cases where approximate solutions of the
Schrodinger equation over the whole range of the in-
dependent variable are unsatisfactory. Lakshmanan,
Karlsson, and Froman [11], for the quartic single well
[Eq. (1.1) with vz & 0 and v~ & 0], were able to evaluate in
terms of elliptic integrals the integrals appearing in the
first four terms of a generalized Bohr-Sommerfeld (GBS)
rule of seventh order deduced from the phase-integral
method, and thereby achieve great numerical precision in
calculating the eigenvalues of this well. Also, recently
Yuste [12] has evaluated in terms of elliptic integrals the
integrals appearing in the GBS rule to ninth order for the
quartic double barrier [Eq. (1.1) with v2 &0 and v& &0]
and for the quartic double well. For this last case, the
rule used only gave the unsplit energy levels, i.e., the en-

ergy levels calculated assuming that the internal barrier
between the two wells is totally opaque. When the bar-
rier is large enough, this assumption is good, and the re-
sults obtained from the GBS rule are excellent, compet-
ing in precision and ease of calculation with the varia-

II. PHASE-INTEGRAL METHOD APPLIED
TO DOUBLE WELLS

In this section we summarize the phase-integral
method of Froman and Froman [8] and present the
quantization condition for double wells given by Froman
et al. [15]. In the phase-integral method of Froman and
Froman, the exact solution of the one-dimensional
Schrodinger equation

with

1A +R (z)/=0,
dz

(2.1)

R (z) = [6—V(z)],2p (2.2)

is written as

tional methods. However, when the barrier is thin or the
energy levels are close to the top of the barrier, the ap-
proximation is no longer valid and the GBS results are
poor.

The purpose of the present work is to express the quar-
tic double-well phase-integral quantification conditions of
Froman and Froman up to fifth order [13—15] in terms of
complete elliptic integrals in order to make these condi-
tions very well adapted for numerical evaluation of the
energy levels of the quartic double well, taking into con-
sideration the splitting and shifting due to the internal
barrier. By means of appropriate transformations all
relevant integrals appearing in these quantization condi-
tions are expressed in terms of integrals already evaluated
in Refs. [11]and [12].

The structure of the paper is as follows. Section II
gives a short presentation of the phase-integral method
and quantization conditions of Froman and Froman for
double wells up to the fifth order. The integrals appear-
ing in this quantization condition for the quartic double
well with energies below the internal barrier peak (sub-
barrier case) are explicitly solved in terms of complete el-
liptic integrals in Sec. III. The same is done in Sec. IV
for energies above the barrier peak (superbarrier case). In
Sec. V we check our results against published values, dis-
cussing their goodness in difFerent cases. In Sec. VI some
concluding remarks are given.
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P(z) =q
' exp +i f q (z)dz

Consequently q (z) must satisfy

q
/

q
'/ +R (z)/q —1=0 .

d2

dz2

Let Q (z) be an approximate solution of (2.4). Then
2 2

3/2( )
d

g 1/2( )+ R (z) —Q (z)
dz Q (z)

will be small compared with unity. Writing q (z) as

q (z) =Q(z)g (z),

g (z) can be expressed as an asymptotic series [8,16]:
N

g(z)= g Y2j,

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

a —o+—,
' arctan[ exp( —)~)]=(n + —,

' )m. ,

n =0, 1,2, . . . ,

where

N
(2j+1)

j=p
N

~= y ~(2&+"
j=o

N
(2j+1)

j=0
with

(2j+1) R (2j+1)d1

2 r.q

(2.13)

(2.14a)

(2.14b)

(2.14c)

where

j=0
=Re —f Y2 dg

1

a
(2.15a)

Yo Zo ~

Y2 —Z2,
1deo

Y =Z ——
4 4 8

with

Zo —1 )

(2.8a)

(2.8b)

(2.9a)

(2j+1) &
~ (2j+1 dr„&

,'i f —Y2dg.
K

The first three terms of o. are

1o( '= —.—arg r —+i—
2 2

~(1)
+ ln

(2.15b)

(2.16a)

Z2 = 26'p,

Z4 8~p
2

(2.9b)

(2.9c)

(1)
o. =—24

1 K

2

~(5)—
2 2880

—3
1

24

(2.16b)

and

g= f'g(z)dz . (2.10)
(3) (1)+—

2 ~ 7T
(2.16c)

The (2jV+ 1)th-order, or ( jV+ 1)-term, approximate
solution of (2.4) is

N N

q(z)= g q"&+"=Q(z) g Y„. (2.1 1)
j=p j=0

Hereafter the simplest and most usual choice of Q (z) that
generates the phase-integral approximation is used:
Q (z)=R (z). Then, from Eq. (2.5), the value of eo is
given by

g
—3/2(Z) g 1/2(Z)

d2

dz2
(2.12)

At this point, some comments about the notation may
be appropriate. In the present paper, the recent notation
of Froman and Froman [10] is used, Q (z) and R (z) being
the functions Q,d(z) and Q(z), respectively, of their pre-
vious papers [8,9,11,13—16].

The quantization condition of (2jV+1)th order for a
symmetric double-well potential obtained by Froman
et aj. [15] reads

~(2j+')=Re — z dg
1

r a
(2.17a)

For energies far from the top of the intermediate barrier,
o can be neglected in the quantization condition (2.13),
but close to the top of the barrier, o. must be included.
The plus sign in Eq. (2.13) corresponds to an eigenfunc-
tion with even parity and the minus sign to one with odd
parity. The contours of integration I and I are closed
paths in the complex z plane encircling the classical turn-
ing points in the manner shown in Figs. 1 and 2 (see also
Ref. [15]). Notice that the sign of the right-hand member
of (2.15a) is opposite to that given in Ref. [15]because we
have chosen the opposite direction for the integration
contour. It should make no difFerence to use I" instead
of I in (2.15a) since the quartic double well is sym-
metric.

The mathematical structure of (2.8) has the general
form Y2„=Z2„+dU2„/dg, and therefore, if I and I
are closed contours, Eqs. (2.15) may be written in an
equivalent and simpler form as
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V(z) (b) (2.17b)
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In t e next two sections we will h hs ow ow to evaluate in
erms of complete elliptic integrals all the integrals ap-

pearing in the quantization condition (2.13) for the sub-
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3
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Theo(~+ )'integrals for the quartic double-well poten-
tial have already been calculated in Ref. 12.
sake of corn leteness wp e eness we quote here the results up to fifth
order. Let us define the function Vc ion
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a= V(A)=w /I +w A (3.4)
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g i/2( )
—eim/4g i/2( ) (3.6a)
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V(z) = u2z +v4z = —V(z) = —u z—Z — V2Z V4Z (3.6c)
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From these definitions, one concludes that

R (z)—:Q (z) = [ 6' —V(z) ]= —Q (z) . (3.7)

I being the integration contour shown in Fig. 2(a). This
integral can be expressed equivalently as

Notice that in terms of barred quantities, the quartic
double-well potential V(z) becomes a quartic double-
barrier potential V(z), since u2) 0 and u4 (0 [see Fig.
1(b)]. Also we define

a' J+"=Re — Z dg
1

J (4.2)

where I, is the open integration contour shown in Fig.
2(a). By the symmetry of the potential, we can write (4.2)
as

Z2j =Z2j(Q~Q)=Z2j(Q), (3.8a)

dg—= Q dz, (3.8b)

where the arrow means that Q(z) is replaced by Q(z),
i.e., Z2j(Q) are the expressions defined by Eqs. (2.9) with
Eo given by Eq. (2.12) in which Q is replaced by Q.
Defining

(2'+1)a(2&+"=—R.e — Z, dg
2 2 r (4.3)

where I is the closed integration contour shown in Fig.
2(a). The integral of (4.3) has already been calculated in
Ref. [12]. The result, in terms of the function V defined
through Eqs. (3.1)—(3.4), is

one obtains (see Appendix A)

Z2.d g= (
—1)j+ 'iZ2 dg, .

and therefore Eq. (2.17b) becomes

«»+')=( —I)&— Z .dgj

=( —1)j—J Z2. (Q)Q dz .

(3.9)

(3.10)

a' "=—'Vj(@,u2, U4 K(k ),E(k ))

Next we have to calculate the K' +" integrals:

K(2j+1) 1 l z2' r 2j
K

(4.4)

(4.5)

where now I is an integration contour that encircles the
imaginary turning points and the Stokes line [see Fig.
2(a)]. To evaluate these integrals we use the change of
variable

But, from Eq. (2.17a), the a' j+"term of the quartic dou-
ble barrier V(z), aD(g+"(6', u2, V4), is given by Z= lz

and define

(4.6)

aD)6)+"(Z, v2, u4) =Re — Z2jdg2
(3.11) Q' (z)—:Q' (iz)=Q' (z) . (4.7)

Therefore, as I = I and the integral of Eq. (3.11) is real
(so that, actually, Re is not needed in this case), one finds,
comparing Eq. (3.11) with Eq. (3.10), that

(2j+1)
( 1 )j (2j+1)(g—

Then

R(z)=Q (z)=Q (iz)= [@—V(iz)]
g2

[@—V(z)],2p (4.8)

=( —I)jaD(2(+ "(—8, —u„—v, ) . (3.12)
where the potential Vassociated with Vis given by

)(' j+' =( —1) V (,v2, u4,'p'K(p )
E( ')

P
(3.13)

where

Explicit expressions for the terms a(D(+ ') are known [12]:
using the function Vj defined by Eqs. (3.1)—(3.4), the
K' J+' term reads

V(z ) = V(lz ) U2z +U4z = U2z +U4z (4.9)

Z2j(z)=Z»(Q —+Q, z~z) =Z2 (Q'~ (iz)), (4.10)

Notice that V(z) is, in terms of z, a quartic single-well
potential because v2 & 0 and v4) 0. With this transfor-
mation, the contour of integration I is transformed into
that termed I in Fig. 2(b). Next we define

and

P (3.14a)

(3.14b)

i.e., Z2 are the expressions defined by Eqs. (2.9), eo being
given by Eq. (2.12), but with Q and z replaced by Q and z,
respectively. Defining

IV. SUPERBARRIER CASE

In the superbarrier case

dg= Q(z )dz,

one obtains (see Appendix B)

Z2 (z)dg=( —1)jiZ2 (z)dj

(4.11)

a'"+"=R.e — Z dg
1

r (4.1)
= ( —I )jiZ2 Q dz (4.12)

and then K' +"can be written in equivalent form as
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TABLE I. Eigenvalues of the double-well quartic oscillator V(z) = —z +0.02z (8 =
2 ) calculated

using the phase-integral method of one, two, and three terms. Quoted values are the results of calcula-
tions shifted so as to make the minimum of the potential zero. In other words, the listed values E„are
de6ned as E„=D„—V;„. The upper (lower) value of each pair of eigenvalues corresponds to oAO
(cr =0). Results obtained by Banerjee and Bhatnagar [6] are given for comparison. In this and the fol-
lowing tables the values are in units of A /2p= 1. When E„&8', that is, when @„&0,the energy level
lies below the top of the intermediate potential barrier, so that in this table all energy levels lie below
the top of the barrier.

No. of terms

1.396 003 493
1.398 900 695

1.393 489 387
1.393 535 083

1.393 541 616
1 ~ 393 352 764

Banerjee and
Bhatnagar

1.393 527 585

Ei 1.396 003 495
1.398 900 697

1.393 489 389
1.393 535 085

1.393 541 618
1.393 527 643

1.393 527 587

f E 4.094 579 173
4.098 402 813

4.092 019 534
4.092 043 891

4.092 028 506
4.092 028 337

4.092 028 113

E3 4.094 579 656
4.098 403 299

4.092 020 030
4.092 044 387

4.092 029 002
4.092 028 832

4.092 028 608

(2j+1)=( 1)j+1 — Z
2 ~ 2J

a

=( —1)j+' —f Z .0 dz2J
a

(4.13)

V. DISCUSSION OF RESULTS

In the preceding sections we have seen that the quanti-
zation condition for the quartic double well is given by

But the expression in large parentheses is, by definition,
the a' +" integral of the single-well quartic potential
V(z ), as(g+"(V2, v4, ( ), whose value (a real quantity) was
obtained by Lakshmanan, Karlsson, and Froman [11].
The result, in terms of the function V, reads

(2j+1)
( 1 )j+1 (2j+1)(go's ~U2~V4

=( —1)j+'V (6', v2, v4, K(k ),E(k )) . (4.14)

Eqs. (2.13)—(2.16), where, for the sub-barrier case, the
term a( j+" is given by Eq. (3.5) and the z( j+" term is
given by Eq. (3.13), and, for the superbarrier case, by Eqs.
(4.4) and (4.14), respectively.

Some results for the energy levels of four different
quartic double wells are listed in Tables I—IV. They are
given in units of A /2)M= 1 and taking as zero the bottom
of the potential, that is, the listed energy is defined as
E =( —V;„,where V;„=—v 2/4v~. The energy of the
top of the internal barrier, W, is then equal to the
difference between the potential maximum V,„=O and
minimum V;„, i.e., W= V,„—V;„=—V;„. Results
are obtained using one, two, or three terms in the quanti-
zation conditions, and either including or neglecting o. in
the calculations. The results are compared with those ob-
tained by Banerjee and Bhatnagar [6] using a nonpertur-
bative method of high accuracy. All the figures of the
eigenenergies taken from this reference must be taken as
exact. On the other hand, notice that the levels Eo and
E& lie close together and that, at some distance from

TABLE II. The same as Table I but now for the double-well oscillator V(z) = —z +0.05z ( JR=5).
The upper (lower) value of each pair of eigenvalues corresponds to o.&0 (o.=0). Notice that all energy
levels lie below the top of the intermediate potential barrier.

No. of terms

Eo 1.364 836 064
1.373 813 656

1 ~ 358 240 507
1.358 625 895

1.358 496 052
1.358 448 198

Banerjee and
Bhatnagar

1.358 422 104

1.366 642 912
1.375 439 241

1.359 972 194
1.360 358 883

1.360 191906
1.360 144 188

1.360 133598

3.755 744 103
3.780 025 943

3.746 810 818
3.750 441 457

3.746 926 820
3.747 717 326

3.746 917081

3.855 390 310
3.886 782 620

3.848 801 283
3.853 572 993

3.848 839 097
3.848 585 280

3.848 838 300
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TABLE III. The same as Table I but now for the double-well oscillator V(z)= —z +0.07z
( W =—). The upper (lower) of each pair of eigenvalues corresponds to cr&0 (o.=0). Notice that only

energy levels with E„(W= —=3.57 lie below the intermediate potential barrier.

No. of terms

IEO 1.333 154 781
1.347 888 175

1.351 885 911
1.367 291 489

3.356 835 777
3.389 316732

3.839 976 781
3.785 338 131

1.322 815 514
1.324 152 994

1.343 150963
1.344 562 268

3.341 944 288
3.301 967 381

3.833 138 199
3.485 417 279

1.323 513 649
1.323 595 043

1.343 413 059
1.343 512 492

3.342 248 186
3.214 441 023

3.833 122 064
3.973 632 973

Banerjee and
Bhatnagar

1.323 374 074

1.343 365 616

3.342 216 720

3.833 129 938
3.833 129 938

these levels, we have the levels E2 and E3, which also lie
close together (except in the neighborhood of and above
the top of the barrier, i.e., for energy levels close to W).
This is indicated in Tables I—III by the use of brackets.
Finally, in Table V we give this splitting of the energy
levels for eigenvalues lying below the maximum of the in-
termediate barrier both with and without considering 0.

in the calculations.
From these tables some interesting conclusions may be

drawn. For the double well with v2= —1 and v4=0. 02
(Table I), results obtained neglecting cr (i.e., taking o =0)
are very good: with the three-term approximation one
obtains (except for the first level) at least seven significant
figures in agreement. The results with o.&0 do not quite
reach this level of agreement, although they are indeed
still good: with three terms one achieves at least five
significant figures of precision. All the eigenvalues are far
from the critical zone, which is close to the top of the in-
termediate potential barrier ( 8'= —", ).

For the double well with u2 = —1 and u4=0. 05 (Table
II), results obtained with o %0 are good (at least five ac-
curate figures with the three-term approximation), in-
cluding values near the critical zone. Results with o.=0

are also good except for energy levels close to the critical
zone. From the other two cases, vz= —1 with v4=0. 07
(Table III) and uz= —1 with u&=0. 15 (Table IV), one
reaches the same conclusion: for levels close to the top of
the intermediate barrier the use of the simple value o.=0
is not good (i.e., cr is not negligible), and results are very
much better using the value of o. obtained from Eqs.
(2.16). One can verify this assertion by comparing the
precision of the values of E2 in Table III, or the values of
Eo and E, in Table IV, when cr is neglected (cr=0) and
when the value of o deduced from Eqs. (2.16) is used
(o.%0). Froman et al. [15] reached the same conclusion
when analyzing a different double well (a harmonic well
with an intermediate Gaussian barrier).

In Table V one can see that the values obtained for the
splitting of the energy levels are excellent. Also one no-
tices that, using the values of cr calculated with Eqs.
(2.16), one obtains, in general, better results than using
o. =0. As expected, this is especially true for levels near
the critical zone: see, for example, the values of ho& for
v4=0. 15 or the values of A&3 for v4=0. 05. As observed
in the discussion of Froman (Ref. [13],p. 92), the energy
splittings are obtained with a greater absolute accuracy

TABLE IV. The same as Table I but now for the double-well oscillator V(z)= —z +0.15z
( W=

3 ). The upper (lower) of each pair of eigenvalues corresponds to o.&0 (0.=0). Notice that only

energy levels with E„&W =
3
= 1.67 lie below the intermediate potential barrier.

No. of terms

1.092 241 166
1.133492 490

1.430 778 772
1.490 548 207

1.058 655 332
1.061 913628

1.421 818 391
1.762 589 357

1.065 780 880
1.041 856 344

1.420 241 606
1.937 765 226

Banerjee and
Bhatnagar

1.062 499 248

1.421 086 891

3.043 422 995
3.011284 522

3.033 869 600
3.030 496 428

3.033 585 921
3.033 516677

3.033 667 277

4.591 591 012
4.572 393 252

4.590 094 588
4.589 447 462

4.589 809 057
4.589 653 663

4.589 838 496
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TABLE' V. Energy splittings in the sub-barrier case,
E I Eo = Ao& and E3 —E2 =—623, calculated with the three-term
{fifth-order) phase-integral approximation, compared with the
values given by Banerjee and Bhatnagar [6] for the double wells
V(z) = —z + U4z considered in Tables I—IV. Notice that for
V(z) = —z +0.15z and o.=0, the eigenvalue E, lies above the
top of the barrier in the approximation considered (see Table
IV).

the quartic double barrier in Ref. [12]. Using these ex-
pressions in the phase-integral quantization condition of
order 2%+ I (%=0,1,2), accurate values have been ob-
tained for the eigenenergies in both the sub-barrier and
superbarrier region, including the intermediate or critical
zone close to the top of the barrier.
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APPENDIX A

Q=cg, c= i, —

and from Eqs. (2.10) and (3.8) one finds

(Al)

In this appendix we prove Eq. (3.9). From the
definitions of Eqs. (3.6) one has that

than the eigenenergies themselves. This phenomenon is
most notable for levels that lie far below the barrier max-
imum.

Finally, one must notice that Eqs. (2.16) were derived
under the assumption that the transition zeros associated
with the barrier lie suKciently far away from all other
transition zeros. If this is not the case, it sometimes hap-
pens (especially if the energy lies far away from the top of
the barrier) that one obtains an energy level more accu-
rately when o. is neglected that when o. is calculated ac-
cording to Eqs. (2.16).

VI. CONCLUDING REMARKS

d2
g

—3/2( ) g
—i /2( )

dz2
(A3)

From (Al) it is easy to see that Fo=c eo Therefo.re, from
Eqs. (2.9), one finds

Z0 = 1=Z0,
(A4)

dg=g dz=cg dz=c dg .

Applying the change Q~g to Eq. (2.12), the quantity eo
is converted to

The integrals appearing in the quantization conditions
of the phase-integral method of Froman and Froman up
to fifth order have been explicitly obtained for the
double-well quartic oscillator. The terms a' +" and

&'~+' appearing in the quantization condition, Eq.
(2.13), are given by Eqs. (3.5) and (3.13), respectively, for
the sub-barrier case, and by Eqs. (4.4) and (4.14), respec-
tively, for the superbarrier case. For both cases the
a' 1+" terms have already been calculated in Ref. [12].
To evaluate the ~' +" terms, we have used an indirect
method. For both cases (sub-barrier and superbarrier),
we have shown that each ~' +" term is proportional to
the a' +" term of an associated quartic oscillator:

+"=c n,'„,+, ". For the sub-barrier case, the quartic
oscillator associated with the quartic double well
V(z)=u2z +u4z (v2 (0 and u4)0) with energy 6' is the
quartic double barrier V(z)= —u2z —uzz with energy—6' and c =( —1)~. For the superbarrier case, the quar-
tic oscillator associated with the quartic double well
V(z)=v2z +v4z (v2 (0 and u4) 0) with energy e is the
quartic single well V(z) = —v2z +u4z with the same en-
ergy 6' and c~ =(—1)J+'. The key point is that the
a' +" terms of the associated oscillator have already
been calculated for the single well in Ref. [11], and for

Using Eqs. (A2) and (A4) and substituting the value of c,
Eq. (Al), one proves that Zz. dg is given by Eq. (3.9).

APPENDIX B

In this appendix we prove Eq. (4.12). Taking into con-
sideration (2.10) and (4.11), one easily finds that

dg=i dg . (B1)

g
—3/2( —

) g
—1/2( —

)
dz2

(B2)

From Eqs. (4.6) and (4.7) one easily finds that Zo= —eo.
Then, from Eqs. (2.9) one has

Z0=1=Z0,

Z2 p+0 Z2

Z = I~2=Z
4 8 0 4

From Eqs. (Bl) and (B3), one deduces Eq. (4.12).

(B3)

Applying the changes Q ~Q and z ~z to Eq. (2.12), the
quantity E'0 is converted to
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