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A relative-state formulation of quantum systems is presented in terms of relative-coordinate states,
relative-number states, and relative-energy states. The relative-coordinate states are used to describe
quantum systems in position and momentum representations. The probability distribution is calculated
in terms of the relative-coordinate states and is shown to be equivalent to the functional definition of the
quantum probability in phase space. It is shown that a quantum-mechanical phase operator can be con-
structed in terms of the relative-number states without the well-known difhculties. The results are com-
pared with those obtained by the Pegg-Barnett phase-operator formalism and the relations to various
other phase-operator methods are also discussed. The energy-measurement and energy-probability dis-
tributions are discussed in terms of the relative-energy states. Furthermore, a relative-state formulation
is developed-in the Liouville space. A phase representation in the Liouville space is introduced to inves-

tigate the time evolution of quantum coherence. In the Liouville space a time operator is defined as a
canonical conjugate of the time-evolution generator, but not the Hamiltonian energy operator. The rela-
tion to the internal time presented by Prigogine and Misra is discussed.

PACS number(s): 03.65.Ca

I. INTRODUCTION

In recent publications [1—7], the author introduced
relative-number states to make it possible to investigate
the quantum-mechanical properties of phase variables. A
relative-number state is defined as follows [1]. Suppose
there are two systems A and 8 which are described by
complete orthonormal sets of boson-number eigenstate
f ~m ) ~ m ~0] and I ~n )~ ~n ~0]. The relative-number
state

~
n, m )) is defined by

~n, m )) =8(n)~m +n ) &S ~m )ii+8( n —1—) ~m )~

e~m —n)

where n is an arbitrary integer, m is a non-negative in-
teger, and 8(n) is defined as 8(n)=1 for n ~0 and
8(n)=0 for n (0. This state is an eigenstate of the num-
ber difference (relative number) between the two systems,
whose eigenvalue is n. The use of relative-number states
overcomes the well-known mathematical difficulties in
defining the phase operator [8,9], which stem from the
fact that a number operator has a lower bounded spec-
trum. The phase-operator formalism based on relative
number states [1,6,7] is useful for investigating the non-
classical properties of light [10—20]. It is shown that the
relative-number-state formulation developed in the Liou-
ville space is also suitable for describing the time evolu-
tion of quantum coherence (off-diagonal elements of the
density matrix of the system) [1,3 —5]. Furthermore, the
number-phase quantization in a Josephson junction with
ultra-small capacitance can be described in terms of
relative-number states [1,2]. In these studies, the use of
relative-number states was restricted to problems related
to the phase operator. The purpose of this paper is to ex-
tend the relative-number-state formalism and to give a
method for investigating a wide range of problems to be

treated.
This paper is organized as follows. In Sec. II, we con-

sider a quantum system consisting of two subsystems,
each of which is described by position and momentum
operators with continuous spectra extended over all real
values. We introduce several kinds of relative-coordinate
states and investigate their properties. Using these states,
we calculate and interpret the expectation values of phys-
ical quantities. The results reduce to conventional ones if
certain conditions are satisfied. Furthermore, we derive
the phase-space probability distribution in terms of the
relative-coordinate states. The probability distribution
thus obtained is compared with the functional definition
of quantum probability in phase space given by Aharo-
nov, Albert, and Au [21], O' Connell and Rajagopal [22],
Prugovecki [23], and Wodkiewicz [24—26]. In Sec. III,
we consider a system consisting of two subsystems de-
scribed by bosonic annihilation and creation operators,
and we develop a phase-operator formalism based on the
relative-number states [1,6,7]. The results are compared
with those obtained by Pegg-Barnett [27—30]. Further-
more, we discuss the relations to the other phase-
operator formalisms obtained by Newton [31], Shapiro
[32—34], and Hradil [35,36]. In Sec. IV, we introduce a
relative-energy state which corresponds to a continuous
version of the relative-number state. We calculate the ex-
pectation values of physical quantities by means of the
relative-energy states and consider their meaning. In Sec.
V, we develop a relative-state formulation in the Liouville
space [1,3—5]. We introduce a phase representation to
investigate the properties of physical systems in the Liou-
ville space [37—48]. It will be shown that the phase rep-
resentation is convenient and suitable for describing the
time evolution of quantum coherence or phase informa-
tion of the system. Furthermore, we define a time opera-
tor [49—51] in the Liouville space, which is a canonical
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conjugate of the time-evolution generator but not the
Hamiltonian energy operator, and we discuss its relation
to the result obtained by Prigogine, Misra, and Courbage
[49,50]. A summary is given in Sec. VI.

II. RELATIVE-COORDINATE REPRESENTATION

A. Relative-coordinate states

In this section, we introduce relative-coordinate states
and investigate their properties. For this purpose, we
consider a quantum system which consists of two in-
dependent subsystems; a relevant system and a reference
system. We would like to obtain information only about
the relevant system. These systems are assumed to be de-
scribed by canonical coordinates and momenta, (x„,p„)
and (xz,p~), which satisfy the canonical commutation
relations [x„,P„]=i and [x iiP s]=i with R=1. It is
also assumed that these operators have continuous spec-
tra extended over all real values. In this paper, we ex-
press quantities of the relevant system as Oz and those of
the reference system as Oz.

The relevant and reference systems are described, re-
spectively, by the complete orthonormal sets,

It should be noted that the operator x =x„—xz
represents the relative position of the relevant system
with respect to the position of the reference system.
Thus, we call ~«, X)) the relative-position state. The
relative-position state ~«, X)) is obtained from the state
~«,X)= ~r; A ) ~X,B ) by a unitary transformation

' apw

Now, we define a unitary operator 8(s) in terms of the
relative-position states {~«, X )) ] through the following
relations:

D(s)
~
r,x &&

=
~
r —s,x &&,

8 t(s)~r X&&=~r+s,x&& .
(2.9)

[D(s),x]=sD(s) . (2.10)

It is also seen from (2.9) that the following relations are
established:

The operator D(s) is a displacement operator for the rela-
tive position r of the relevant system. It is easily found
from the definition that the commutation relation be-
tween the displacement operator D(s) and the relative-
position operator x is given by

S„={Ix; A & lx ~ lx; A & =x lx; A &,x &R],
S, ={lx;B&lx&lx;B&=xlx;A &,xERJ,

(2.1)

(2.2)

8(si )8(si)=8(si+sz),
8(s i )D t(s2 ) =8 (s i

—s2 ), (2.11)

where IR is the set of all real numbers and we have the fol-
lowing relations:

&X;xly;X) =&(x —y), f

S„,= {lx, y &
= lx; A & ~ ly, B & I x,y eR],

and the state ~x,y ) satisfies the following relations:

(y i,x] ~x2, y2 ) =5(x i
—x2)5(y] —y2),

f dx f" dyix, y&&y, xi=&,

(2.4)

(2.5)

where 1 = 1„(31& is a unit operator of the total system,
Now, we consider a state ~«, X)) of the total system

defined by

I«,X»—:I«+X,X) =I«+X;A &IX, B & . (2.6)

It is easily found that the state
~
r, X )) satisfies the rela-

tions,

x ~«, X)& =r~«, X &&, xs ~«, X && =X~r,X&&, (2.7)

where x is defined by x=xz —x~. A set given by
S~ = {~«, X)) ~«, X&mj becomes a complete orthonormal
set of the total system. The state

~ r, X )) satisfies

for X = A, B, (2.3)

where 1~ and 1~ are unit operators of the relevant and
reference systems. Thus, the complete orthonormal basis
of the total system is given by

D(0)=1 .

These relations show that a set defined by
SD = {8(s)~sERJ becomes a one-parameter unitary
group, and D(s) is strongly continuous. Therefore
Stone's theorem [52] gives a Hermitian operator p which
satisfies the relation,

8(s)=exp[isp] . (2.12)

Towards the limit as s~0 in (2.10), we obtain the com-
mutation relation,

[x,p]=i . (2.13)

~p, X&)= ' f" dr~«, X&&e't'",
&2m-

(2.14)

This indicates that the Hermitian operator p is a canoni-
cal conjugate of the relative-position operator x.

It is found from (2.9) and (2.13) that the operations ofp
on

~
r, X )) and ((X,r

~

are represented, respectively, by
p~«, X))=i(BI3«)i~«, X)) and ((X,r~p= —i (dldt )((X,r~.
It is easily seen that p and 8(s) transform a direct prod-
uct state

~ g; A )S ~$, B ) into another direct product state
~P', A )~P', B). Thus, if a state ~+) is factorizable, that
is ~%') = ~f; A )S ~p;B ), the operators p and 8(s)
preserve the factorizability of the state. It will be found
in the following sections that quantum-mechanical phase
and time operators do not have such a property.

The eigenstate of p is expressed in terms of the
relative-position states { ~

r, X )) ],

((X„ri~r2, X2 )) =5(ri r2)5(Xi —X2), —
f" dX f" d ~«, Xr&&&&X, ~=«1.

(2.g)
where P~p, X))=p~p, X)). A set given by
S~ = {~p, X))~p, XHIR] becomes a complete orthonormal
set for the total system,
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«X],p] lp~, X2)) =5(pi —p2)5(Xi —X~),
(2.15)f dx f dplp, x»«x, pl=1 .

From (2.6) and (2.14), the state lp, X)) can be expressed
by a direct product of the momentum eigenstate of the
relevant system lp; A ) and the position eigenstate of the
reference system lX;B ) with a phase factor of e '~, so
that lp;X)) = lp; A ) lX;B )e 'i' . Furthermore, we
define another relative-coordinate state which is the
Fourier transform of

l r, X )) with respect to variable X,

lr, k )& = f dxlr, X »e'" (2.16)

x lr, k &) =rlr, x)), x~ r, k )) = i lr, k—)), (2.17)

This state plays an important role when we consider
phase-space distribution functions (see Sec. II C). It will
be found that [ r, k )) J are closely related to the function-
al definition of the quantum probability distribution in
phase space. It is easily seen that a set given by
Sk =

[ l r, k )) l r, k ER) becomes a complete orthonormal
basis of the total system, satisfying the following rela-
tions:

another subsystem. By developing such ideas, the mea-
surement process in quantum mechanics was discussed
[53].

B. Expectation values of physical quantities

We consider the expectation values of physical quanti-
ties of the relevant system in terms of the relative-
coordinate states introduced in the previous section. It is
postulated in our formulation that the physical quantities
of the relevant system are measured as differences from
the corresponding quantities of the reference system. In
other words, only variations from the reference values
determined by the state of the reference system are ob-
served. When we would like to know a quantity Oz of
the relevant system, we measure the relative quantity
given by 0 =0„—O~, where O~ is the quantity of the
reference system corresponding to Oz. For example, in a
position measurement, the quantity x =xz —xz is ob-
served, and so the observable quantity is the relative posi-
tion of the relevant system with respect to that of the
reference system. Furthermore, we assume that the phys-
ical state l%') of the total system, is given by the direct
product of states of the subsystems,

kp )) 5(k $ k2)5(r \ r2),

f dk f drlr, k )) «k, r =1 .
(2.18)

Before proceeding further, we will brieAy mention the
relative state theory proposed by Everett [53]. Consider
a direct product state given by l'P) =lg; A )s lP, B).
The scalar product with the relative-position state lr, X ))
leads to %(r,X)=P„(r+X)gii(X) with g„(x)
=& A;x g;A ) and P~(x)=&B;xi/;B). This wave
function is the simplest considered by Everett. Accord-
ing to Everett, the wave function %(r,X) is interpreted as
follows. When one subsystem is in state Pii(x) while the
total system is in state %(r,X), then the corresponding
relative state of another subsystem is given by g„(r +X).
It is stressed that the state of one subsystem cannot be
determined independent of the state of another subsys-
tem. Indeed, g „(r +X) depends on the position of

I

A(x,P)=gg A „x p" .
m n

(2.20)

Using the commutation relation (2.13), any analytic func-
tion of x and p can be written in this form. Now we cal-
culate the expectation value of A (x,p) with the l%')
given by (2.19). Using the fact that the relative position
states [ l r,X )) J become a complete orthonormal basis
and using the relations «X, r x=r«X, rl and
«X, rip= —i(agar)«X, rl, we can calculate the expecta-
tion value as

(2.19)

where lit; A ) is the state of the relevant system and
P; B ) is that of the reference system.

Consider an arbitrary observable quantity A (x,p) of
the relevant system expressed in terms of the relative po-
sition x and its canonical conjugate p,

(2.21)&+I A (x,P)l+& =f" dy f" dx lg, (y) 'g&(x) A(x —y, —ia/ax)P„(x),
where g„(x)=& A;xi/; A ) and Pii(x)=&B;xi/;B) are the wave functions of the relevant and reference systems.
Then we finally obtain the following expression for the expectation value of A (x,P ):

&+IA(x,p)l p&= f dy& A:@IA(x~ —y p~)lf; A &14'ii(y)l'.

On the right-hand side of (2.22),
& A'itjlA(xz y,p„)lp; A ) represents the expectation
value of only the relevant system, in which the position of

.the relevant system is measured from the position y at
which the reference system is placed, and lP~(y)l dy is
the probability that the reference system is placed at a
position between y and y +dy. This shows that the quan-
tity & 0'l A (x,p ) l%') can be calculated as follows.

First, the expectation value of the relevant system with a
fixed reference point is calculated as
& A;gl A (xz —y,p„)lg; A ), and then the average over
all possible reference points is taken. Thus, (2.22) can be
expressed as

& +
I
A (x,p ) I

+ &
=

& A; Ql A (x ~
—y,p~ ) ill'; A &,

where ( ) means the average over the possible reference
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points. If the reference system is treated as a classical
system, its position can be fixed with great accuracy.
Consequently, when the position of the reference system
is chosen as the origin of the coordinate system (y =0),
then (2.23) can be approximated by

P(r, k)dr dk =(%~A[A„+d„,Ak+dk]~%), (2.29)

where b.„+d„=[r,r +dr) and bk+dk =[k,k+dk). When
the state of the total system is given by (2.19), it is found
from (2.16) that (2.29) becomes

(y~ g (x,P)~e) =( 3;y~ 3 (xg,Pg )~q; 3 ) . (2.24) P (r, k) = f dX g~ (r +X)$~(X)e
277

(2.30)

The right-hand side of (2.24) is the conventional expres-
sion for the expectation value of a relevant system.
Therefore, our formulation reduces to the conventional
case if the reference system is assumed to be a classical
object.

Using the same method as that used to derive (2.22),
we find that in the momentum representation the expec-
tation value of 2 (Q, ~) can be expressed as

(~~ ~ (q, e)e)
=f dk( A;Q A (x„,p~ —k) p; A )~p~(k)~~,

where Pz(x) = ( 2;x f; 3 ) and Pii(x) = (B;x~P;B).
From (2.30), the marginal probability distribution
P(r)= J' dk P(r, k) that the relative position r takes a
value between r and r +dr in the state ~%') reduces to

P(r)= f" dXlq, (r+X)l' y. (X)l'. (2.31)

Let us consider two systems characterized by the wave
functions itt(x) and P(x) in order to compare the above
result with those given in Refs. [21—26]. The Wigner
functions of these systems are given by

(2.25) W'~(q, p) = —f dx g*(q+x)P(q x)e —'~ (2.32)

where sr =p„—p~ is the relative momentum, and q is the
canonical conjugate such that [Q, vr] =i, and p~(k) is the
momentum representation of the wave function of the
reference system, which is the Fourier transform of
Pii (x ). On the right-hand side of (2.25),
( &;p 3 (x~,p~ —k)~g; 3 ) represents the average value
of only the relevant system, of which the momentum is
measured from the reference value k, and ~Pii(k)~ dk is
the probability that the reference system has a momen-
tum between k and k+dk. Thus, ('Il~ A(g, rr)~%') is ex-
pressed as

(~II~ 9 (q, ~)~4) =( Q;p~ A(x&,p&
—k)~@; 3 ), (2.26)

where ( ) is the average taken over all possible reference
values k. When the reference system has zero momen-
tum with great accuracy, (2.25) can be approximated by

(iI
~
A (q, vr)~e) =(W;q~ W(x~,P„)~@;A ) . (2.27)

The right-hand side of (2.27) is the conventional expres-
sion for the average value of the relevant system.

It is seen from (2.22) —(2.27) that our formulation gives
the conventional expressions for the expectation values of
physical quantities when the reference system satisfies
certain conditions. It seems to be sufficient, at least, that
the reference system satisfies the semiclassical condition.

C. Probability distribution

In this section, we consider the probability distribution
in terms of the relative coordinate states I ~

r, k )) ] defined
by (2.16). For this purpose, it is convenient to introduce
a probability operator measure defined by

A[A„,hk]= f dr f dk~r, k))((k, r~, (2.28)
r

where h„and 6k are subsets of R. Using the probability
operator measures (2.28), the probability distribution that
the relative position r takes a value between r and r +dr
and the parameter k takes a value between k and k +dk
in the state ~V) is calculated as

W&(q, p) =—f dx P*(q +x)P(q —x)e '" (2.33)

P~(r, k)= f dp f dq 8'~(q+rp+k)W~(q, p)

2f dx P(x+r)P*(x)e
277

(2.34)

This is clearly equivalent to (2.30) if we chose
P(x)=fz( )xand P( )=xiii(x). Note that (2.34) is for-
mally written as

2m

D(r, k) =exp[i(rp ICq')], — (2.35)

where q and p are position and momentum operators and
D(r, k) is a displacement operator in phase space. The
meaning of (2.34) was first considered by Aharonov, Al-
bert, and Au [21].

Next we consider another situation treated by
Wodkiewicz [25]. The probability distribution that the
system described by the density matrix p is in the state
~P) is usually given by P=Tr[pP&], where P&= ~/)(P
is a projection operator. According to Wodkiewicz [25],
in order to physically compare the state of the relevant
system with that of the measurement apparatus in a real-
istic laboratory arrangement, we have to bring the mea-
surement apparatus towards the relevant system to be
measured. This indicates that P should be modified as
follows:

P =—Tr[pft&(g) ], ft&(g) = 0 "(g)P&0(g), (2.36)

respectively. It is seen that W&(q+r, p+k)W&(q, p) is
the quasiprobability density that one system in state ~g)
has momentum p +k and position q + r are the other sys-
tem in state ~P) has momentum p and position q. Thus
the propensity of these two systems to have momenta and
positions diA'ering by amounts k and r, respectively, is
given by
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where U(g) is a unitary operator which represents the
displacement of the measurement apparatus and g is an
element of the transformation group to express such a
movement. The normalization constant Z is given by
Z =g Tr[pA&(g)], where g means the summation (or
integration) over all possible transformations. When the
relevant system is in a pure state p= Ilt ) & i(tl, (2.36) be-
comes

Sz+z=[lm, n ) =lm; A ) ln, B)lm, n HZ+I,
which satisfies the following relations:

Im, n &&n, m 1=1,
m =On =0

(3.&)

(3.6)

P, =
z I &AIU(g)l@& I'. (2.37)

With 1 = lg lg.
We define a relative-number state (RNS) as follows

[1,6,7]:
If the unitary transformation U(g) is given by a spatial
displacement in phase space, such that U(g)=D(r, k),
(2.37) reduces to (2.35) and so to (2.30).

Therefore, it is found that the probability distribution
calculated by the probability operator measure construct-
ed in terms of the relative-coordinate states [ I r, k )) ] is
equivalent to the operational phase-space probability dis-
tribution or the propensity in phase space considered by
several authors [21—26].

III. RELATIVE-NUMBER STATE
AND PHASE ORDER

A. Relative-number state

S~ =[ n;A ) %~In; A ) =nln;A ),n HZ+I,

Sz = [ln;8 ) IA'~ In;8 ) =nln;8 ), n PZ+ I,
which satisfy the following relations:

(3.2)

(3.3)

&X;min;X)=5 „, g ln;X)&X;nl=l
n=0

In this section, we consider a system which consists of
two independent subsystems described in terms of boson-
ic annihilation and creation operators. We denote the an-
nihilation and creation operators of the relevant subsys-
tem as (a, a ) and those of the reference subsystem as
(b, b ), where [a,a ]=[b,b ]=1. For simplicity, we as-
sume a single-mode boson for each subsystem. As we did
in the previous section, we assume that the physical
quantity of the relevant system is measured as a
difference from the corresponding quantity of the refer-
ence system. Thus, in the boson-number measurement
the observable quantity is

(3.1)

where 8'~ =a a and 8'~ =b b. In the following, we first
introduce a relative-number state [1,6] and then we con-
sider boson-number measurement. Using the relative-
number states, we can define a phase operator and a
phase probability distribution [7].

The relevant and reference systems now considered are
assumed to be described by complete orthonormal sets,

ln, m )) =8(n) m+n, m )+8(—1 —n)lm, n n—), (3.7)

A„= g ln, m))«m, nl .
m=0

(3.9)

This projection operator maps the whole space into a
subspace with a fixed boson-number difference n, which
satisfies the following relations:

A '„=A„, A„A„,=n„„,A„, A „&0, A„=l .

(3.10)

Using (3.9), we can obtain the probability distribution
P (n ) that the boson-number diff'erence between the
relevant system and the reference system in state I'll ) is

P(n)=&+IA„le & . (3.11)

If a state of the whole system is given by
I%') = lg; A )

I P;8 ), P (n) is calculated to be

where 8(n) = 1 for n ~ 0 and 0(n) =0 for n (0. Note that
in (3.7), n can be any integer while m is a non-negative in-
teger . Since the quantum number n in n, A ) or

I n, 8 )
cannot take a negative integer, we introduce the 8(n)
function and express In, m )) as a superposition of two
terms: one with n ~ 0 and the other with n (0. It is easi-
ly seen from the definition that n represents the boson-
number difference between the relevant and reference sys-
tems and that ln, m )) is an eigenstate of N defined by
(3.1), X

I n, m )) = n
I n, m )) . The set of relative-number

states, Sz =
[ I n, m )) I

m EZ+, n P Z J, becomes a complete
orthonormal basis of the whole system, which satisfies the
following relations:

«m„n, ln„m, &) =5
(3.8)

ln, m )) «m, nl =1 .
m =On= —oo

Here Z is the set of all integers.
Next we introduce the following projection operator in

order to consider a boson-number probability:

for X= A, B . (3.4) P(n)=0(n) g Ig„(m +n)l IP~(m)l
m=0

Here, Z+ is the set of non-negative integers and lz (1+)
is the unit operator of the relevant (reference) system.
Thus, the complete orthonormal basis of the whole sys-
tem is given by

+e( —1 —n) y l@g(m)l'ly, (m —n)l', (3.»)
m=0

where the wave functions g„(n) and Pii(n) are defined,
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respectively, by gz(n)= ( 2;nip; A & and Pii(n)
=(8;nIP;8 &. This result corresponds to (2.31) in the
relative-coordinate state. In particular, when the refer-
ence system is in the vacuum state IP;8 &=lo;8 &, P(n)
reduces to P(n)=8(n)lf~(n)l . This is the conventional
expression for the probability distribution of boson num-
ber.

Remember that it is postulated in our formulation that
the boson number of the relevant system should be mea-
sured as a difference from the boson number of the refer-
ence system and that the basic observable quantity is
8'= 8'~ —8'ii. It is found from (3.12) that the expectation
value of any analytic function of X, f(8 ), is calculated as

&+If(+)lq'&= g &~;@If(+g—~)l[@;&&i&i(~)l'
n=0

f(n)P(n) . (3.13)

= g f (n)P(n) .
n=0

(3.15)

Therefore, it is clear from (3.13) and (3.15) that our for-
mulation based on the relative-number states {ln, m » [
gives the conventional results when the reference system
is in the vacuum state.

B. Phase operator

Now we consider a quantum-mechanical phase opera-
tor in terms of the relative-number states I I n, m » I. Re-
cently, the phase operator has been extensively used in
quantum optics by many authors to investigate the non-
classical properties of light [10—20]. First, using the
relative-number states, we introduce a unitary operator
D,

In, m »«m, n+ll .
m =On= —oo

(3.16)

From the definition, 8 is a displacement operator for the
boson-number difference between the relevant and refer-
ence systems, which is unitary operator satisfying

Dl~, m &&=ln —l, m &&,

8 tin, m »= In+1, m » .
(3.17)

It should be noted that since n is an arbitrary integer, D
becomes a unitary operator. It is easily seen that the
commutation between D and 8'is given by

(3.18)

Furthermore, (3.13) is expressed as follows:

& +If (&)I+&=
& &;@If (+g —~)lg; & &, (3.14)

where ( ) means the average taken over the boson num-
bers of the reference system. This expression is the same
as (2.23) and (2.26). If the reference system is in the vacu-
um state, (3.13) reduces to the conventional expression of
the expectation value,

& +If (+) I
+ &

=
& ~;/If (+g ) I @;& &

Using the completeness relations
0=In; 2 &( 2;nI =1& and g„Din;8 &(8;nI =1~ in

the Hilbert spaces of the relevant and reference systems,
we can formally rewrite (3.16) into the following form:

D= g (e z)"(e~)"+'In, B&(B;nI
n=0

+ y In; 3 &( 2:nI(e t )"+'(e )"
n=0

—(~ t ) +(f )
8 +(~~i )

A (~~ )
A (3.19)

Iym » = g lnm »e
&2m „=

(3.20)

with (PE[ 71+$0 w+$0). Here, $0 is a phase-reference
value which can take any real value and determines the
2~-phase window. The properties of the RNS phase
operator 8, its eigenstate IP, m », and the phase proba-
bility distribution P (P) have been investigated in the pre-
vious papers [1—7].

C. Relations to other phase operators

In quantum optics, the Pegg-Barnett (PB) Hermitian
phase operator [27—30] is frequently used. Hence, in the
following, we will show that in the physical state, the PB
phase operator and the RNS phase operator give the
same physical results in spite of their mathematical struc-
tures being quite different. In the PB phase-operator for-
malism, all physical quantities are calculated in (s +1)-
dimensional space, where s is arbitrarily large but finite,
and after the all calculations are completed, s i% made
infinite (s~ ~ ). The PB phase operator and its eigen-
state of the relevant system in (s + 1)-dimensional space

where e~ and e~ are the Susskind-Glogower phase opera-
tors [8,9] of the relevant and reference systems, which are
defined by e„=(aa ) '~ a and e~=(bb )

' b. Since a
boson-number operator has a lower bounded spectrum,
the Susskind-Glogower phase operator is isometry, but
not unitary. In the following, the displacement operator
8 defined by (3.16) is called the RNS phase operator. It
is easily seen from the definition that by restricting the
domain of the RNS phase operator D from &„s&ii to
&„ {IO;8 & [, where &„and &ii are the Fock spaces of
the relevant and reference systems, the Susskind-
Glogower phase operator of the relevant system is ob-
tained from the RNS phase operator,
(8;olD lo;8 & =e, .

It is important to note that the RNS phase operator 8
does not preserve the factorizability of state. This indi-
cates that 8

I

ql & cannot be expressed by a direct product
state such as

I g; A & I P;8 &, when
I
4 & is factorizable„

Iq'& = lgo; A & I/0;8 &. This contrasts with the case in

which we considered the relative-coordinate states, where
8(s) defined by (2.12) does preserve the factorizability of
state. It is considered that the nonfactorizability of 8 re-
quires the introduction of the reference system to define
the phase operator. The eigenstate of the RNS phase
operator is given by
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are defined by

4;,= y ly';A &y' &A;y'
m=0

where IP'; A & is the PB phase eigenstate defined by

(3.21)

lim g la„l n"=(finite),
shoo 0

(3.25)

for an arbitrary non-negative number p [27,28]. Thus, in
the PB phase-operator formalism, the average value of a
phase quantity can be calculated as follows:

y e
'"' n;A&,s+I „o (3.22) &F(y)&= lim & A;I/J'IF(4 '

) ~/J', A & . (3.26)

where P' is given by P' =italo sr+—[2m.m l(s + I )]
( m =0, 1,2, . . . , s ). From (3.21) and (3.22),
D pii exp [ i 4—

pB ] is expressed as
s —1

D pa= g In; A & & A;n + 1l+e

(3.23)

In (s+ I)-dimensional space, the physical state of the
relevant system is expressed as

Now we show that when the reference system is in the
vacuum state IO;8 &, the RNS phase-operator formalism
gives the same average values of physical quantities as
those obtained by the Pegg-Barnett formalism. To do
this, we first calculate the kth-order moment of the phase
operators. For the RNS phase operator, we obtain

&+ID "Ie&= y &A;@In;A&&A;n+klq;A&,
n=0

Iq', A &= y a„ln;A &,
n=0

which is assumed to satisfy the condition

(3.24) (3.27)

where IV& = Iiti; A &@ 0;B &. On the other hand, for the
PB phase operator, we have

s —k k —1

lim & A;g'I(D pz)" g', A &
= lim g & A;P'In; A && A;n +klan(', A &+ lim e g a,* „ak (3.28)

s —+00 0 n=0

where we have used (3.21)—(3.24). The first term on the
right-hand side of (3.28) is equal to (3.27) and the second
term vanishes because of the condition (3.25). Thus we
obtain

(3.29)
&'ply'"I p&= »m & A;y'l(spB)"lq';A &, (3.35)

In particular, when we put f (x,y)=[(x+y)/2]" and
f (x,y) = [i(x —y)/2]", we obtain the following relations:

& 4
I

C' "
I
4 &

= lim & A; i''I ( C' ' )"
I i' ' A & (3.36)

Similarly, we can get

& 4'ID t"I0& = lliil & A p'I(D 't )"lt(i' A & (3.30)

M N

f(x,y)= g g a „x y".
m=On=0

(3.31)

Since both D and D PB are unitary operators, we have

M N M N

f(D,D)= g g a „D" = g g a „(Dt)m
m =On =0 m =On =0

(3.32)
M N

f(DpBDpB)= y y a „(DpB)"
m =On =0

M N
(D s't )m

—n

m =On =0
(3.33)

It is found from (3.29)—(3.33) that we obtain

&+If(D', D)l+&= »m & A;y'If(D p'„D pB)lq', A & .

(3.34)

Let f (x,y) be an arbitrary polynomial of x and y ex-
pressed as

swhere 5, e, SpB, and (. pB are sine and cosine operators in
the RNS phase-operator formalism and in the PB formal-
ism.

Therefore it is found that when we calculate the aver-
age value with the state vector I%'& = Iiti; A &s IO;B &, the
RNS phase-operator formalism gives results equivalent to
those obtained by the PB formalism. However, the
mathematical structures of the formalisms are quite
different. In the PB formalism, the commutation relation
between the annihilation and creation operators becomes
[a,a ]=1—Is&(s+l)&sl, and the PB phase operator in-
cludes the term ls & &0I due to the finite dimensionality of
the formalism. As pointed out by Collett [54], these extra
terms give unphysical dynamics when the time evolution
caused by a certain interaction Hamiltonian is con-
sidered. On the other hand, we have [a,a ]=[b,b ]=1
in the RNS phase-operator formalism. It will be shown
in the next section that the RNS phase-operator formal-
ism can be constructed in the Liouville space. The
mathematical structure of the formalism is quite similar
to thermofield dynamics [43], and so the useful method in
thermofield dynamics can be used in the RNS phase-
operator formalism. Thus, the RNS phase-operator for-
malism can be applied to investigate many kinds of physi-
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cal systems besides quantum optical systems.
We have found that by using the state belonging to the

subspace &„ I lo;B &} of &„s&ii, the RNS phase-
operator formalism gives results equivalent to those ob-

I

tained using the Pegg-Barnett phase-operator method.
The projection on the subspace &~I31 t Io;B &} is ex-
pressed as P=l&lo;B &(B;ol. Now, let us consider
another projection given by

~=10;& && &;0 Io;»&B;ol+ g Iln;»& &;nllo;»&B;ol+lo;w && w;olln;»&B;nl},
n=1

(3.37)

where e„and ez are the Susskind-Glogower phase opera-
tors. This unitary operator Y is identical to the extended
Susskind-Glogower phase operator considered by Shapiro
et al. [32—34] who developed the phase-measurement
theory within the framework of quantum detection
theory [55,56]. Recently, Hradil derived the relation be-
tween the RNS phase operator and the description of the
realizable Shapiro-Wagner phase [36,37]. The Shapiro-
Wagner phase is treated within the framework of hetero-
dyne detection and is expressed as a unitary operator as
R =(/(it+& )/(a +b). The commutation relation be-
tween R and 8=a a bb is giv—en by [R,E]=R, which
is the same commutation relation as between D and 8'.
Hradil has shown the relation, D = PRO, where U is a
nonunitary operator. This relation has been derived by
means of the Linblad-Nagel basis of su(1, 1) Lie algebra
[58]. The RNS phase operator is thus closely related to
the heterodyne detection. The details are given in Refs.
[35,36].

In this section, we have used the relative-number states
[In, m » } in order to remove the di%culties in defining
the phase operator, which are caused by the lower bound-
ed spectrum of the number operator. For the same pur-
pose, Newton considered a two-valued spinlike variable
[31), and he expressed a state vector of the relevant sys-
tem as IC& » =( bI), where the upper component corre-
sponds to the state with the up spin and the lower com-
ponent to the state with down spin. In order to define the
phase operator, Newton introduced a complete orthonor-
mal set of the relevant system as follows:

S„=[In » I

—~ (n ( ~, n ez} (3.39)

with

o
In » =8(n) 0 +8( —1 n)

I 1&
.—(3 40)

Then, using the states I I
n » },the unitary phase operator

is defined as

8~= g In &&((n+ 1l . (3.41)

In Newton*s formalism, only the subspace with up spin
has physical meaning. The projection on the subspace

which transformations the RNS phase operator D into
the following form:

D~f=ft BA=ezcgt Io;B &(B;ol+ Io; 3 &( w;ola e ii,
(3.38)

I

with up spin corresponds to that the state of the reference
system is assumed to be vacuum in the relative-number-
state formalism.

IV. ENERGY MEASUREMENT
AND RELATIVE-ENERGY STATE

where Pti(E) = (B;EIP;B & and E;B& is an eigenstate of
Hti with eigenvalue E. On the right-hand side of (4.1), it
is seen that ( 2; QIf (H~ —E)

I P; A & is the average value
of the relevant system, in which the energy of the
relevant system is measured from the energy of the refer-
ence system E, and that

I Pti (E) I
dE is the probability

that the reference system has an energy between E and
E+dE. In particular, when the reference system has the
lowest energy E =0 with great accuracy, (4.1) can be ap-
proximated by

& +If (H ) I
+ & = & ~;g If (Hg ) f; & & . (4.2)

The right-hand side of (4.4) is the conventional expression
for the average value of the relevant system.

If the reference system has a discrete energy spectrum,
(4.1) is modified as follows:

& +If (H ) I+ &
= g & ~;@If(&g —E„)I @;~ &14g(E„)I',

n=0

(4.3)

In this section, we apply the method developed in Sec.
III to physical systems which have continuous energy
spectra. We consider the measurement of energy in the
relevant system and relative-energy states. Let us first
consider the measurement of energy in the relevant sys-
tem. In our formalism, it is postulated that the energy of
the relevant system is measured as a difference from the
energy of the reference system. The observable quantity
is the relative energy H=ff &

—@ii, where P„and P~
are the Hamiltonians of the relevant and reference sys-
tems, respectively. It is important to notice that Hz and

Aii have lower bounded spectra where the lowest ener-
gies are assumed to be zero, while H has unbounded spec-
trum extended over all real values. We also assume that
the physical state of the whole system is given by
le& =ly, w &g ly, B &.

Under these assumptions, the average value of an ana-
lytic function of H, f (H ), is calculated to be

(+lf(H) 4&= J dE(A;g f(B„E)IQ;2&ly
—(E)l',

(4.1)
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where Pz(z„)=&B;E„IP;8& and IE„;8& is an eigen-
state of Bii with eigenvalue E„. In particular, when the
reference system is in the lowest-energy state (ED=0),
(4.3) becomes

&+If(H)l+&=& A;@If(Hg)lg; A & . (4.4)

Thus, we also obtain the conventional expression for the
average value of the relevant system. It should be noted
that both (4.1) and (4.3) can be expressed as

A(b, )= f dE'f "delZ', E»«E, Z'I . (4.13)

P(z)dz=&vIA(dz)I% &, (4.14)

It is easily verified that A(h) satisfies the properties of
probability operator measure. From (4.13), the probabili-
ty distribution P(E)dE that the energy difFerence be-
tween the relevant and reference systems takes a value
between E and E+dE is given by

&+lf(H) +&=& A'gl f(Hg z)ly—; A &, (4.5) where %'& is a physical state of the whole system. Using
I%' &

= If; A & IP, B &, (4.14) is calculated to be
where ( ) means the average taken over the possible ener-

gy of the reference system. This expression is the same as
(2.23), (2.26), and (3.14).

Now we introduce a relative-energy state and consider
its properties. To do this, we first suppose that the
relevant and reference systems are described, respective-
ly, by complete orthonormal sets,

S~=tlE;A&IP~IE;A&=EIE;A&, EEH j,
S =I IE;8 &IH IE;8 }=EIE;8&,ERR

(4.6)

(4.7)

where R+ is the set of non-negative real numbers, and
I E; A & and IE;8 & satisfy the following relations:

&&;z, lz, ;& & =5(z, E2), f—dEIE;x & &x;E I

=1
0

for X = A, B, (4.8)

where 1 z and 1~ are unit operators acting on the respec-
tive Hilbert space. Thus, the complete orthonormal basis
of the whole system becomes

s=t z„z &2=lz iA&IE„B&lz„z, cR ]+,

where IE„E2& satisfies

(4.9)

&E2,zilz', z' &=&(z —z')&(z —zl),
(4.10)

with 1=1&1&.
Now, we define a relative-energy state E, c, » as fol-

lows:

I E, E » =e(z) I.+z,.& +e( —z) I
...—z &, (4.11)

where e(E) is the usual step function. Note that E takes
an arbitrary real value while c is non-negative. The
relative-energy state Iz, E » is an eigenstate of
H =H~ HIi, so that H IE—, E && =E E, E &&. It is seen from
(4.10) that the set Sz =I IE, E» IEGER, ERR+] becomes a
complete orthonormal basis of the whole system, which
satisfies

« „E,IE„,»=&(z, —E, )fi(,—,),
f"«f" dzlz, e»«E, El=1 .

(4.12)

Next, we consider the probability distribution for the
energy measurement. To do this, we define a probability
operator measure in terms of the relative-energy states
IIz, s»] as follows:

P(E)=e(E)f dEIQ, (E+E)l'Ip, (E) '
0

+e( E)f—delf~(E)l'Ip~(E —E)l', (4.15)

V. PHASE REPRESENTATION
IN THE LIOUVILLE SPACE

A. Liouville space formulation

In the previous sections, we have considered the
relative-coordinate states, the relative-number state, and
the relative-energy state for a quantum system consisting
of two subsystems: the relevant system and the reference
system. In the following, we will consider the relative-
number state and the relative-energy state for a single
quantum system in the Liouville space. In this section,
we brieAy summarize the Liouville space formulation
I37—41,45 —48] and thermofield field dynamics I42 —44]
The Liouville space X can be constructed as a direct
product of two Hilbert spaces, X =&43&. Here, & and
& are the ordinary Hilbert spaces. The term A denotes
an arbitrary operator acting on any vector in &, and the
corresponding operator A acting on vectors in & is given
by the tilde conjunction of A I42 —44]. The tilde conjunc-
tion is de6ned by

(A, A~) = A, A2, (At) =(A )t,

(a, A, +a2A2) =a*, A, +az A2, A =o A,
(5.1)

where 3, 3&, and 32 are arbitrary operators, and a, and
az are c numbers. In the last relation of (5.1), a =1 for a
bosonic operator A and 0.= —1 for a fermionic operator
A. We consider a single-mode bosonic system, for sim-
plicity. In this case, the Liouville space X is spanned by
vectors belonging to a complete orthonormal set,

s, =Ilm, n &=1m &ln &llm & ew, ln &HA, m, n ez+],
(5.2)

where ittz(E)= & A;El'; A & and pz(E)= &8;El;8 &. It
is found from (4.15) that the average value off ( ) is

&VIf(H)IV&= f dE f(E)P(E) . (4.16)

In particular, when the reference system has energy E =0
with great accuracy, (4.15) can be approximated by
P (E)=9(Z)lg„(Z) . This is the conventional expres-
sion for the probability density of the relevant system.
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that satisfies the following relations:

(n„m, ~m„n, ) =5

g im, n)(n, mi=l,
m =On=0

(5.3)

where ~m ) is the eigenstate of the number operator N in
&,

~
n ) is the eigenstate of N in &, where N is the tilde

conjugate of N.
In the Liouville space X, we introduce a state vector

1) [45—47] defined by

is established. When an operator F acts on a vector in &,
whose matrix element is f „=(miFin), then we have
( li 2 (a, a )i'0) =Tr[A (a, at)F], where Tr indicates the
trace operation on &. This indicates that in X a scalar
product with state vector (li is equivalent to the trace
operation in &. Thus, if we put F =p, where p is a sta-
tistical operator of the system, we find that the quantum
statistical average of A = A(a, a ) is calculated by the
following matrix element in X:

&A(a, a ))=(1 A(a, at)~p), (5.13)

where
ii &= y ~n, n &,

n=0

which satisfies the following relations:

(5.4)
ip&= g g p „~m, n) = g g ~m, n &&m~p n) .

m =On =0 m =On =0

(5.5)

(5.6)

a~m, n)=&n im, n —1),
a im, n ) =&n + 1~m, n+1), (5.7)

with aiO, n) =a~n, O) =0 for all n. The relation (5.5)
means that

~
1) is a tilde invariant state. Any state vector

in the Liouville space X corresponds to an operator in
the Hilbert space & [40,46]. For example, state vector
im, n ) in X is equivalent to operator

~
m ) (n~ in &. The

correspondence between a state vector in L and an
operator & is derived from the following rules:

a m, n =am n, a m, n ~a~m n

mn m na, a mn

In general, we have

(5.8)

(5.9)

g ~m&& „(nl .
m=On=O m =On=0

(5.10)

An operator acting on state vector
i
3 ) in X is equivalent

to a superoperator acting on operator A in & [40,46].
An arbitrary state i%) in X can be expanded as fol-

lows:

y f „im, n&.
m =On =0

(5.11)

It is easily found from (5.4) that for any operator ex-
pressed as A = A (a, a ), the relation

(liA(a, at)(%)= g g (niA(a, at)(m)f „,
m =On =0

(5.12)

where a and a are bosonic annihilation and creation
operators, and where a and a are their tilde conjugates.
These operators are defined by

aim, n ) =&m ~m —l, n ),
at~ m, n&=& m+1~ m+1, n&,

It is found that since p is a Hermitian operator, ip) is a
tilde invariant state, (

~ p ) ) =
~ p ) . For example, the

thermal average is obtained if we substitute
f „=5 „n "l(1+n )"+' into (5.12). Here n is the boson
distribution function.

A quantum statistical-mechanical system is described
by a density matrix p(t) in the Hilbert space &. The time
evolution of the system is governed by the Liouville —von
Neumann equation,

at p(t) = i [H—,p(t)] = iLp(t), — (5.14)

where H is the Hamiltonian of the system and I. is the
Liouvillian superoperator. In the Liouville space X, the
system is described by the state vector ~p(t) ) correspond-
ing to p(t) and the time evolution of the state vector
~p(t) ) is determined by

at ~p(t) ) = ihip(—t) ), H =H H, —(5.15)

H=H H+i ft, — (5.16)

where 0 is a damping operator satisfying (ft) =II. In
general, ft includes the product of tilde and nontilde
operators such as aa and a a ~. On the other hand, the
time evolution of any operator A in the Liouville space X
is determined by

A (t) =i [H, A (t)] .
dt

(5.17)

This is the same form as the conventional Heisenberg
equation except that 8=H Hor 8=H H+iA —is-
used instead of H. The details are given in Refs. [41—48].

B. Phase representation

In this section, we introduce a phase representation in
the Liouville space X in terms of the relative-number

where H is the tilde conjugate of H. Equation (5.15) is
derived from (5.14) using the correspondence rules
(5.8) —(5.9). In the Liouville space X the Liouville —von
Neum ann equation takes the same form as the
Schrodinger equation. This is true for dissipative systems
[45—47]. In the presence of dissipation, B=H H is-
modified as follows:
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states. It will be found that a phase representation in X
is convenient and suitable for investigating the time evo-
lution of quantum coherence or the phase properties of
physical systems.

In the Liouville space X, the relative-number state is
defined by

f (t, n, m)= f dPe '"~g(t;Q, m) .1

(2~)'" (5.23)

The function g (t;P, m) is called the phase representation
of the state vector Ip(t) &. Since Ip(t) & is tilde invariant,
the expansion coefftcients f (t;n, m) and g (t;P, m) should
satisfy

In, m »=e(n) Im+n &e Im &

+8( n ——1) m &8 Im n—& (5.18)
f*(t;n, m)=f (t; n—, m),

g*(t;P, m) =g (t;P, m),
(5.24)

It is easily seen that I n, m » is an eigenstate of
8'=a a —a a with eigenvalue n. In this case, the rela-
tive number represents the boson-number difference be-
tween the physical system and its tilde conjugate system.
The set of relative-number states, Sz
=

[ I n, m » I'm H Z+, n H Z J, becomes a complete ortho-
normal basis in the Liouville space X. By using
the relative-number states [ n, m » j, the RNS phase
operator 8 in X. is defined by

I n, m » (( m, n + 1 I, and the eigenstate
of D is given by

where we have used the relations, (In, m » ) =
I

n—, m »
and ( I P, m » ) =

I P, m ». It should be noted that the
phase variable P in g(t;P, m) characterizes the quantum
coherence or the off-diagonal matrix elements of the sta-
tistical operator p(t).

Now, consider a simple harmonic oscillator, for exam-

ple, whose Harniltonian is given by H =boa a(A'= I). In
such a case, the time-evolution generator in the Liouville
space X becomes H =cga a —

cuba =cog. From (5.15),
(5.20), and (5.21), the expansion coefficients f (t;n, m )

and g (r;p, m) are determined by the following equations:

Ig, m »= „, g In, m »e1

(2~)'" „= „ (5.19) a f (t;n, m)=——iconf (r;n, m),

Ip(t) &
= g g f (t;n, m)In, m »,

m=On= —oo

Ip(r)&= & f dpg(t;p, m)Ip, m »,
m=0

(5.21)

where f (t;n, m)=((m, nIp(t) & and g(r;P, m)
= ((m, P p(t) &. It is easily found from (5.19) that the re-
lation between f ( t; n, m ) and g ( r; p, m ) is given by the
Fourier transformation,

1
oo

g (t;P,m)=, g e'"&f(t;n, m),(2')'~
(5.22)

A set given by 5&= [I/, m » IPE[ —n, n)CE, m EZ+[ is
also a complete orthonorrnal basis in X. Here, we have
assumed that the domain of phase variables is [ —~, ~),
for simplicity.

Consider a system described by the state vector Ip(t) &

in the Liouville space X. Since [ n, m » ] and [ I P, m » ]
are complete orthonormal sets in X, Ip(t) & is expanded as
follows.

g(t;P, m)= —co g(t;P, m) .
at

(5.25)

The solutions of these equations are given, respectively,
by

f(t, n, m)=e ' "'F(n, m),

g (t;P, m) =G((5—cot, m),
(5.26)

where F and 6 are determined by the initial condition.
For an arbitrary stationary state, we have

f (t;n, m)=5„0FO(m) and g(t;P, m)=G (0m), where

Fo(m) and Go(m) depend only on m. These results are
the well-known fact that in the stationary state the densi-

ty matrix in the boson-number basis becomes diagonal
and coherence is lost completely.

Next, we consider a damped harmonic oscillator in the
phase representation. Under the Markovian approxima-
tion, the statistical operator p(t) of the damped harmonic
oscillator in the Hilbert space & satisfies the
Liouville —von Neumann equation as follows:

p(t)= ice[a a,p(—t)]—v[(n+1)[ap(t), at)+n[a, p(t)a]+(n+1)[a,p(t)at]+n[atp(t), a]], (5.27)

where ~ is a damping constant determined by the reservoir correlation function and n is the equilibrium boson distribu-

tion function. According to the correspondence rules (5.8)—(5.10), in the Liouville space X the time evolution of the
state vector Ip(t) & of the damped harmonic oscillator is determined by

Ip(&) &
= —&'HIp(&) &, (5.28)

8=co(a a —a a) —i~[(2n+1)(a a+a a) —2(n+1)aa —2na a+2n] .

When we define a phase probability distribution P ( r, P ) by

(5.29)
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P(t, g)= g g(t;P, m),
m=0

(5.30)

which is normalized as J dPP(t, g)=1, where g(t;P, m) is the phase representation of lp(t)), then P(t, g) satisfies

the following equation:

P(t, g)= —co P(t, g)+ g F i— , m g(t;P, m), (5.31)

where the coefficient F (
—iBIBQ, m ) which describes the dissipative effect is given by

1

F i—, m e'"t'=F(n, m)e'"~,a (5.32)

F (n, m ) =2m(n + 1)&m (m + In I
)+2&;n v'(m + 1)(m + n

I
+ 1)—2~n a(—2n + 1)(2 m+ In I ) . (5.33)

Note that the relation F(0,m)=0 ensure the normaliza-
tion of P(t, g). When the averaged bosoii number of the
system is extremely large, this equation is simplified as
follows:

a'
P(t, g)= ei P(t, g—)+2~ P', t, P) .

dt 8
(5.34)

p(t;P, p=m +n —2n )= e "&(nip(t)lm ),
(5.35)

where n is the average boson number. As pointed out by
Stenholm, since m and n are non-negative integers and so
the range of v depends on p, (5.35) is not rigorously
correct, and is only approximately corre~, t when n )&1.
Thus, (5.35) can be used only to investigat~: the properties

This is the Fokker-Planck equation descry ibing the phase
relaxation process in the semiclassical regime. Equations
(5.31) and (5.34) describe the decay of phase information
or quantum coherence in the relaxation lirocess from an
arbitrary initial state to the thermal equili vrium state.

In this section, we have presented the phase represen-
tation in the Liouville space X based & ~n the relative-
number state [ ln, m )) j. Stenholm [59 gave another
phase representation for the density mi trix in Hilbert
space &, which is defined by

of physical systems in the semiclassical regime. On the
other hand, the phase representation in terms of the
relative-number states is rigorously correct in any case
and can be used to investigate both quantum and semi-
classical systems. Furthermore, thermofield dynamical
method [43,45 —47] can be used in the RNS phase repre-
sentation. Bialynicki-Birula and Bialynicki-Birula [60]
also introduced the phase representation of wave func-
tions and used it to investigate the semiclassical proper-
ties of photons. However, this phase representation is
difficult to apply to dissipative systems interacting with
thermal reservoir.

C. Time operator

In this section, we will construct a time operator in the
Liouville space X for a system whose Hamiltonian H has
a continuous spectrum. %'e assume that the lowest ener-

gy is zero. In the Hilbert space &, the system can be de-
scribed by a complete orthonormal set,
~z = [ IE & IHIE & =EIE ),Eel+ ). The tilde conjunc-
tion derives a complete orthonormal set in the tilde con-
jugated space &, which is given by
~g=[IE&IHIE&=EIE&,ERR+), where H is the tilde

conjugate of H. Thus the system in X is described by the
complete orthonormal set,

-=[IE E &=IE &IE &IIE&~, IE&&~,E,E &R 1, (5.36)

where IE„E2) satisfies the following relat ons:

(E„E,IE'„E,' & =&(E, E', )fi(E, —&;,'), —
(5.37)f "«,j"dE, IE, ,E, &(E,, E, l=l

when lp(t) ) is a state vector of the system in X, the time
evolution of lp(t) ) is governed by (5.15). (t is important
to remember that in X the time-evolution generator 8 is
different from the Hamiltonian energy op:rator H. The
Hamiltonian energy operator has a lower bounded spec-
trum while the spectrum of the time-evolve;, tion generator
extends over all real values. It should be noted that this

fact makes it possible to define a time operator in X.
The relative-energy state in the Liouville space X is

defined by

I@,E))=e(g)IE+e, E)+e(—6")IE,E —6') . (5.38)

The relative-energy state is the eigenstate of the time-
evolution generator 8 with eigenvalue 6" which can take
any real value. A set defined by
& =

[ I @,E » I
& E IR, E E IR+ J becomes a complete ortho-

normal basis in the Liouville space X, satisfying



3464 MASASHI BAN 48

« E, 6'I 6"',E' » =5(6 —6')5(E E—'),
(5.39)f dE f d@I@,E»«E, @I=I .

Using the relative-energy states, we define a unitary
operator

D(g)= f dE f" dele —(,E»«E, @l, (5.40)

which is a displacement operator with relative energy 6,
and which satisfies the following commutation relation:

[D (k)H ) =kD (k) . (5.41)

It is easily seen that {D(g)lgER] becomes a one-
parameter unitary group and D (g) is strongly continu-
ous. Thus, from the Stone theorem [52], a Hermitian
operator T exists such that

D(g)= exp[ igT]—. (5.42)

[T,H]=i . (5.43)

Thus, T is a canonical conjugate of the time-evolution
generator 8, but not the Hamiltonian energy operator H.
It is found that the eigenstates of f'are given by

Ir, E »=, , f d@ID,E »e' "
(2m )'~' (5.44)

and a set given by Sr= {Ir, E » E ~0, r&IR, EEIR+] be-
comes a complete orthonormal basis in X. Furthermore,
from (5.42) and (5.43) we can obtain the following rela-
tions:

&«rlH= —
~ &«rl (5 45)

T @,E»= — I@,E», «E, @IT= «E, @l .

(5.46)

Since { r, E »] is a complete orthonormal basis, we can
expand an arbitrary state IV(t) & at time t as follows:

le(t)&= f "dE f drg(t;r, E)Ir,E» . (5.47)

Then, using (5.45), the time-evolution equation (5.15)
gives g(t;r, E)=g(t r, E) Furthe—rmore. , the tilde in-
variance of I%'(t) & requires g(t r, E) to be r—eal. For
any stationary state, g (t;r, E) depends on neither t nor r.

Now, let us consider the properties of T. In the Liou-
ville space X, the time evolution of an arbitrary operator
A is determined by a Heisenberg-like equation (5.17).
Thus, from the commutation relation (5.43), we obtain,

dt
f'(t)=1, f(t)= T(0)+t 1 . (5.48)

Taking the average values of these equations, we obtain
the following relations:

dr(t) =dt, r(t) =r(0)+t, (5.49)

where r(t) =
& T(t) & and & & means a certain expectation

In the limit as g —+0 in (5.41), we can obtain the commu-
. tation relation,

value. These relations show that an increment of the ex-
pectation value of f'(t) during time dt is equal to an in-
crement of time t, that is dt. It is found that the
difFerence between r(t) and t, r(0), can be attributed to
the initial preparation of the system. Thus, r( t) is
equivalent to t with regard to dynamics, and f' can be re-
garded a time operator in the Liouville space X.

It is important to notice that f' and D(g) do not
preserve the factorizability of state. In the Liouville
space X, when a physical state I'P& is factorizable, we
have

(5.50)

since I'P & has to be invariant under tilde conjugation. It
is easily seen that (5.50) corresponds to

I g & & g I
in the

Hilbert space &, and so (5.50) represents a pure state of
the system. Thus, f'and D(g) change a pure state of the
system into a mixed state. This fact was first pointed out
by Prigogine and Misra [49,50], who also showed that for
a system and with time and entropy operators, the dis-
tinction between pure and mixed states becomes mean-
ingless. The underlying idea for constructing a time
operator as discussed in this section is the same as that
given by Prigogine and Misra [49,50] who pointed out
that the lack of a time operator in quantum mechanics
stems from the fact that the time-evolution generator is
identical with the Hamiltonian energy operator of the
system. The Hamiltonian energy operator must have a
lower bounded spectrum in a stable of world, and thus so
does the time-evolution generator. This lower bound of
the spectrum prevents the existence of a time operator.
Thus, they have proposed that in order to introduce a
time operator into quantum mechanics the physical sys-
tem should be described in the Liouville space since the
time-evolution generator is different from the Hamiltoni-
an energy operator in the Liouville space. In this section,
using the relative-energy states in the Liouville space X,
we have realized this idea of Prigogine and Misra and
have constructed the time operator systematically.

VI. SUMMARY

In this paper, we introduced relative-coordinate states,
relative-number states, and relative-energy states, and we
presented a relative-state formulation for quantum sys-
tems. We considered two cases; physical systems consist-
ing of two subsystems in the Hilbert space &, and physi-
cal systems in the Liouville space X.

In Sec. II, using the relative-coordinate states, we gave
a description of quantum systems consisting of relevant
and reference subsystems in position and momentum rep-
resentations. When the reference system satisfies a cer-
tain condition, the relative-state formulation reduces to
the usual description of a relevant system. We also
showed that the probability distribution calculated by the
probability operator measure, which is constructed in
terms of the relative-coordinate states, is equivalent to
the functional definition of quantum probability distribu-
tion or the propensity in phase space considered by
Aharonov, Albert, and Au [21],O' Connell and Rajagopal
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[22], Prugoveqki [23], and Wodkiewicz [24,25]. In Sec.
III, we considered a boson-number measurement and
defined a quantum-mechanical phase operator in terms of
the relative-number states. We showed that by using the
relative number states it is possible to remove the well-
known difficulties in defining the phase operator, which
stem from the fact that the number operator has a lower
bounded spectrum. We have shown that if we assume
that the reference system is in the vacuum state, the aver-
age values of physical quantities thus calculated are equal
to those given by the Pegg-Barnett phase-operator
method [27—30]. Furthermore, we discussed the relation
to other phase-operator methods presented by Newton
[31], Shapiro et al. [32—34], and Hradil [35,36]. In Sec.
IV, we have introduced the relative-energy states and in-
vestigated the energy measurement in terms of them.

In Sec. V, we developed the relative-state formulation
in the Liouville space. In this case, we did not assume
that the system consists of two subsystems. Using the
relative-number states, we introduced the phase represen-
tation in the Liouville space. It was shown that the phase
representation is useful for investigating the time evolu-
tion of quantum coherence or off-diagonal matrix ele-
ments of the statistical operator. Furthermore, we
showed that when the system has a continuous spectrum,
a time operator can be defined systematically in terms of
the relative-energy states. The time operator is a canoni-
cal conjugate of the time-evolution generator, but not the
Hamiltonian energy operator. Finally, we would like to
point that, although we considered the various problems,
all the problems can be treated systematically by the
relative-state method.

[1]M. Ban, J. Math. Phys. 32, 3077 (1991).
[2] M. Ban, Phys. Lett. A 152, 223 (1991).
[3] M. Ban, Phys. Lett. A 155, 397 (1991).
[4] M. Ban, Physica A 179, 103 (1991).
[5] M. Ban, Found. Phys. Lett. 5, 297 (1992).
[6] M. D. Ban, J. Opt. Soc. Am. B 9, 1189 (1992).
[7] M. Ban, Opt. Commun. 94, 231 (1992).
[8] L. Susskind and J. Glogower, Physics I, 49 (1964).
[9] P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 49, 411

(1968).
[10] M. Kitagawa and Y. Yamamoto, Phys. Rev. A 34, 3974

(1986).
[11]Y. Yamamoto, S. Machida, N. Imoto, M. Kitagawa, and

G. Bjork, J. Opt. Soc. Am. B 4, 1645 (1986).
[12] B. C. Sanders, S. M. Barnett, and P. L. Knight, Opt. Com-

mun. 58, 290 (1986).
[13]R. Lynch, J. Opt. Soc. Am. B 3, 1006 (1986).
[14]J. V. Vaccaro and D. T. Pegg, Opt. Commun. 70, 529

(1989).
[15]S. M. Barnett, S. Stenholm, and D. T. Pegg, Opt. Com-

mun. 73, 314 (1989).
[16]C. C. Gerry, Opt. Commun. 63, 278 (1987).
[17]C. C. Gerry, Opt. Commun. 75, 168 (1990).
[18]Ts. Gantsog and R. Tanas, Phys. Lett. A 152, 251 (1991).
[19]Ts. Gantsog, R. Tanas, and R. Zawodny, Phys. Lett. A

155, 1 (1991).
[20] H. Meng and C. Chai, Phys. Lett. A 155, 500 (1991).
[21] Y. Aharonov, D. Z. Albert, and C. K. Au, Phys. Rev.

Lett. 47, 1029 (1981).
[22] R. F. O' Connell and A. K. Rajagopal, Phys. Rev. Lett. 48,

525 (1982).
[23] E. Prugovecki, Phys. Rev. Lett. 49, 1065 (1982).
[24] K. Wddkiewicz, Phys. Lett. A 115, 304 (1986).
[25] K. Wodkiewicz, Phys. Rev. Lett. 52, 1064 (1984).
[26] D. Burak and K. Wodkiewicz, Phys. Rev. A 46, 2744

(1992).
[27] D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483

(1988).
[28] S. M. Barnett and D. T. Pegg, J. Mod. Opt. 36, 7 (1989).
[29] D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665

(1989).
[30] S. M. Barnett and D. T. Pegg, Phys. Rev. A 41, 3427

(1990).
[31]R. G. Newton, Ann. Phys. (N.Y.) 124, 327 (1980).
[32] J. H. Shapiro, Phys. Scr. T (to be published).
[33]J. H. Shapiro, S. R. Shepard, and N. C. Wong, Phys. Rev.

Lett. 62, 2377 (1989).
[34] J. H. Shapiro and S. R. Shepard, Phys. Rev. A 43, 3795

(1991).
[35] Z. Hradil, Quantum Opt. 4, 93 (1992).
[36] Z. Hradil, Phys. Rev. A 47, 2376 (1993).
[37] Y. Nambu, Prog. Theor. Phys. 4, 331 (1949).
[38] U. Fano, Rev. Mod. Phys. 29, 74 (1957).
[39]J. A. Crawford, Nuovo Cimento 5, 689 (1958).
[40] I. Prigogine, C. George, F. Henin, and L. Rosenfeld,

Chem. Scr. 4, 5 (1973).
[41]M. Schmutz, Z. Phys. B 30, 97 (1978).
[42] Y. Takahashi and H. Umezawa, Collect. Phenom. 2, 55

(1975).
[43] H. Umezawa, H. Matshumoto, and M. Tachiki, Thermo

Field Dynamics and Condensed States (North-Holland,
Amsterdam, 1982).

[44] N. P. Landsman and Ch. G. West, Phys. Rep. 145, 141
(1987).

[45] T. Arimitsu and H. Umezawa, Prog. Theor. Phys. 74, 429
(1985)~

[46] T. Arimitsu and H. Umezawa, Prog. Theor. Phys. 77, 32
(1987).

[47] T. Arimitsu and H. Umezawa, Prog. Theor. Phys. 77, 57
(1987).

[48] H. Umezawa and Y. Yamanaka, Adv. Phys. 37, 531
(1988).

[49] B. Misra, I. Prigogine, and M. Courbage, Proc. Natl.
Acad. Sci. USA 76, 4768 (1979).

[50] I. Prigogine, From Being to Becoming (Freeman and Com-
pany, San Francisco, 1980).

[51]M. Bauer, Ann. Phys. (N.Y.) 150, 1 (1983).
[52] M. Reed and B. Simon, Methods of Modern Mathematical

Physics I: Functional Analysis (Academic, New York,
1972).

[53] H. Everett III, Rev. Mod. Phys. 29, 454 (1957).
[54] M. J. Collet, Phys. Rev. Lett. 70, 3400 (1993).
[55] C. W. Helstrom, Inf. Control 10, 254 (1967).
[56] A. S. Holevo, J. Multivar. Anal. 3, 337 (1973).
[57] J. H. Shapiro and S. S. Wagner, IEEE J. Quantum Elec-

tron. QK-20, 803 (1984).
[58] G. Linblad and B. Nagel, Ann. Inst. Henri Poincare 13, 27

(1970).
[59] S. Stenholm, Ann. Phys. (Paris) 10, 817 (1985).
[60] I. Bialynicki-Birula and Z. Bialynicki-Birula, Phys. Rev. A

14, 1101 (1979).


