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Localization of shadow poles by complex scaling
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Through numerical examples, we show that the complex-scaling method is suited to explore the
pole structure in multichannel scattering problems. All poles lying on the multisheeted Riemann
energy surface, including shadow poles, can be revealed and the Riemann sheets on which they reside
can be identified.
PACS number(s): 34.10.+x, 24.10.Eq, 24.30.Gd

Resonant states are solutions of the Schrodinger equa-
tion with outgoing asymptotic boundary condition. It
was pointed out long ago that these solutions must be-
long to complex eigenenergies and the scattering ma-
trix has poles at these energies [1]. In the coordinate-
space, resonant eigenfunctions show oscillatory behavior
in the asymptotic region, with exponentially growing am-
plitude, exp[i(K —ip)r] (K, p ) 0), thus, they are not
elements of the I space. Complex scaling is a most pow-
erful and easily applicable method to describe such states
[2—4]. It has been successfully applied in atomic [2, 5] and
nuclear physics [5—7].

In single-channel problems the working mechanism of
the complex-scaling method (CSM) is well understood
and there is almost no obscure point. The situation is
not so clear, however, in multichannel cases. The pole
structure of a multichannel scattering matrix is much
more complicated than that of a single-channel S func-
tion. In the case of Hermitian potentials, a pole that
would appear in one of the N channels in a single-channel
problem, gives rise to 2 poles on different Riemann
energy sheets in the coupled ¹hannel problem [8, 9].
The easiest way to label a Riemann sheet is to give the
signs of the imaginary parts of the channel wave num-
bers k; (i = 1, 2, . . . , K) in an N-term sign string [sgn(Im
kq), sgn(lm k2), . . . ,sgn(Im k~)] [10]. In the zero-coupling
limit, all 2 poles are at the same energy position on
different sheets, while, by varying the coupling strengths,
the poles move, and a crossing of the real energy axis by
one of them implies a crossing over to another Riemann
sheet. It has been a long-standing belief that only those
poles (named ordinary poles) can have appreciable effects
on the physically observable quantities which are on the
Riemann sheet adjacent to the physical one. Recently,
the efFect of other poles, the so-called shadow poles, of
the multichannel scattering matrix on some physical ob-
servables has attracted interest in atomic [11], particle
[12], and nuclear physics [10, 13]. It turned out that in
certain cases the shadow poles can cause strong efFects;
e.g. , it is a shadow pole which causes the very large cross
section of the famous d+t —+of.+n thermonuclear reaction
[10, 13]. The efFect of a shadow pole on the scattering
matrix depends crucially on which Riemann sheet it is
situated [9, 10, 13].

Although most of the applications of the CSM are in

multichannel problems, up until now all investigations
have been concerned with ordinary poles. In this Brief
Report we show that, using the CSM, one can search for
poles on different Riemann sheets and can identify the
poles by their sheets.

In a one-channel case the essence of the CSM is as
follows. Instead of the

Hl+) = (T + v)l~) = EI+)

eigenequation of the Hamiltonian H, we solve the eigen-
value problem of the transformed Hamiltonian Hg

U(0) HU-'(0):

Hei@0) = Eel@9) (2)

(the 0 subscript of @ means that the wave function im-
plicitly depends on 0; Hamiltonians with different 0 re-
sult in difFerent wave functions). U(0) is an unbounded
similarity transformation [14], which, in the coordinate
space, acts on a function f(r) such that

[If 0 is real, U(0) means a rotation into the complex co-
ordinate plane, if it is complex, it means a rotation and
scaling. ] The two problems are connected by the Aguilar-

Balslev-Combes (ABC) theorem [15]. If V is a (dilation)
analytic operator, then (i) the bound eigenstates of H
are the eigenstates of Hg, regardless of the actual value
of 0, within 0 ( 0 ( vr/2; (ii) the continuous spectrum
of H will be rotated by an angle 20; and (iii) a complex
generalized eigenvalue of Eq. (2), E„,= e —i 2I, e, I' ) 0
(with the wave number k„, = Ic —ip, r, p ) 0), belongs
to the proper spectrum of Hs provided 20 )

l
arg E„,l.

Roughly speaking, the complex scaling transformation
changes the asymptotic wave function from exp[i(v —ip)r]
to exp[i(K —ip)r exp(i0)], which, in the case of 20 )
l
arg E„,

l

= 2l arg k„,l, makes the diverging wave func-
tion localized. It is important to note that, if the sign
of k, , is reversed, then the outgoing wave with 0 = 0
is localized, and the complex scaling spoils the localiza-
tion unless 20 (

l
arg E, , l. In a single-channel problem

with a Hermitian potential —A:, , is on the physical sheet,
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where there are no resonance poles, but in a multichan-
nel problem the imaginary parts of some channel wave
numbers may be positive.

In multichannel cases Eq. (1) becomes a matrix equa-
tion

(4)

where the Greek letters are the channel indices. The
transformation operator of Eq. (3) becomes

U p(0) = 8 pU(0).

In the literature there are some hints on the strange be-
havior of the CSM in multichannel cases; e.g. , in [16] the
authors found that varying the rotation angle 0, channel
continua can absorb resonances that were revealed be-
fore, however, they did not explain this phenomenon. In
[4] it is stated that such a phenomenon becomes trans-
parent if one studies the multichannel problem on the
Riemann energy surface, but no attempt has been made
to assign these poles to Riemann sheets.

Here we study the working mechanism of the multi-
channel CSM in a simple model, which is easy to com-
prehend and control. Our model consists of a target with
two internal states, whose thresholds are Eq and E2, re-
spectively, and a projectile. The two target states are the
two channels. We choose one-term separable potentials
[17] for both the diagonal and interchannel interactions,

where
I yo (6) ) is the eigenfunction of the three dimen-

sional harmonic oscillator with n = 0 oscillator quantum,
b is the size parameter, and A p are the (real) potential
strengths (Ai2 ——A2i). For the wave functions I@&) of
(2), we use the following trial functions:

case (Ai2 ——A2i ——0) only one resonance pole appears at
E = 3.049 —i2.153 [Fig. 1(a)]. Switching on the coupling
(Ai2 ——A2i ——1.0), we get difFerent pole arrangements at
different rotation angles [Figs. 1(b)—1(d)]. We can see in
all figures that the poles distort the continua, as if they
attracted or repelled the continuum points. This phe-
nomenon has surfaced several times earlier, e.g. , Refs.
[6, 18], but as far as the author knows, it is as yet unex-
plained. Furthermore, we exnphasize that in this work the
central question is the working mechanism of the CSM
in multichannel problems, which requires the use of very
different rotation angles. Thus we do not perform an op-
timization in the 0 parameter (which could be done by
choosing the stationary point of the 0 trajectory, see, e.g. ,

[6]). These figures show the appearance and disappear-
ance of poles, the same phenomenon as was mentioned
above. The choice A22 ——0 and the fact that in the un-
coupled case there is only one resonance pole guarantees
that in this problem there is a pole on the (——) Riemann
sheet and another, a shadow pole, on (—+) [9]. The pole
at 4.742 —i1.810 is revealed only when both continua have
swept over this point, which implies that the condition
20 )

I
arg E~„I,p = 1, 2 must be fulfilled in both channels

(where E„, and E„, are the channel energies). Conse-
quently, this pole is on the (——) sheet. For the other
pole, which is on the (—+) sheet at 2.395 —i1.467, the
relations 28 )

I
arg E„,

I

and 29 (
I
arg E„,I

must hold
(cf. the remark after the ABC theorem, above). This is
in full agreement with what we can see in the figures.

This example tells us that, if a pole is revealed, then it
is on a Riemann sheet which is characterized by negative
signs for all channels whose continua have swept over the
pole, and positive signs for all others. A pole at E is an
ordinary one (i.e. , it is on a sheet adjacent to the physi-
cal sheet) if it has been swept over by the continua of all
channels whose threshold energies are lower than Re(E)

i,=O
(7)

0

1—

0

~o~y ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~

~ (b)
~ ~

in a variational method for the expansion coefficients c,.
[this is the well-known wave-function expansion method].
With this ansatz, functions IC'&) E I are selected. The
use of harmonic oscillator functions both in (6) and (7)
makes it possible to calculate all necessary matrix ele-
ments analytically [17]. We choose size parameters in (7)
difFerent from that in (6) so as to make the trial func-
tion more flexible. If we set the strength of one of the
diagonal interactions to be zero, the selected channel can-
not accommodate a resonance, so that all poles we find
in the coupled-channel problem must originate from the
other channel, which implies that the sign belonging to
the other channel must be negative. For the sake of sim-
plicity, we take 8-wave states throughout; although, the
analytical expressions of [17] can be used for l g 0 as
well.

As a first example, we choose A22 ——0, Agg ——1.0,
b = 0.6, b = 2.0, Ei ——0, and E2 ——2 (we use atomic
units h = m = 1). The basis sizes (ni, n2) are cho-
sen so as to reach stable convergence. In the uncoupled

0

-1—
0 0

0

3 4 0
Re E

FIG. 1. Energy eigenvalues of (a) a one-channel problem
with a one-term separable potential (Aii ——1.0) and (b)—
(d) a two-channel problem with one-terin separable potentials
(Aii = 1.0, A22 —0.0, A1+ —A21 ——1.0, and E2 ——2). The dots
are the points of the rotated discretized continua, while the
circles are the poles of the S matrix on di8'erent Riemann
sheets. The rotation angles (in rad) are (a) 0.4, (b) 0.2, (c)
0.4, and (d) 0.7.
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and has not been swept over by any other ones. From this
it follows that one can imagine situations where a shadow
pole can be revealed only if the rotation angles in differ-
ent channels are different. For instance, to reveal a pole
above the first channel threshold on the (+—) sheet, the
rotation angle in the second channel must be greater than
the one in the fi.rst channel. It is questionable whether
the CSM can cope with such a constraint. The theory
of the multichannel CSM always assumes that 0 is the
same for all channels. Here, just to see what happens,
we venture to choose two different 0.

It seems natural to generalize the multichannel
complex-scaling transformation (5) in the following way:

0

Re E

Up=6 pU(8 ).
In the coordinate space the action of U (8 ) is

U-(8-)f(r) = "*' 'f(«*'-).

(8) FEG. 2. Energy eigenvalues of the two-channel problem of
Fig. 1. The rotation angles are Oq ——0.45 and 02 ——0.

This definition ensures that the (U p) operator matrix
inherits all properties of U(8). Applying the transforma-
tion (8) to the Hamiltonian of Eq. (4), we arrive at

N).U-(8-)H-pU, '(8p)l+'. , ) = &..;,I~..)
p=1

(~.:I U-(8-) H-pU, '(8p)
I

+'., )

—3i(0 +Op)/2 @8 (" ' )H p(" "p)

x@P8 (rpe ' s)r dr rpdrp. (14)

o. = 1, 2, . . . , %. (10)

As an illustrative example, we write down the function
U (8 )H pUp (8p)l@8 ) and its overlap with the func-

tion (@8 I
in the coordinate space. If the operator H p

connects channels which have the same dynamical coor-
dinate r, then

(rIU-(8-)H-pUp '(8p)l@ )

3 (8 —8 l/2H (
8 )@P (

(8 —8 ))

and

Deriving (12) and (14) the Cauchy theorem was used, as-
suming that all potential operators are analytic

I

like ours,
(6)]. We can see that the matrix elements of the trans-
formed operator U (8 )H p Up (8p) between the origi-

nal channel states l@8 ) and l@P8 ) can be expressed as

the matrix elements of the original operator H p between
the so-called back-rotated channel states. This is a well-
known feature of the usual complex-scaling method, too.

We tested this generalized CSM with the above two-
channel problem setting 02 ——0. The result is in Fig. 2.
The position of the (—+) shadow pole remains the same
as it was in Fig. 1 within 7 decimal digits, which is a

(~..I U-(8-) H-pU, '(8p)
I
~'., )

—3i(8 +Op)/2
(bj

@8 (re '8 )H p(r)%8P (re '8~)r2dr.
~ p

If the 0 p operator connects rearrangement channels
with the dynamical coordinates r and rp [i.e. , in the
coordinate space H p f (rp) = I drprp2H p(r, rp) f(rp)],
then

(r IU (8 )H pUp '(8p)I@P8 )

-I—
I

I

3 —~

/8

{C) +o
~ ~

~ ~
~ ~

~ ~

~ ~

~ Q
'~ p

4

aIld

3i(8 —Op ) /2

H~p 'P~c ) 7 p 0 g 7 pc TpdPp) 13

Re E

FEG. 3. The same as Fig. 1, with the potential strengths
(a) %+2 —0.2; (b)—(d) Ari ——0.0, Asq ——0.2, and Ai2 ——A'21

0.42. The rotation angles are (a) 0.78, (b) 0.68, (c) 0.78, and
(d) Hi = 0.42, Og ——0.78.
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remarkable stability regarding that no optimization was
made in 6 and Oq.

The really relevant test is, however, an example where
there is a shadow pole on (+—). To achieve this, we set
A22 ——0.2, which, in a one-channel problem, results in
a pole at 2.430 —i3.704 [Fig. 3(a)]. Switching on the
coupling (A&2

——A2q
——0.42), figures similar to Fig. 1

can be generated [Figs. 3(b)—3(d)]. Now the pole at
3.381 —i3.228 is revealed when both channel continua
have swept over this point, so that this pole is on the

(——) sheet. The other pole at 2.373 —i3.357 is revealed
when the continuum of the second channel has swept over
it and that of the erst one has not, which shows that this
pole is a shadow pole on the (+—) sheet, in agreement
with the fact that these poles originate from the second
channel [9]. In this example the variation of the rotation
angles slightly removes the poles from their original posi-
tions. This is, however, certainly caused by the fact that,
because of the unlucky location of the poles, we have to
choose rotation angles that are far from optimum. If we
do not want to reveal the two poles at the same time,
we can optimize the 0 angles, which results in stable pole
positions.

Finally, we mention an interesting feature of the

present method. Let us suppose that there is a multi-
channel problem where there are degenerate thresholds.
Then some of the Riemann sheets cannot be reached from
the physical sheet by following analytical continuation
paths because one cannot pass between two thresholds
that coincide. Using the above multichannel CSM with
diferent rotation angles in these channels, we can reach
such Riemann sheets.

In summary, we have investigated the applicability
of the multichannel complex-scaling method to explore
the pole structure in multichannel scattering problems.
We have used a natural extension of the single-channel
complex-scaling transformation to multichannel cases,
which allows us to find the poles of the scattering matrix
on all Riemann sheets. We have found that this exten-
sion works as expected and is able to And all conventional
poles and shadow poles reliably.
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