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Lower bounds on equilibrium configurations of diatomic molecular systems
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A simple but rigorous relation is derived that provides uniform lower bounds on the equilibrium inter-
nuclear distance R, where the potential-energy curves of diatomic molecules in the Born-Oppenheimer
approximation have a minimum. By employing monotonicity properties and explicit lower bounds on
electronic energies, the applications of these R, bounds to systems with one or two electrons are dis-
cussed in detail.

PACS number(s): 31.10.+z, 31.90.+s, 31.15.+q

For a diatomic molecule with a given number X of
electrons, the behavior of its potential-energy curves
(PEC's) and thus, also, its stability properties depend cru-
cially on the involved nuclear charges Z„,Z~ & 0. Vary-
ing these charges, on certain Z~, Zz intervals, PEC's en-

joy global or local minima providing the associated states
of the system with stable or metastable equilibrium
configurations against (adiabatic) dissociation [1—3]. In
particular, if the respective intervals contain physical,
i.e., integer, Z~, Zz, this allows the formation of bound
or quasibound systems. 2 priori information on the loca-
tion of such equilibrium configurations —such as, e.g.,
rigorous bounds on the region of internuclear separations
R where minima R, of the considered PEC's can
occur —is of interest for theoretical as well as for practi-
cal purposes. Whereas for X and Z~, Zz fixed, the R,
cannot be bounded from above uniformly for all states, a
uniform lower bound on R, wi11 be established below.
Despite its rather simple derivation, the existence of such
a lower bound appears to be unnoticed in the literature
until Ref. [4] where this type of bound entered as an im-
portant tool into the stability analysis of the one-electron
molecular ion. In addition to supplying a proper deriva-
tion of the lower bound relation, the aim of this note is to
study various forms of the bound for specific situations
and to compare the resulting values with R, data from
accurate numerical computations.

Assuming the validity of the Born-Oppenheimer ap-
proximation, the total molecular Hamiltonian

H(R;Zq, Zs', p) =h(R;Zq, Z~,.p)+ZqZ~ /R

as well as its electronic part

h (R;Z„,Zs;ALt) = t(p)+ u(R;Z~, Zs ) (2)

contain the internuclear distance R = ~R~; the nuclear
charges Z&, Zs )0; and the electron mass p (that eventu-
ally will be set to its physical value 1 in atomic units) as
parameters. In Eq. (2), t denotes the kinetic-energy
operator of the electrons,

t(p)= g p;,
2p

and v the potential

ZA Z8
u(R;Z~, Zs)= —g, , +,

~

+u„(N), (4)

where the electron-electron repulsion is non-negative
v„)0 or absent v„(N = 1)=0 for one-electron systems.
The Hamiltonian H (or h) is reduced by subspaces A of
states invariant under irreducible representations of the
symmetry group C, . By Eq. (1), the electronic

4a, v a, v4a, v

and total energy E are related by

E,(R;Z~, Ztt;p)=e (R; „Z,Z sp)+Z, Z /sR,

and we adopt a labeling v of the states g EA that
preserves the diA'erentiability of the PEC's E and e
with respect to R. The state in A with lowest energy
will be denoted by g 0, and the (symmetry-unrestricted)
ground state by $0.

Let R, ' be the (smallest) internuclear distance for an
equilibrium configuration of the system in state g

R, (Z~, Z~;p) = '
min[R, ~E (",Z~, Z~;p) has a minimum at R, ]
~ if there is no minirnurn for E (6)

Then the following lower bound holds for R, ':
R, ' ) sup [2Z„Zs/ie 0(R/2;Z~, Zti;p)~] .

O&Z (Z~'
e

(7)

The proof of Eq. (7) rests on a simple combination of the molecular virial theorem, the minimax principle, and a scaling
argument. Namely, for R )0, by the virial theorem (cf. Sec. 4.6.16 in Ref. [5]),
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(dE „/dR )(R;Z„,Zg, p) = —(1/R )[—( U (R;Zq, Z~ ) ) „—(Z„Z~ /R )+2E „(R;Zq,Zii,'P)]

= —(1/R)[2(t(p) ) + (U(R;Z„,Z~) ) +(Z„Z~/R )]
= —(1/R )[(h(R;Z„,Z;p/2) ),+(Z„Z /R )], (8)

R (2Z„Z~/le 0(R/2;Z„, Zii;p)l, (10)

yielding immediately the inequality (7).
Before proceeding to applications, let us extract some

more specific bounds from the rather general formulation
of Eq. (7). First, since eo e 0, the inequality (7) implies
that

2ZQ ZB
R, ' & sup

0&@&R ' Ieo(R /2'»g»a'P )I

Furthermore, for the ground state the united-atom ener-
gy is always below the molecular electronic energies, i.e.,

eo(Z„+Zz, p)= eo(0;—Z„,Zii;p) ep(R'Zg Zg'p)

(see, e.g. , 4.6.14 in Ref. [5]). Therefore, a uniform lower
bound on all R, '" is given by

R, )2Z„Z~/leo(Z„+Z~;p) (12)

Improved bounds can be obtained for states for which the
electronic PEC of g 0 is monotonically increasing in R.
Then, starting with R, .'0 =—0, by

2ZA ZB
(13)

le., o(Re;k —1/2 Z~»~ p)l
for k ~ 1, an iterative sequence of lower bounds is defined
and Eq. (7) says that limk „(R,k)(R, .

Finally, we note that, as they stand, the preceding rela-
tions are of little practical use because in general the ex-
act energies e 0 are unknown. The point is, however,
that the inequalities (7) and (11)—(13) remain true if the
exact energies are replaced by lower bounds e"

0
~ e

For systems with one electron (fixing now @=1), the
united-atom energies are, of course, well known. Hence,
by Eq. (12), for all states of the one-electron molecule,

where ( ), stands for the expectation value taken
within g, i.e., an eigenstate for electron mass p. The
minimax principle followed by a scaling in the mass pa-
rameter gives

(h(R;Z„,Z~;p/2) ),)e~ 0(R;Z„,Z~;p, /2)

=
—,'e p(R/2'Zg Zg p)

Hence, the condition for a repulsive PEC, dE /dR &0,
is satisfied if

TABLE I. Minimal R, for various states of the one-electron molecu-
lar system together with the corresponding charge Zz. For compar-
ison, the R, for the physical charges Z& =1 or 2 are also given.

State
71=Z /Z 1

B
min (R, ) ZA R, (Z~ =1)

1so.
2po
3do
4d o.

4fcr

Sg cr

2p 77

4fm
3d5

1.9524
8.4363
7.3395

17.7680
20.7331
16.1158
7.4655

16.6458
16.4496

0.7924
0.7939
1.6127
0.9414
1.0681
1.9773
0.7225
1.4079
0.7039

1.9972
12.5461
8.8341

17.8492
20.9210
23.9003
7.9307

18.6078
17.9670

State
YJ=Z /Z j

B A

min(R, ) A R (ZA =2)

for various states of the g=1, —,
' case are collected in

Table I. These data are based on accurate ab initio com-
putations of the PEC's and the simple scaling properties
(in Z~, Zii ) of the one-electron Hamiltonian (for details,
cf. Ref. [3]). In both situations g= 1 and —,', the smallest
computed R, is about twice as large as the corresponding
uniform lower bound and occurs for the ground state 1so
at Z„=0.7924 or Z„=0.7499, respectively, i.e., at
charge values below the physical ones. For excited states,
the minimal R, distances are rapidly increasing.

%'hile a detailed interpretation of the data of Table I
goes beyond the scope of this paper, it must be pointed
out that in Table I we selected states whose PEC's also
have a minimum for the physical charge parameters; for
these charges, most of the other states are repulsive on
the considered R range (i.e., [0,50] or larger, where
Z„Zz and Z~ is fixed at 1). In contrast to the situa-
tion for the tabulated states, in most cases the smallest R,
are assumed for Z~, ZB below the values for H2+ or
HeH +. Moreover, although from Table I it might ap-
pear that the minimum of R, occurs for charges above
those of a corresponding neutral system (viz. ,
Z„=Z~ =

—,
' if g= 1, or Z„=2'=—,

' if g= —,'), for most
states this is not true; e.g. , for the 2so. state R, =9.4480
at Zz =Z+=0.3456 (ii=1) and R, =11.3102 at
Z„=2Z~ =0.2508 ( q =—')

For one-electron systems, the ground state 1scr as well

R, ~[4Z„Zg/(Z„+Z~) ]=[4g/(I+g) ], (14)

where g—=ZB/Z~. For the physically most important
cases ii=1 (including H2+) or rI= —,

' (including HeH +)
this gives R, ' ) 1 or R, ' ~

—,', respectively. Actual
values of the smallest possible bond lengths

min [R, '(Zg, Zg ) IZg /Zg =g j
A' 8

1so
2po
4fo.

5g o.

6ho
7lo
4f~
6h 7I.

5g6

2.1309
3.8587

11.3528
15.8144
27.9935
26.3190
16.2058
26.7934
26.9470

0.7499
1.8392
2.2785
2.6521
2.0389
3.0811
1.8898
2.4775
1.8064

3.8979
11.7657
18.1538
28.0604
33.7353
16.4516
28.9799
27.9710
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R, ')4 g)~( im i+1)'/(1+
g=z~/z„= —'

min (R, ) min (R, )/n

g=z~/z~ = —'

State min (R ) ', nmin (R, )/n (15)

TABLE II M inimal R fore
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1so 1.9524
2p 77 7.4655
3d 5 16.4496
4fQ 28.8828
5g y 44.7523
6hy 64.0519
7i g 86.7737

1.9524
1.8664
1.8277
1.8052
1.7901
1.7792
1.7709

0.7924 2.1309
Oe 722 5 8 ~ 3903
0.7039 18.8265
0.6963 33.4677
0.6929 52.3248
0.6913 75.4025
0.6907 102.7028

2.1309
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"trivial" (i.e., identical to values that result by neglecting
the positive part v„of h; cf. [5 and 9]) for Z below a cer-
tain crossing point Z, . In Fig. 2 lower bounds on R, are
displayed for singlet and triplet states with g=1 and —,'.
These lower-bound curves are computed by using a two-
dimensional projection for the eo [Eq. (5) of Ref. [9])
and, due to the just-mentioned crossings, become con-
stant [and equal to 18' /5 ( 1+g ) (singlet) or
64si/17(1+g) (triplet)] for Z„smaller than the values
shown in Fig. 2. For Z~ large, they converge —as
expected —to the values 2il/( 1+rl ) (singlet) or
16'/5(1+q) (triplet) corresponding to the trivial hydro-
genic lower-bound energies. In addition, we tried "para-
bolic" eo [Eq. (8) of Ref. [9]) from a one-dimensional
projection; although on a certain Z~ interval they yield
larger R, bounds, on the scale of Fig. 2, the diC'erence
would not be visible.

In the two-electron case, unfortunately only for sym-
metric systems and the ground state X 'X+ are exact (nu-
merical) R, available for varying Z =Z„=Zii (see Fig. 4
in Ref. [1]); the smallest R, = 1.263 was observed at
Z=1.605. For the physically most important charges,
our bounds yield R, )0.657 (Z = 1) or R, )0.571
(Z =2) for all singlet states, and R, )0.916 (Z =1) or
R, ~0.856 (Z =2) for all triplet states. In comparison,
the actual (numerical) values are R, = 1.401 for
H2(X 'Xs+) (cf. Ref. [10]), R, =1.328 for He2 +(X 'X+)
(cf. Ref. [1]), and R, =1.868 for H2(a Xs ) (cf. Ref.
[10]). If i)= —,

' and Z„=2, we get R, )0.531 in the
singlet and R, ~0.778 in the triplet sector, compared
with R, =1.435 and 4.47 for the lowest singlet or triplet
states, respectively, of HeH+ (cf. Ref. [11]). Better R,
bounds would result from sharper lower bounds on the
united-atom energy; however, as can be verified by insert-
ing the (almost) exact energies for the He isoelectronic
series from Ref. [12], the maximal improvements achiev-
able in this way are moderate (about 5% at Z = 1).

If the molecular system contains three or more elec-
trons, the derivation of R, bounds along the same lines is
handicapped by the present lack of appropriate lower-

bound energies e o. The trivial hydrogenic
e o(Z)= N—Z /2 produces a uniform bound on R, for
all states of an ¹ lectron molecule like the bound in Eq.
(14) but with an additional factor N on the right-hand
side. For neutral systems (i.e., Z =K), in the limit
N~ ~, Thomas-Fermi theory leads to a lower-bound en-
ergy of the form

( 3 )i/3~1/3+ O(~2)
This implies a lower bound on R, that decreases as

for large N. Since there are no systematic studies
of the N dependence of equilibrium configurations, the
question of whether or not the shrinking of the lower
bound with N ' is the correct asymptotic behavior for
a Schrodinger molecule [modeled by the Hamiltonian (1)
without relativistic or other corrections] cannot be
answered here.

To summarize, the bound in Eq. (7) or its specialized
versions (11)—(15) exclude small internuclear separations
as candidates for molecular equilibrium positions. The
quality of the obtainable R, bounds depend on the enter-
ing lower-bound energies for the PEC's or united atoms.
Comparison with exact R, shows that for the lowest
states, actual R, values are within a factor 2 of the shar-
pest lower bound; possible improvements would require a
sharper estimate (9) and may be difficult to achieve for
the general case. A major advantage of the derived
bounds is their uniformity in all states of the considered
symmetry sector, so that they could find further applica-
tions in various other situations. Moreover, although we
restricted our discussion here to diatomic molecules, a
generalization of the bounds to linear symmetric
configurations of polyatomic species is straightforward.
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