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Quantum violation of stochastic noncontextual hidden-variable theories
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We formulate stochastic noncontextual hidden-variable theories. In such theories the hidden state A,

specifies not definite values, but expectation values A (A, ), . . . of observables A, . . . and noncontextuali-
ty means that A (A, ) is independent of which other commuting observables commuting with A are mea-
sured together with A. We show via Bell inequalities that such theories conAict with quantum theory
and propose a two-photon experimental test. We also show that for a single particle of spin (2"—1)/2,
quantum violation of classical noncontextuality grows exponentially with n.

PACS number(s): 03.65.Bz

In quantum theory, the expectation value of an observ-
able A is unaffected by the previous (or simultaneous)
measurement of any set of mutually commuting observ-
ables commuting with A. This "statistical noncontextu-
ality" provides the inspiration for the "noncontextuality"
hypothesis in hidden-variable or deeper-level theories. In
a deterministic noncontextual hidden-variable theory, the
value of an observable 3 is independent of which particu-
lar set of mutually commuting observables commuting
with A are measured together with A. The Gleason and
Kochen-Specker theorems [1] prove the impossibility of
such a hidden-variable theory for quantum mechanics. A
particularly interesting case of noncontextuality arises
when observables 2 and B commute due to spacelike sep-
aration, and the noncontextuality hypothesis becomes the
Einstein locality hypothesis [2]. In this case Bell' s
theorem [3] proves a stronger result, viz. the impossibili-
ty, not only of deterministic but also of stochastic local
hidden-variable theories for quantum mechanics.

Further Mermin [4] and Roy and Singh [5] (MRS) have
shown that for n spin- —,

' particles quantum theory violates
the Einstein-Bell locality by an exponentially large factor
2(n —1)/2

The purpose of the present work is threefold. (1) We
extend the Gleason-Kochen-Specker theorem to stochas-
tic noncontextual hidden-variable theories. (2) We pro-
pose a two-photon experiment to test inequalities on pho-
ton polarization correlations implied by such theories and
violated by quantum theory. (3) For a single particle of
spin S, with 2S+ 1=2", n integer, we show that quantum
violation of noncontextuality grows exponentially with n.
Previously [6] only violations (of Einstein locality) for
two spinning particles by a factor up to &2 have been
known. The violations we find are illustrations of the
quantum theory convicting with the classical idea of non-
contextual realism. Evidently, noncontextuality is more
stringent than locality because it applies to a greater
variety of physical situations. For example, for a single
high-spin particle there are no locality inequalities. Im-
plications for measurement theory will be discussed.

Stochastic noncontextual hidden variable theories. Let
A, (a, ), . . . , A„(a„)be dynamical variables correspond-
ing to dift'erent degrees of freedom of a given physical sys-
tem, the settings of the apparatus measuring AJ(a~ ) being

In a hidden-variable theory, the state of the system may
be characterized by variables A, (which may include the
quantum-state vector as well), with p(A, ) being their prob-
ability distribution obeying

p(A, ) ~0, fdl, p(A, )=1 . (2)

For given k, the dynamical variables have expectation
values A, (A, , a, ), A2(A, ,a2), . . . , A„(A,, a„), noncontextu-
ality implying that 3; depends only on k and a;, but not
on aj with j Wi We .assume that by the very definition of
the A;, A, ~

~ 1 (e.g. , A; =+ 1 for transmission through a
polarizer and —1 for nontransmission), and hence that

(3)

Further, in complete analogy to Bell's argument for local
stochastic theories [3] we define noncontextual stochastic
theories to be those in which A, A2(k, ,a„az)

A, ( k, a, ) A (2A, , a z ). To motivate this, suppose that
A,. (A, , a;) is the average over hidden variables A, ; of the
apparatus which measures A; to be A;(A, , A, ;,a;). Non-
contextuality requires that A, (A, , A, „a, ) and the probabil-
ity distribution p, (A, , ) of A, , must be independent of which
commuting variables are measured together with 3

&
and

in particular of X2, a2. Hence

A i A~(k, , at, a2) = f dkidk2p, (Ai)p2(A2)

X Ai(A, , ki, ai)A2(X, A2, a2)

A, (A, , a, ) A (2A, , a)2.

The n-variable correlation function thus has the represen-
tation

n

P(ai, a2, . . . , a„)=f dA, p(k) Q A, (A, , a;) . (4)

The corresponding quantum correlation function in a
state g is

denoted by a . In quantum theory the dynamical vari-
ables are represented by observables A;(a; ), with

[A;(a;), A (a )]=0 .
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]p]a„a~, . . . , a„l]~——
(g rt A, (a, ] g) .

1=1

As we show below, Bell's work applied to the above for-
mulation entails the following theorem.

Theorem. There exist quantum systems for which
some experimentally verifiable quantum predictions can-
not be reproduced by any noncontextual stochastic
hidden-variable model; i.e., there exist quantum states g
such that

P(a„a2, . . . , a„)A[P(a],a2, . . . , a„)]& .

On the other hand it is obvious that the representation
for n-variable correlation functions assumed for stochas-
tic noncontextual hidden-variable theories necessarily
holds in any classical theory. Hence the noncontextuality
inequalities derived below yield a quantitative measure of
the amount by which quantum theory must violate any
classical theory.

Proof of the theorem for two spin —,
' partic- les and an ex-

perimental test of noncontextuality. Let o& and o 2 be the
Pauli spin operators for two particles. Then

[cr ] a ]0 p
' a2, cT ( b )

G'
p

' b p ]=0

if a ),a2, b ),b2 are unit vectors obeying a; lb, , i.e.,
a, b, =a& b2=0. Notice that Eq. (7) is not related to lo-
cality. Let us denote a = Ia„a2], b = Ib„12], and
A(a)=o, a, cr2 .a2 , then 'A(o) has eigenvalues +1, and
[A(a), A(b)]=0. Hence, in a stochastic noncontextual
hidden-variable theory we must have the correlation
function P(a, b) obeying (4) with [A(k, , a)] ~1. This
leads to Bell's inequalities,

lP(a, b) P(a, b')l+—lP(a', b)+P(a', b')l ~2, (g)

provided that a;|b;, a;lb,', a,'lb;, a,'ib,' for i =-1 and 2.
On the other hand quantum mechanics gives in the sing-
let state g

(9)

The orthogonality conditions on a, b are obeyed if we

choose b&, b&, a2, and az along the negative z axis,
b]=b]=a2=a2=(0, 0, —1), and the remaining vectors in
the x-y plane. In particular, the choice a] = ( 1,0,0),
a', =(0, —1,0), b2=( —I/t/2, 1/']/2, 0), bz=( I/&2, 1/
&2,0) leads to

I [P(o,b) —P(~ b')]qMI+ IIP(a', b)+P(o', b')]&Ml

=2&2, (10)

which violates the noncontextuality inequality by a factor
t 2. This proves the announced theorem. For experi-
mental purposes, a two-photon version of the violation of
noncontextuality by quantum mechanics might be more
practical to test for the two-photon state
P=( lx ) ly &

—
ly & lx & )/&2, where x & and y & denote

photon states plane polarized along the x and y axes, re-
spectively. Replacing o by the 3 X 3 photon spin opera-
tor X which equals o. for x and y components of photon
spin wave function and has zeros on the third row and
third column, we obtain as before Eq. (9), which violates
the Bell inequalities following from noncontextuality by a
factor v'2, for the choice of a, b, a', b' given already.

The experiment (Fig. 1) with a two-photon source of
the kind used in Refs. 7 or 8 will provide a test of the
quantum superposition principle against the classical idea
of noncontextual realism in a situation where locality is
not the issue [9].

Power law violation o-f classical behavior for a particle of
high spin. A striking consequence of the above formula-
tion of stochastic noncontextual theories (entirely outside
the scope of Bell's locality theorem) is the following re-
sult. For a single particle of spin S=(2"—1)/2, where
n =1,2, 3, . . . , quantum theory violates noncontextual
realism by a factor (S+—,')' if n is odd, and
(S+—,')' /&2 if n is even.

A particle with spin S may be described quantum
mechanically by means of a (2S+1)-component wave
function g in a suitable orthonormal basis let). When
2S+1=2", we may choose the labels a to be n-tuples:
a=m, m2 m„, where m;=+1 (or simply m;=+).
Thus

lg&= gq let&, a—=m, m, . m„, m, =+ .
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FIG. 1. Schematic diagram of experimental apparatus to test the noncontextuality inequality. The source S emits two photons in
the polarization state (lx ) ly ) —

ly ) lx ) )/&2, along —z and +z axes. The left photon goes through an elliptic polarizer measuring
X1 a1= r, =+1, and then through another elliptic polarizer measuring X1.b, =s, =+1. The right photon similarly goes through two
channel elliptic polarizers measuring X2.a2=r2=+1 and X2.12=s2=+1. Here, a1lb1 and a2lb2. Detectors on the left and right are
wired to measure 2 = 16 coincidence counts 2V„, „, , and hence11'22
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Consider the Hermitian operators A;(a; ) with matrix ele-
ments

and +1 must be reached on the boundary, i.e., for each
argument =+1. It follows that

~AHv~-p. ~BHvl ~p. , (15)

o"a = a,
ax +EQy

a —ia
—a,

where a'—=m', . m„' and the cr are Pauli matrices, i.e.,

where

p„=2'" "~ for n odd, p„=2"~ for n even . (16)

We now show that these noncontextuality inequalities
can be violated by quantum correlations. Choose all
g; =+1, all a, =x, all a,'=y, and for ~g& consider the
choices

Then A; (a;) equals the unit matrix and hence each
A;(a; ) has eigenvalues +1. Further, for i Aj,
&a'~ A, (a, )A, (a, )~a&

= (o"a; ), (o"ai ), g 5
~ k(Wi, j)

&=( ++ + &+i~ ——. —&)/&2,

(q &=(/+ . +&+/ —. —&)W'2

Then,

(A(n)+2n —
1)~+ & 0 (B(n)+2n —

1)~y &
—0 (17)

F'"'= + [A,.(a, )+iq; A;(a )],

A (n) —(F( )+nF(n)t)/2

B(n) —(F(n) F(n)t)/(2t )

(12)

where il; =+1. Then, A &"' = (lit~ A'"'~P&, B&"'
=(P~B'"'~P& involve only linear combinations of quan-
tum correlation functions in the state P. Their hidden-
variable analogs are

A'"' = fdip(A)A, ~"'(X, ) B'"' = f d J p(J )B'"'(X)

(13)

where A '"'(A, ) =ReF'"'(A, ), B'"'(A, ) = ImF'"'(1, ), and
n

F'"'(A, )= g [A, (A, ,a, )+i71; A, (A, , a,')) . (14)

Since the A'"'(A, ) and B'"'(A, ) are linear functions of
each of the arguments A;(A, , a;) and A,.(A, , a ) their maxi-
ma and minima on varying the arguments between —1

which shows that the A, (a, ), . . . , A„(a„) are mutually
commuting operators. Hence we obtain the representa-
tion (4) for their correlation function in stochastic non-
contextual theories.

We now derive inequalities on linear combinations of
the correlation functions P(a „.. . , a„) using the
methods of MRS [4,5]. Consider

hence the quantum-mechanical expectation values 3&'
and B~~"' equal +2" ' for g=y+ and tt+, respectively,
violating the noncontextuality bounds (15) by a factor
2' ",with % =n for n odd, and X=n —1 for n even,
as announced. We expect that the result for even n can
be improved following the methods of Ref. [5] and that
similar violations could be proved also for SW(2"—1)/2.

Consequences for measurement theory. The above
power-law violation of classical behavior for a single par-
ticle is qualitatively new with respect to the MRS viola-
tions for n spin- —, particles. The MRS violations arise
from quantum states which are superpositions of distinct
states of a macroscopic number of particles. Since such
states have not been observed in nature, one possibility is
that such states undergo spontaneous localization jumps
as in certain measurement theories [10] thus removing
the exponential departure from classical behavior. The
jumps proposed in Ref. [10] have significant probability
only for a large number of particles. In contrast the
growing power-law violations here reported are for a sin-
gle particle of high spin; modifications of quantum theory
more general than Ref. [10) are needed to avert these
large violations.

We thank S. S. Jha for informing us of Ref. [11]which
discusses elliptic polarizers needed for the experiment
proposed here, and Gisin and Peres for informing us of
their work [6].
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