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A model is formulated to investigate quantitatively how near-resonant degenerate four-wave mix-
ing (DFWM) in a vapor of homogeneously broadened two-state atoms is affected by radiation scat-
tered from the pump beams. The spectral intensity distribution of the scattered radiation in the
interaction volume is obtained by solving the equation of radiative transfer and a detailed treat-
ment of the modification this fluctuating field causes on the optical dipole induced by the coherent
laser fields is presented. For a broad parameter regime, this modification can be expressed via a
single quantity that incorporates the energy of the fluctuating field together with bandwidths and
frequency offsets from the atomic resonance. Numerical solutions are given which show that the
scattered field causes the DFWM reflectivity to be depressed by a significant amount, depending
most strongly on a characteristic transverse length of the interaction volume. Approximate analytic
expressions for the reflectivity are also given which assist in physically understanding the underlying

mechanisms.
PACS number(s): 42.65.Hw

I. INTRODUCTION

Near-resonant four-wave mixing (FWM) is a tool of
great practical importance in spectroscopic and diagnos-
tic applications. A good understanding of the main fea-
tures of the phenomenon has been provided by a semi-
classical theory that treats the case of monochromatic
lasers and incorporates saturation and atomic motion ef-
fects [1]. Considerable current interest remains, however,
in the analysis of additional mechanisms which may affect
the four-wave mixing process. For example, fluctuations
in the pump or probe fields were shown by Cooper et
al. [2] to produce a significant change in the dependence
of the FWM reflectivity on pump power. Other workers
have shown that the probe field frequency response is sen-
sitive to the details of the relaxation mechanism. Within
the framework of the optical Bloch equations, which are
the basis of the usual semiclassical theory, Berman et al.
[3] studied the effect of varying the numerical relationship
between relaxation parameters in an open two-state sys-
tem. In certain circumstances, however, the simple treat-
ment of relaxation in the Bloch equations gives an inad-
equate description of the FWM process [4]. Singh and
Agarwal [5] used modified Bloch equations to account for
the correlations that may develop between strong laser
fields and a collisional relaxation mechanism [6]. Wang
and Steel [7], in considering the problem of spectral diffu-
sion (transfer of excitation amongst the active radiators)
developed a modified set of optical Bloch equations in
which the population equations include transfer between
frequency classes. Their emphasis was on describing pro-
cesses in solid state materials, but their formalism (which
has its roots in treatments of velocity changing collisions
in atomic vapors) is rather general.

In this paper, we consider the effect that a fluctuating
background radiation field produced by scattering from
the laser modes can have on near-resonant degenerate
four-wave mixing (DFWM). The dissipative effect of this
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scattering on the laser beams has been accounted for [8]
within the framework of the usual near-resonant FWM
theory, where the loss is quantitatively evaluated from
knowledge of the Einstein A coefficient. Recently Mc-
Graw [9, 10] used fluctuation dissipation arguments to
estimate the magnitude of scattering from thermal fluc-
tuations in FWM in a Kerr medium. However, in all
previous theories a scattered photon is assumed to play
no further part in the FWM process. It is well known
though (e.g., see Refs. [11-14]) that in resonant media,
the photon can reinteract with nearby atoms. This so-
called radiation trapping has been shown to have a sig-
nificant effect on other nonlinear optical processes [15,16]
because of the alteration it causes in the atomic response
to the laser fields.

In the simplest approach, the effect of the transport of
the scattered radiation has been treated in terms of a dif-
fusion [11] of excited state population outwards from the
laser beams. Lange has used a diffusion model to gain an
initial understanding of the role of radiation transport in
nonlinear optics. In FWM, diffusion has also previously
been used as a simple model of the effect of atomic motion
[1]. However, such an approach can provide only an in-
complete description of the effect of scattered radiation
in FWM, where the key atomic quantity is the optical
dipole, not the excited state population. In addition to
exciting population transfers, the background field can,
for example, dephase the dipole relative to the coherent
field. To understand the effect of the scattered radiation
field we must consider in detail its interaction with the
atoms as well as its buildup in the atomic vapor.

In the present work we develop a specific model for
four-wave mixing of monochromatic laser fields in a
medium of homogeneously broadened two-state atoms,
which will enable us to evaluate quantitatively the ef-
fect that scattered radiation has on the FWM process.
For simplicity, we neglect velocity effects and also as-
sume plane wave laser fields. We begin in Sec. II by
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formulating an approach, based on the equation of ra-
diative transfer, for calculating the spectral intensity of
the incoherent field that develops from scattering from
the counterpropagating pump fields. With the assump-
tion that the incoherent field can be represented by a
broadband chaotic stochastic process, we obtain emission
and absorption coefficients appropriate for atoms driven
simultaneously by both the strong monochromatic and
the incoherent fields. A formal solution for the scattered
field intensity distribution is then derived, incorporating
the periodic character imposed on the absorption and
emission coefficients by the interference pattern of the
laser beams. In Sec. III we present a closed form for
the polarization of atoms driven by combined monochro-
matic and chaotic fields, which depends on the intensity
and bandwidth of the fluctuating field, and is valid in a
regime where this bandwidth is sufficiently large. An an-
alytic form is then calculated for the DFWM reflectivity
in the presence of the background field, by expanding the
polarization in the manner of Abrams and Lind [17]. In
Sec. IV we calculate numerically a self-consistent solu-
tion to the background intensity distribution, and show
its dependence on the volume of the interaction region.
We are then able to verify that this field meets various
of the validity conditions that we imposed in the for-
mal derivation of the theory. Simple analytic estimates
are given of the background intensity term needed in the
DFWM reflectivity, that agree well with the numerical
results. Finally, in Sec. V, we present numerical results
for the DFWM reflectivity, for laser fields both on and off
resonance, and discuss its dependence on pump intensity
and the length and volume of the interaction region. An
analytic approximation for the reflectivity is given that
enables us to make simple estimates of the influence of
the scattered field.

II. TRANSFER OF SCATTERED RADIATION

Formulation of treatment

We consider for our model a medium consisting of
homogeneously broadened two-state atoms which have
frequency wg, dipole matrix element d, and transverse
and longitudinal decay rates I" and +, respectively. Two
strong pump fields of frequency wy,

Ef = &¢(z) Ear & eilkz—wet) 4 ¢ c.
and (1)

Ep = £(2) Eear @727t L cc.,

propagate through the medium in the forward and back-
ward directions, respectively, and their slowly varying
positive frequency amplitudes £5 and £ are expressed in
units of Eg,¢, the saturation field amplitude,

7'),(1"')/)1/2
= 7 2
Esat 2d-é ( )

The forward and backward beams form a standing wave
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pattern in the medium, with positive frequency ampli-
tude

Eo(z) = £f(z)eikz + &,(z)e_““z, (3)

and grating spacing A, so we choose & = 7/A as the
most convenient choice of wave vector in Eq. (1). The
Rabi frequency at any spatial point is given by

Q = (Ty)? &(2), (4)

and the corresponding intensity I, which is given in units
of the saturation intensity L., = 2€gc EZ,, is

I=|9°/Tr, (5)

where the z dependence in €2 and I is understood. As
the pump beams propagate through the medium, energy
is lost from the pump modes, and is redistributed into
other modes by scattering from the atomic medium. The
scattered radiation forms a fluctuating background field
which propagates through the medium in all directions,
modifying the atomic response to coherent fields, and
thus affecting the four-wave mixing process. We repre-
sent this incoherent background field by

E"°(r,t) = Z €; Egat [EJi-“c(r, t) e"Hwot At | c.c.] ,

j=z,y,2
(6)

where €; is the unit vector in the j direction and we have
assumed a band-center frequency wo + A.. We expect
the background field to be well represented by a chaotic
Markovian field [18,19] and so we model the stochastic
behavior by assuming the £i*°(r,t) are independent sta-
tionary chaotic Markovian processes, each with the same
bandwidth b and with correlation relations given by

(Ene(r, ) [E7(r, t2)]")

= 6_7'1;: <5;-nc(l',t1)[glicnc(r,tl)]*> e~ bltz—ta| (7)

Under the additional assumption of isotropy of the back-
ground field, the variance of each polarization component
of the field is identical, and we define the rms Rabi fre-
quency for each polarization as

Qe = /Ty (£ (r, )€ (x, 1)) )

(for any value of j), where the r dependence of Q. is
understood. The response function for an atom driven
coherently in the presence of such a fluctuating field has
previously been derived [15, 20]. In general the evalua-
tion of the response function is computationally intensive
but, if the mean Rabi frequency of the background field
is less than its bandwidth (. < b), a decorrelation ap-
proximation can be made, and an explicit form requiring
only the value of the coherent field, and the intensity dis-
tribution of the background radiation, can be used. In
Sec. IV we show that the decorrelation condition is met
for the cases we consider, and so for our purposes suffi-
cient characterization of the background radiation is con-
tained in its specific intensity I, (intensity at frequency w
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per unit bandwidth per unit solid angle), whose buildup
is described by the equation of radiative transfer [21]. Of
course, before the transfer equation can be solved, the
geometry of the interaction region must be known, and
for definiteness we shall assume that the pump beams
occupy a cylinder of radius ro and length ¢ within the
medium (see Fig. 1), and for simplicity we will assume
that within this cylinder the pump fields have plane wave
fronts, and uniform intensity across the wave fronts [22].
It is convenient to set up a coordinate system where each
ray through the cylinder has a label p, and the distance
along a ray is labeled 7, where n = 0 is the point where
the ray enters the cylinder (see Fig. 1). The (steady-
state) equation for radiative transfer of the incoherent
radiation can now be expressed [in SI (Systéme Interna-
tional) units] as [21]

dl,(p,n)
dn

Here j, and k,, the emission and absorption coefli-
cients for radiation of frequency w propagating along p,
depend on the strong coherent fields (the pumps) and in
principle, also on the weaker probe and conjugate fields,
as well as the background radiation itself. A complete
solution incorporating all of these dependencies is, for
practical purposes, intractable, since it involves the non-
linear and nonlocal coupling of the transfer equation with
the Maxwell Bloch equation for the coherent fields. For-
tunately, for the situation we consider here, simplifying
approximations can be made. When the probe and con-
jugate beams are much weaker than the pump beams,
the effect of the probe and conjugate can be neglected

= Ju(p,n) — Kw(p,n)1u(psn). (9)
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FIG. 1.
ing the direction of propagation of each coherent field, and a
typical path p for the incoherent radiation transfer.

Geometry of the FWM interaction region, show-

tion, Mollow [25] has derived emission and absorption
coefficients for atoms in the presence of a coherent field
(i.e., the pumps), in the absence of a background field.
We present his results immediately below, and later [see
Eq. (20) et seq.] give simple modifications, valid in the
decorrelation regime, that account for the additional ef-
fect of a fluctuating background field. Mollow’s results,
given here after some simplifying algebra and with ap-
propriate normalization are, in SI units,

K = —aonl’ Re{% ( (—iAs +7)[i(A — A) + T

i|Q2A,
PN r)) } (10)

[23] in the calculation of j, and k. Using this assump- and
J
. Nyl
o = 0Tk (0 ) (8.7 47+ (A - ALY
+QP2[V2A(A, — A)/T +7[2(A — A,)2 + AA, +4T?] + 2T A (A — A,) + T|Q|*1}/|DI?, (11)
I
where Ay, =w—uwy, (16)
re? |
y
inc = 1 — = 1 = - N
5 oT { + (T2 + A?) } (12) A=uw —wo (17)
q We note that j, describes only the incoherent scatter-
an ing, while the coherent scattering that also occurs and is
D = (—iA, +7)[i(A - A,) + T)[—i(A + A,) + T represented by an additional § function in Mollow’s emis-
QIZ(—iA r 13 sion spectrum would be treated in the coherent Maxwell-
P (—iA, +T). (13) Bloch propagation equation for the laser field rather than

In these expressions, aq is the weak field absorption co-
efficient,

=2 (2)" a

where N/V is the number density of atoms, m is the
atomic inversion (for a single atom),

_ o/ -

n, is the upper state population (for a single atom), and
the detunings are

the transfer equation Eq. (9). The quantity finc is the in-
coherent fraction of the total intensity scattered by the
atom and, for pure radiative broadening, (I' = v/2) is
zero at low laser power. The emission and absorption
coefficients are normalized such that

/ Kudw = —aonl'T, (18)
/ ]wdw = aOnuIsatfinc/zﬂ'- (19)

When an isotropic fluctuating background field is also
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present, with effective intensity per unit bandwidth Us,
where

[P Az 71
Us =3 555 (1+(I‘+b)2) ) (20)

then in the decorrelation approximation the absorption
and emission coefficients have the same form as Eq. (10)
and Eq. (11), but with the inversion given by [24]

_ oI -
"= {1+ Ty(1+ AZ/T?) +Ub} ’ =
and n, = (n+1)/2.

Behavior of j, and k,

The emission and absorption coefficients are crucial in
determining the background radiation, and in this section
we summarize their main features. A somewhat more
detailed discussion is given in the Appendix.

In Fig. 2 the frequency dependence of j, for the case
of strong collisional broadening (I’ > <) is plotted for
a range of pump Rabi frequencies, with the pump both

0.02+

0.01

Juf (Lol ™)

(b) |

jw/ (a(][salr_l)

1

-15 0 15
A,JT

FIG. 2. The emission coefficient j, as a function of the
scattered frequency for (a) A = 0 with (i) Q = 0.05T, (ii) Q =
0.5T, (iii) © = 5T, and (b) A = 5T with (i) Q@ = 0.2T, (ii)) 2 =
T, (iii) = 10T". For each graph v = 0.01T".
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on resonance (A = 0) and off resonance (A = 5I"). We
can see, and Mollow [26] has shown, that in general (when
Q2 >T or A >T) the emission coefficient consists of three
Lorentzian peaks, one at the laser frequency w; with the
others at w; &+ ', where the generalized Rabi frequency

18
Q = /Q? + A2 (22)

When |A| > Q,T, in the collisionally broadened case
most of the scattered intensity is in the peak centered
nearest the atomic frequency, and j, is well described by

(2T =)
(A+A,)2+T%

. QQTly Isat
Jw — 47!'2 finc

(23)

This single Lorentzian also accurately describes 7, in the
resonant case (A = 0) at sufficiently low power ( Q <
7). However, at resonance in the collisionally broadened
case, a dip develops at line center as the Rabi frequency
increases, and eventually j, becomes three Lorentzian
peaks of equal height.

In Fig. 3 the frequency dependence of x,, is plotted for
a similar range of parameters to those in Fig. 2. At low
power, the profile is a Lorentzian centered at the atomic
frequency. For a resonant pump field, a dip of width

[6) (a)

0.5F

Kuw/ Q0

(i)

(b)

K’w/aO

0 S
(iii)
-15 0 15

AT
FIG. 3. The absorption coefficient k., as a function of the

incident frequency for (a) A = 0 with (i) @ = 0.01T, (ii) Q =
0.05T", (iii) € = 0.5I", and (b) A = 5I' with (i) Q@ = 0.2T,
(ii) @ =T, (iii) @ = 10T". For each graph v = 0.01T".
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~ ) appears at the center of the line as the pump power
increases (and may eventually give regions of gain if Q is
large enough). The origin of this dip has been attributed
to “coherent population oscillation” by Lee et al. [27] and
further discussed by Boyd et al. [28]. Off resonance (A >
I'), the absorption profile is asymmetric, but provided
Q < A, the dominant part of k., can be described by a
Lorentzian centered at the sideband nearest the atomic
resonance frequency, namely

T
- — = I .
"azte T (A T A2

(24)

A small amount of gain may appear near the laser fre-
quency, adjacent to a region of absorption, and as 2 in-
creases beyond A, gain may also appear at the far side-
band. For all cases the peak value of k,, which occurs
at A, = —(A/|A])Y (or Ay = £Q if A = 0), is of order
—Qn.

Procedure for calculating I,

The scattered radiation propagates (in all directions)
through the standing wave grating formed by the pumps
and since k,A is small, the length scale for attaining a
constant background field is typically many grating wave-
lengths [see also Eq. (30)]. If we assume the pump field
amplitudes £ and &, are independent of z, then the co-
efficients j, and k, are periodic along any ray p, with
period A\, = A/cos@ (where 0 is the angle of the ray to
the z axis), and the transfer equation can be solved in
a simple manner as we show below. Strictly, of course,
the forward and backward pump fields must diminish as
they propagate but, as we show in Sec. IV, for sufficiently
large initial £; and &, the relative variation of the stand-
ing wave peak intensities along a path p will be unim-
portant, and so our model gives a good representation of
the buildup of the background field. Choosing £; = &,
and the boundary condition for each ray as

L(p,n=0)=0 (25)

(which amounts to assuming that radiation leaving the
interaction region is not returned), the solution for I, at
integral values of A, is given by

L,(pyn=mA,) = (1 - e“mkw)‘p) I,(p,n = o0).
(26)

Here &, is the average absorption coefficient over one
period along the path,

1 [
Ruw = Y/ Kuw(psm) dn. (27)
p Jo

The path dependence p in the integrand enters through
the variation of |2|?, and &,, is easily seen to be indepen-
dent of p, i.e., independent of the direction the transfer
ray takes through the standing wave. The asymptotic
[29] intensity is given by
Apdw (P)

I,(p,n = 00) = 1 e—Foip’ (28)
where j, is the net emission coefficient over one period
along the path,

) 1 A, '
Jw(p) = W /0 exp {— / Kw(pynl) dn/} Jw(pym) dn.
n

(29)

Expressions (26)—(29) form the basis for the numerical
calculation of the background radiation that is presented
in Sec. IV. Before proceeding numerically, it is useful
to make approximate estimates of &, and j,. Using the
approximate peak value for k, of —apn in Eq. (27), we
obtain a measure of the peak value of &,

1

R )peak =~ Q0 s 30

(R Jpeatc ~ 20 VA + o)1+ Up + Zm) (30)
where

T _ Tmax (31)

T 1+AazT?

and I,.x is the intensity of the pump field at the anti-
nodes of the standing wave. This value for the peak pro-
vides a useful guide, but is not highly accurate since the
center frequency of the peak will move as the pump field
varies through the standing wave. For strong resonant
pumps, the absorption profile is significantly depressed
in its central region, and a more representative estimate
of the kK, may be obtained by using the line center value
Eq. (A3) of k., in Eq. (27). For I,.x > 1 the result for
R., on resonance, can be accurately approximated as

1
R ol [1 -

ONUbVImax V1+Ub

] (A =0,A, = 0).

(32)
Equation (30) and Eq. (32) show explicitly that the ab-
sorption decreases as the pump intensity increases, and is
small over a grating period for typical values of ag (since
aoA < 1) B
For resonant pumps we can similarly estimate j,, at line
center, approximating j, by Eq. (A4) and using the fact
that f:"’ Kw(p,n!) dnt in Eq. (29) is at most of order A a0
so that (for almost all rays except those with 6 ~ 90°)
the integrand in Eq. (29) becomes simply j, and

Uy—1
V(@ +Us)(1 + Up + 2Imax)

= ~ aOIsatfinc
Jwo = g2

(A=0,A,=0). (33)

For a low level of background field (Up < 1), ju, is small
at small I,.x and increases with I.x to the saturated
value oglsat finc/8'7w2. Even for very large Us, the satu-
rated value of j,, can be no more than twice this value.
In the line wings [i.e., where Eq. (A1) applies through
most of a standing wave period] Eq. (23) can be used to
approximate j, as

5 _~ aOIsatfinc _ 1
“ 82 VA FUs)(A + Up + Inax)

(2T =)
(A+A,)2+T2

(34)
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We can see from Egs. (32)—(34) that &, and j, have
only a small effect over any single period of the standing
wave grating, and it is a good approximation to interpo-
late the periodic solution of Eq. (26) for I, to all values
of n, writing

L.(p,n) = (1 = e ®") L,(p,n = 00). (35)

When &7 is small (as it may be for large pump intensity
or in the wings of the line, in a finite medium) then

L, & Nju, (36)

so that for many cases (and the ones of interest in this
paper) the background radiation will build up apprecia-
bly only in the vicinity of line center (where j, is largest),
and will eventually fall off with Lorentzian wings. The
atom response function is, in our model (see Sec. III), af-
fected equally by background radiation coming from all
directions, so we require at each point the integral of I,
over all angles, which is called the total specific intensity,

Itet = / I, dS2. (37)
4w

On the basis of Eq. (36), we expect that It°* can be repre-
sented by a single Lorentzian, or perhaps (at large pump
intensity) the sum of Lorentzians. In Sec. IV we perform
detailed numerical calculations to obtain I'°t.

We note that in our calculation of the transferred ra-
diation, we have used k,, and j, in isotropic (angle aver-
aged) form, even though in more detail they will depend
on the relative direction of the pump polarization and
the transfer ray being considered. The main reason for
our choice is that the model we will use (in Sec. III) to
determine the altered atomic response function to the
coherent fields requires only the angular integrated value
of the background radiation I’°*. We will also find, in
Sec. IV, that four-wave mixing is not sensitive to small
changes in I'°*, such as we could expect from using an-
gularly dependent rather than isotropic forms of k., and
Jw in the transfer equation.

III. FOUR-WAVE MIXING
WITH BACKGROUND FIELD

The four-wave mixing behavior for atoms with a fluc-

tuating background radiation field can be calculated by
J

the same method as is used in simpler systems (with no
background field), since the underlying physical mech-
anism for the mixing is the same: a macroscopic po-
larization grating is induced by the three coherent in-
put fields, which thereby generates the fourth (conju-
gate) field. The effect of the fluctuating background field
will be accounted for in the modification it makes to the
atomic dipole, and hence the coherent polarization grat-
ing. A simple characterization of the overall effect of
the background field on the four-wave mixing process is
given by the reflectivity of the probe beam. For degener-
ate four-wave mixing, the reflectivity R can be calculated
once the response function to a single coherent frequency
is known, using the method of Abrams and Lind [17]. In
this paper we consider only DFWM, and we begin by cal-
culating the response of a two-state atom driven by both
a strong coherent field and a fluctuating background field.

Macroscopic polarization

The polarization Pg of the atoms subject to a coherent
field of positive frequency amplitude & [see Eq. (3)], and
the chaotic Markovian background field of Eq. (6), can be
found using a method based on that developed by Zoller
[30] and Georges [31]. In general the solution is given in
terms of an infinite two-dimensional recurrence relation
[Eq. (4.94) [20]] which must be truncated at some finite
point and solved numerically. However, if the condition

Q. <b (38)

is satisfied, where £, is a mean Rabi frequency and b is
the halfwidth of the Lorentzian spectrum of the back-
ground field, a decorrelation approximation can be made
which allows the recurrence relation to be terminated af-
ter the first few terms. Generalizing previous results [15,
20] to include arbitrary A., we obtain the macroscopic
polarization

PO = Poée_iwtt + c.c., (39)
where
Po = —icooto - Fany ————Eon {1 — Ty} (40)
0= oowl satl__iA/FO bfs

with €¢g the permittivity of free space,

=2 1 1 -1
= D 41
T 39“('y+b+iAc+FﬂiA> b (41)
Dy =2 b+ (A — A)] + ITv] & ! + !
b= 20y b4 i(Ac = A+ DGl | SR T S e (A, - 24)
—2 2 1 1
42
+3QC(P+2b+z‘(2AC-A)+F+2b+m+r-m)’ (42)

and n the inversion,

€l

-1
e e - . 4
n {1+1+A2/F2+Ub V} (43)

I
Here U, the background radiation saturation term, is
given by

fjooo Itot du (1 . A2 -1
~ (1 +b/T)Lat T+ b)2> ’

U, (44)
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where we have used

o2 Iy /oo tot
Q= %" dw, 45

c 3Isa,t oo w ( )

in Eq. (20), and
) 1 1

= Ty p .

vV =Ti&| Re{(7+b+mc+r—m) ”}
(46)

If in addition to the decorrelation condition Eq. (38), the
following conditions also hold:

Q2 < T, (47)

o> 9, (48)

then T, and V' may be neglected, further simplifying the
result to

. c 1
P() ~ ——Zéoagw—eEsatmgon (49)
1 &l -
. c (]
~ g0 Bagy——E0q 1 + — 2 :
zeoaowl 1A T 0{ +1+A2/I‘2+Ub}
(50)

which is the expression we will begin with when cal-
culating the DFWM reflectivity (see also [15]). The
J

E"(r,t) = Z é; Eqat { [E{‘;“(r, t)e_iAC.‘t + Sé?c(r,t)e_m“t] e it 4 c.c.} ,

j=z,y,z

where the chaotic Markovian processes Ei'j‘c and Sé'J_m have
correlation properties

=2

inc inc * Qci —b; |ty —
(et (e )" ) = Gt e,

(e )R )] =o0.

Provided the conditions Eq. (38), Eq. (47), and Eq. (48)
hold for both b, and b, in place of b, we can again ob-
tain the simplified equation for the polarization given in
Eq. (50) but with U, generalized to

2

+ Acl2
(I +81)?
307, -

+ 14 D
(T + b2) T+062)%) 7
which could be readily rewritten in terms of the total
intensity using

(54)

(55)

=2

3Q
Up = = 1
* 7 (T +by) (

-1

(56)
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background field now enters the response function only
through Up in the denominator of Eq. (50), and when
U, = 0 we regain the standard response of two-state
atoms to a coherent field alone. For U, # 0 the satu-
ration behavior is modified.

It is interesting to note that Eq. (50) can be obtained
from the standard two-state form by making the substi-
tution v — v’ everywhere (including in ag and Eg,4),
where

r_ Y
TGl @/ 1)

|&ol?

Similarly substituting N/V — (N/V)’ in o, where

R —
\% 14 . Uy ’
1+ 1&[°/[1 + (A/T)?]

will also produce Eq. (50) from the standard two-state
form. A physical interpretation of the structure of
Eq. (51) or Eq. (52) is not immediately apparent; never-
theless the reduction of either the population decay rate
or the effective density, due to the background radiation,
is intuitively appealing.

In some cases, when the pump intensity is very large,
the background field may be better represented as two
separated Lorentzians. We would then write

(52)

(53)

—
DFWM reflectivity

Degenerate four-wave mixing occurs when a coherent
probe field,

Ep = Ep(C) Esar 8e'®¢9) 4 cc., (58)

propagating in a direction ¢ (see Fig. 1) with the same
frequency as the pump fields gives rise to a coherent con-

jugate field,
E. = &.(¢) Eqas Set(—kC—wet) 4 ¢ ¢ (59)

In units of Fs.¢, the total positive frequency coherent
field amplitude is

E =& + &, (60)
where & is given by Eq. (3) and
&1 = £,(Q)e™ + Ec(C)e . (61)

The positive frequency polarization amplitude, P, in-
duced by these fields, is given by Eq. (50) with £ in place

ﬁil +§(2;2 _ I /oo I du. (57) of &. Following Abrams and Lind [17] we expand P
3Lat J_oo about £ = & and to first order in &; write
J
€000 ot ———— | &, (1 4+ Uy) — &7 £’
0 0(4)[ Satl—iA/F 1 b 11+A2/F2

P =P+

o]’ ’
___ 1«0
{1 T AT +U1’}

(62)
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Using this expression for P, the propagation equations
for £,(¢) and &.(¢) can now be derived using the same
method and initial conditions as Abrams et al. [1]. The
probe field has an interaction length L in the medium (see
Fig. 1), and solving the coupled equations for the values
of £, and &, at the input position for the probe field gives
the following expression for the DFWM reflectivity:

£.(0)
€»(0)

2

i = , (63)

Bsin(oL)

R= ocos(oL) + apsin(oL)

where the probe and conjugate (amplitude) absorption
[32] ap, and coupling 3, are given by

o = o 1+Us+1Zn/2
P2+ (AT \ V14 Up {1 + Uy + )2
(64)
8= o) (i — A/,
41+ (A \V1+ U {1+ Uy + T, }¥% )’
(65)
and
0% = |B]° - o (66)

We note that in deriving the above expression for R, we
have assumed that both Z,,, and U, are constant through-
out the medium, which we comment further on in Sec. IV.

IV. RESULTS FOR BACKGROUND RADIATION

In general we must obtain the background radiation
term U, required for our four-wave mixing result, by
solving the radiative transfer problem numerically, us-
ing the formal solution Eq. (35). That solution is in fact
implicit, since &, and j, themselves depend on U,. In
addition, evaluation of I!°* (and hence U,) at any given
point requires, in principle, that I,(p,n) be calculated
along each of the different paths that intersect at that
point. In order to make the transfer problem tractable,
we shall assume that the background radiation is con-
stant throughout the medium, and use as an appropriate
value of I'°* a conservative estimate for the central re-
gions of the cylinder. We obtain this value by assuming
that the distance 7 along every path is r¢, and we use

It~ A I,(p,n =10)dQ. (67)

We note that the assumption of a constant background
radiation field is consistent with our treatment of DFWM
in Sec. III. Furthermore, we expect this to be a reason-
able assumption in the central regions, where most of a
probe beam path is likely to be.

Numerical results for U,

We can now obtain U, by solving Eq. (35) self-
consistently for I,, by iteration. Assuming first that

Uy, = 0 in K, and j,, we evaluate I, using Eq. (35) to
obtain a first value for U, using Eq. (44). The value of
U, produced is then used to improve K, and j,, until
a self-consistent solution for I, is obtained. In practice
this takes only a few iterations.

In the development of I, both j, and &, play a vital
role, and the frequency dependence of these coefficients
for a range of values of I .y, both on and off resonance, is
shown in Fig. 4 and Fig. 5, with U, = 0. The modification
caused by background radiation is illustrated in Fig. 6,
where the functions 7, and &, are plotted in the absence
of background radiation, as well as with a value of U,
appropriate to the pump intensity (and a cylinder radius
ro =10/ay). From a comparison of Figs. 4-6 with Figs. 2
and 3 we see that j, and &, preserve the general features
of j,, and k,, calculated near the antinodes of the pumps’
standing wave, although the peaks Rabi shifted to either
side of the pump frequency are broadened due to the
varying intensity across the pumps’ standing wave.

These features are reflected also in the spectral profile
of I,,. For the resonant pump case, I'°* is calculated by
our iterative procedure and is plotted in Fig. 7 as a func-
tion of the scattered frequency A, for different values of
Imax and for two different values of agrg = 50. Several

/ (aﬂjsatr\_l)

Jo

0.01} (i) §

(iif)

/ (Olo[wtr‘_l)

jh}

15 0 15
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FIG. 4. The net emission coefficient j., for (a) A = 0 and
(b) A = 5T, with antinode intensities (a): (i) Imax = 0.25,
(i) Imax = 25, (iii) Jmax = 2500, and (b): (i) Imax = 4,
(i) Imax = 100, (iii) Imax = 10000, corresponding in each
case to the Rabi frequencies in Fig. 2, with v = 0.01T".
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important features are apparent from these curves. The
I, profiles for finite 7o are approximately Lorentzian or,
for QX T, the sum of Lorentzians. For a given value of
T0, We see that as Iax first increases, the single peak of
I, is enhanced near line center, and the bandwidth de-
creases. This behavior reflects the development of 7,
(which increases near the center), and &, (which de-
creases). As Ip.x continues to increase, I, develops a
dip at line center, which is simply the manifestation of
the Rabi sidebands beginning to develop in j,,, and over-
all, I, begins to saturate although the far wings remain
Lorentzian. Comparing Fig. 7(a) with Fig. 7(b) shows
that, as the cylinder radius increases, the bandwidth of
the background intensity distribution also increases. The
reason is that the absorption length is longer in the wings,
and at long path lengths radiation continues to build in
the wings while at line center it is close to its asymptotic
intensity. For given Inax, the integrated intensity [ I,,dw
will thus grow with ro. For off-resonant pumps, at the
intensities considered in this paper, most of the scattered
radiation I, appears in a peak near the atomic frequency,
and its bandwidth behaves in a similar way to the central
peak in the on-resonant case. The secondary and narrow

0} (a)

g
& o5r (ii)
10 0 10
Wi
1
(b)
®
51
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0 (iii)
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A,/T
FIG. 5. The average absorption coefficient &, for (a) A =

0 and (b) A = 5T", with antinode intensities (a): (i) Imax =
0.01, (ii) Imax = 0.25, (iii) Imax = 25, and (b): (i) Lmax = 4,
(ii) Imax = 100, (iii) Jmax = 10000, corresponding in each
case to the Rabi frequencies in Fig. 3, with v = 0.01T.
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peak that occurs at the laser frequency may be enhanced
by the gain that R, can possess in this region, but for
all cases considered in this paper, the gain length is suf-
ficently long compared to g that the contribution to the
integrated intensity is negligible. It is worth noting that
the asymptotic intensity distribution in the wings, j, /R,
[see Eq. (28)] is constant in w [see Eq. (24) and Eq. (34)],
but the far wings of I, will always be Lorentzian in a fi-
nite medium because the asymptotic distance can never
be reached.

In order to obtain a value for U, we fit Lorentzians to
the I, profiles to give the bandwidths and band centers
required in Eq. (44) or Eq. (56). On resonance we use a
three Lorentzian fit, while off resonance a two Lorentzian
fit is appropriate. In practice at pump powers such that
Q < T, a single Lorentzian dominates the fit. We note
that in some cases where rq is large, a flat region may
develop in the near wings [before the final (A + A,)~?2
falloff in the far wings] because the medium is optically
thick in this region. However, such situations are not of
interest in this paper as the pump beams will be weak
and the “constant pump beams” approximation will fail.

Results obtained for the bandwidth of the main peak
using this fitting procedure are summarized in Fig. 8,
where contours of the bandwidth of I°* are plotted as

a
0.02} @i ( ) ]
?\
=
=
E o} j
3 @
rey
10 0 10
A,JT
(b)
@)
3 oap E
3
8
(i)
9% 6 T0
AT
FIG. 6. Modification to the coefficients (a) j. and (b) Rw

caused by U,. All coefficients are calculated with A = 0,
Imax = 25, v = 0.01, but curves (i) have Uy = 0, and curves
(ii) have Uy = 3.4.
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a function of Inax and 79 (at pump resonance). For the
regime covered by this plot, I°* has only one significant
peak. The property noted above, that the bandwidth
increases with cylinder radius r¢ and decreases with the
pump intensity Iax, is clearly evident, as also is the
fact that the bandwidth tends to I" for either I,y large,
or ro small. In Fig. 9 we plot the behavior of U, with
increasing pump intensity. We see that for off-resonant
pumps (dashed lines) the effective background intensity is
diminished at higher effective pump intensities compared
to the case for resonant pumps (solid lines).

Validity regime

The simplified form of the atomic response, Eq. (50),
on which our DFWM treatment is based, is valid pro-
vided the conditions given in Eq. (38), Eq. (47), and
Eq. (48) relating the bandwidth and mean Rabi fre-
quency of the background radiation are satisfied. For
strong homogeneous broadening (I" >> <), we need con-
sider only Eq. (47), since we have seen from Fig. 8 that
the bandwidth b is always larger than (or nearly equal
to) I'. From numerical calculations, we have found in the

resonant case that for In.x > 1, the quantity ﬁi /(bI') in-
creases with I,,.x and with rq reaching a value of about

Ii,gt/ (Isatrgl)
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A,JT
b
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FIG. 7. Spectral profile of the total scattered intensity
X%, for A = 0. In both (a) where apro = 10, and (b)
where agro = 50, the antinode intensities are (i) Imax = 1,
(ii) Imax = 25, and (iii) Imax = 100.
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FIG. 8. Contours of the bandwidth b of I'°*, for A = 0,

on a plot of Imax vs ro.

0.1 at Imax = 10% and r¢ = 50. Thus, for the purposes
of this paper, the validity criterion Eq. (47) is met com-
fortably.

The assumption we made in Sec. II that the stand-
ing wave antinode intensities are approximately constant
puts a lower limit on the intensity of the pumps for a
given cylinder length £. A strong coherent field suffers a
much smaller fractional loss of amplitude with distance
than a weak coherent field, and so the sum of forward and
backward fields is more nearly constant for strong pumps
than for weak. This property, which arises because of sat-
uration, can be shown by numerically solving the coupled
coherent propagation equations for the forward and back-
ward pumps, and calculating the coefficient of variation
(the ratio of rms deviation to mean) of the antinode in-

15F 4

FIG. 9. Dependence of the background field saturation
parameter Up on the effective pump intensity Z,, = Imax/[1+
(A/T)?], for the case of resonant pumps (solid lines), and for
pump-atom detuning A = 5T (dashed lines).
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tensities throughout the standing wave. Since we intend
this calculation to be indicative rather than quantitative,
we have neglected the effect of the background radiation
on the pump propagation, although this could be easily
included [15]. In Fig. 10 we summarize the results from
many such calculations by plotting the coefficient of vari-
ation against the average value of I,ax for given cylinder
length ¢. From this figure we see for example that the
“constant pump beams” approximation will be accurate
to within 10% for a cylinder of length 10c ! provided
I4,axR10. Inclusion of the background radiation would
improve the accuracy, since it reduces the absorption.

Analytic estimate of U,

The behavior of U, at large pump intensities can be
characterized analytically. In this regime the average ab-
sorption coefficient has become sufficiently small that the
medium is optically thin for all the scattered radiation,
ie.,

Rw’l‘g <K 1, (68)
across the whole profile. Under this condition the back-

ground intensity is given by Eq. (36), and [using Eq. (67)]
we can approximate I°* by

I:,°t 47100 (69)
1 [
%47”'0—/\—/ Jw(p,m) dn. (70)
e Jo

Integrating this expression over all frequencies we find [by
interchanging the order of integration and using Eq. (19)
and Eq. (21)]

J

QoTo
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ImGI
FIG. 10. Logarithmic plot of 8y, the coefficient of vari-

ation of the antinode pump intensity Imax, as a function of
Imax, for A = 0 and three different cylinder lengths.

o 1
I:f’tdwza rolsat | 1 — R
/_oo 070 sat ( \/(1+Ub)(1+Ub+Im))
(71)

where we have used the strong broadening limit to put
finc = 1. The widths, weights, and frequency offsets of
the Lorentzians constituting I, (and needed to complete
the calculation of Up), can be estimated from our knowl-
edge of j,. For resonant pumps, I, is represented by
a single Lorentzian centered on the atom frequency and
with bandwidth b = I', provided Q@ < T'. When Q > T,
half the spectral weight appears in sidebands of width
b =~ I'/2 displaced from the atomic frequency by the Rabi
frequency, which we shall estimate from its rms value in
the standing wave, i.e., A2 ~ yI'I.x/2. Thus, using
Eq. (56), we find the value of U, for resonant pumps is

sz

For off-resonant pumps (A > I'), the spectral character
of 1, is sufficiently different from the resonant case that
the corresponding expression for U, cannot be obtained
by simply replacing Imax by Z,, in Eq. (72). For Q < |A|,
most of the spectral weight is in the sideband nearest the
atomic frequency, but a band-center offset and a broad-
ening of I,, (which occur because of the intensity depen-
dent shift of the sideband) contribute to lowering Up. In
the limit of large Q, (2 > A), half the spectral weight
shifts to the central peak at A, = 0, giving a band cen-
ter offset A, = A, and consequently (neglecting the outer
sidebands),

U, ~ QoTo 1 1— 1
® 4 1+ A2/412 \/(1+Ub)(1+Ub+Im)

Q> A>T). (73)

1 1
14— ) [1-
4 < 1 +Imax’7/3> ( \/(1+Ub)(1+Ub+Imax)

) (A =0). (72)

[

Expressions (72) and (73) for U, are, as expected, im-
plicit, but in the case of an optically thin medium [see
Eq. (68)] the square root term represents a small correc-
tion to the remaining term, and to good approximation
we may write

Uy o (14 orisrs) (A=0) (74)
O ratars (2> A>T). (75)

A characteristic value of the pump intensity at which
Eq. (74) (for resonant pumps) may be applied can be
obtained using our estimate Eq. (30) for the maximum
value of g, in Eq. (68) giving

\/(1 + Ub)(l + Ub + Imax) > QgTo, (76)

although in practice
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V(@ + Us) (1 + Ub + Imax) > 2a070 (77)

is sufficient. Now approximating U, by the value agro/4,
we find the (resonant) pump intensity above which
Eq. (74) applies is given roughly by

I > 12a9r9 — 16, 2 < agrg < 5 (78)
max 15aprg — 40, 10 < apro < 50. (79)

V. RESULTS FOR DFWM

The reflectivity R that we have derived in Eq. (63) for
DFWM in the presence of the background field can now
be evaluated using the values of U, obtained numerically
in the preceding section. Beginning with the resonant
case, we plot with solid lines in Fig. 11(a) curves of R
versus the pump intensity for several different interac-
tion lengths L, for a cylinder of radius Zaal. The dashed
curves give the reflectivity in the absence of background
radiation and are identical to those given previously by
Abrams et al. [33]. In Fig. 11(b) similar curves are pre-
sented, but now for a cylinder of radius 10agy 1. The
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FIG. 11. Logarithmic plot of the reflectivity R against
Imax, for A = 0, with (a) aoro = 2 and (b) aere = 10.
The theory including background radiation is plotted as solid
lines while the standard theory [1] which neglects background
radiation is plotted as dashed lines.
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salient feature of these two figures is that the reflectiv-
ity is diminished by the scattered background radiation;
at 7o = 10y ' and L = 10a, ", for example, the back-
ground radiation reduces the maximum reflectivity by
approximately 77%. The fractional decrease in reflectiv-
ity is largest with large ro, has only a weak dependence
on the probe path length L, and is relatively insensitive
to the pump intensity. The decrease in R is governed
by the value of the background radiation term U, which
is strongly dependent on 7o since a larger cylinder traps
more radiation. On the other hand, U, changes little
with pump intensity (for the values of ro in these figures)
when Imax > 1, and thus the depression of the reflectiv-
ity is also almost independent of the pump intensity [see
also Eq. (93)].

In Fig. 12 which corresponds exactly to Fig. 11 but
with A = 5I', the effect of pump detuning is shown.
Again we see diminishment of reflectivity, with a strong
dependence on 7o and little dependence on L. At the
peak values of reflectivity (which occur in the region
1 < Z,, < 10) the fractional decrease is of the same or-
der, or larger, than for the resonant case. This somewhat
surprising result arises because, at these intensities, most
of the scattered radiation is redistributed into a band
centered on the atomic resonance, where it is most effec-
tive in interacting with nearby atoms. As Z,, increases
further, the redistributed radiation is pushed into bands

100
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FIG. 12. Logarithmic plot of R against Imax, as in Fig. 11
but with A = 5T.
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further away from the atomic resonance, which decreases
U, (see Fig. 9), and hence decreases the effect of the
scattered radiation on the reflectivity. This can be seen
clearly in the high intensity region of Fig. 12(b), where
the dashed and solid curves begin to move closer together.
Approximate analytic forms for the reflectivity which
give insight into this behavior can be found in the regime
where |0L| < 1, in which case Eq. (63) for R becomes

BL
1+ apl

2

R = l (80)

This can be further simplified by noting that when Z,,, >
1 and U, < Z,,, (as it will be in regimes where the con-
stant pump beam approximation is valid), a;, can be well
approximated by

(=7}

a, , 81

P/ O+ U0 +Tn) (&1
where

Gp = %o (82)

[L+(A/T)?]

We can then write

2.1+ (A/T)?) &L
T 41+ Ub +In/2)? |GoL + 4/ (1 + Up) (1 + Zm)

(loL] < 1). (83)

The validity condition for Eq. (83) can be given in a more
explicit form provided the product |A|Z,, satisfies

A
%zm <140, (84)

since in this case a close upper bound on ¢ is given by
1&g

T 20 A Up+ T

(85)

The condition |0 L| < 1 thus becomes [when Eq. (84) is
satisfied]

aoL < 2(1+ Uy + T). (86)

In practice, it is unusual for both Z,, and A to be large
[see Eq. (31)], so that Eq. (86) provides a validity condi-
tion for Eq. (83) that covers many situations of interest.
When Eq. (84) is violated, then broadly speaking, o be-
comes real. Specifically, when

a
T

o is real, and we can approximate it by

Im > 2/ (1 +Up)(1 + Uy + ), (87)

o~ aol|A| Im
A0/ (14 Ub) {1+ Uy + T }*/*

Thus the condition for Eq. (83) to hold in the regime
where A is nonzero and 7., is large [i.e., Eq. (87)] can be
written approximately as

(88)

'Al < _m{l + U+ T} (89)

It is also possible to give an approximate value for R
in the regime |0L| > 1, in the case where the product
|A|Im satisfies the condition Eq. (84), since then o is
pure imaginary, and cos(|o|L) — e""L/Z and sin(|o|L) —
—el?IL /24, The reflectivity can then be written approxi-
mately as
R = —w——— ’

i(lo| + ap)

(90)

and noting that |o| ~ a; in the regime where Eq. (84)
holds, we may write

BIP_ TAL+(a/T)

ap| 161+ U + 1,,/2)2

Rzl
4

A
(lULI >1, FIm <1l+ Ub)- (91)

Once o becomes real, which it does with finite A if
I, is sufficiently large, then for oL > /2, the reflec-
tivity in Eq. (63) will exhibit resonances [17]. At these
resonances, the assumption of nondepletion of the pump
is no longer valid, and the standard FWM theory must
be modified [8]. We note that all the results we have
presented (Figs. 11 and 12) are well outside the regime
where resonances might occur.

The form in Eq. (83) therefore allows us to make a
simple comparison between the reflectivity R predicted
by our theory and the reflectivity Ry of the standard
theory (Up, = 0), which will be useful over a wide practical
range of parameters. Using Eq. (83) we find

R Us -2
Ry 1+Z,/2

VIFT, -1 -
x (1+ 1+ aoL/(4+4/1 +Im)> ’ (92)

from which it is clear that the background radiation al-
ways acts to decrease the reflectivity. In the regime where
T, is large (i.e., T, > Uy, and vVZ,, > aoL/4), the re-
flectivity ratio takes the simple form

R _ 1
R0~ \/1+Ub,

which shows that the fractional decrease in reflectivity
depends mainly on the level of the background radiation,
as discussed in connection with the figures at the begin-
ning of this section. A final simple approximate form that
has explicit dependence on the system parameters can be
obtained by substituting the asymptotic expressions for
U, [Eq. (74) and Eq. (75)] into Eq. (93).

(93)

VI. CONCLUSION

We have formulated a model to quantitatively inves-
tigate how the generation of a conjugate beam in near-
resonant DFWM is affected by radiation scattered from
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the pump beams. The main assumptions we have made
to ensure tractability are (i) the pump beams have con-
stant amplitudes and plane wave fronts in a cylinder
of radius rg, (ii) collision broadening is dominant and
atomic motion is ignored, and (iii) directional and polar-
ization effects in the scattering process are neglected, and
the scattered radiation is assumed to be homogeneous
and isotropic. Within this framework the spectral in-
tensity distribution of the scattered radiation is obtained
and shown to be well characterized as a sum of chaotic
Markovian fields. These fluctuating background fields act
on the atomic media in concert with the coherent laser
fields and modify the optical dipole induced by the co-
herent fields. The modification does not have a simple
physical interpretation in terms of new decay or dephas-
ing rates but, nevertheless, over a broad regime where
a decorrelation approximation is valid, can be expressed
via a single parameter U, which incorporates the energy
of the fluctuating field together with bandwidths and fre-
quency offsets from the atomic resonance. In addition
to detailed numerical solutions for the DFWM reflectiv-
ity, we have also given simple analytic approximations
for the scattered radiation term U, and the reflectivity,
which help illuminate the underlying mechanisms of the
system.

Our results clearly bear some relationship to the work
of Cooper et al. [2] who considered fluctuating pump
(and probe) fields, but certain important differences
emerge. They find that at some pump intensities the
reflectivity is lowered compared to the monochromatic
case, while at other intensities it may be increased. For
many cases they consider, they find the fluctuations cause
the peak of the reflectivity curve to move to higher inten-
sities because of the effect of the fluctuations. In our case
the reflectivity is always reduced by the scattered field for
any given pump intensity, and the position of the peak
reflectivity barely changes. Furthermore, while the re-
Hectivity in their case falls as I~3/2 at high intensities, in
our case it falls as 7~ ! [see Eq. (83)]. The underlying dif-
ference is that in our case the fluctuating field becomes
more or less constant above a certain pump intensity,
whereas in their case the fluctuations are intrinsic to the
pump field.

A simple picture for the way in which the scattered
field affects the FWM process can be given in terms of
the spatial modulation of the polarization formed by the
standing wave field of the pump beams. The probe beam
can be thought of as reading the spatial harmonic struc-
ture of the grid and, in the decorrelation approximation,
the grid has a spatial form which follows the population
inversion [see Eq. (49)]. In the absence of a background
field, the polarization will be saturated across most of
the standing wave, except for a very sharp feature cor-
responding to the zero value of the coherent field at the
nodes. When a background field is present, it reduces
the inversion at the nodes, thus reducing the sharpness
of the polarization feature and hence altering the har-
monic structure of the grid. In this paper, where we
have considered only degenerate FWM, we have shown
that the harmonic content at the pump frequency is al-
ways reduced by the background field.
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APPENDIX
In this appendix we give some additional results and
approximations to the emission and absorption coeffi-
cients, and quantify the validity regimes of the approxi-
mate forms. In the limit of well separated spectral lines
(@ > T), Egs. (4)—(6) in Ref. [26] give explicit expres-
sions for the widths and weights of the three Lorentzian
components of j,. These expressions are still quite com-
plicated, and so it is worth summarizing the main fea-
tures here. The widths of the outer sidebands are of
order I'. At resonance the center peak has width I', but
for A # 0 the width is v at low laser power, and I" at
high power. For strong collisional broadening (I' > )
and © > |A|, the three peaks are of same height, but
the sidebands have width I'/2 (i.e., half the width of the
center peak). On the other hand, if |A]| > €2, for strong
collisional broadening most of the scattered intensity is
in the sideband nearest the atomic resonance frequency,
with the relative weighting of the center Lorentzian be-
ing of order 922/2A2, and the relative weighting of the
far sideband being of order (Q2%/8A%) [y/T" + Q?/(2A%].
It can also be shown directly from Eq. (11) that when
QZ
(A+A)2+T2
i.e., in the wings of the line or at sufficiently low laser
power, the emission coefficient is well described by the
form Eq. (23) apart from the region |A,| < I (i.e., apart
from the feature at the pump frequency). At very low
pump power (2 < ) the Lorentzian form Eq. (23) is ac-
curate throughout the whole profile. For the off-resonant
case (A >T), Eq. (23) is a very good representation of
Jw, provided 2 < A, even in regions where Eq. (A1) is
not satisfied, since the relative weights of the two other
peaks (at Ay =0 and A; = A ) are negligible.
Equation (24) provides an off-resonant (A > T') form
of k. that is useful over a wide parameter range. On
resonance, K, remains Lorentzian in the wings ( |A,| >
) where it can be approximated by

r r 1 L
fonsomsa - M AT e Mo

However, in the center region of the line, the absorption
is suppressed, falling sharply near |A,| = 2, and may
actually become negative (i.e., gain) in the regions near
|Ag| = Q for large enough pump power (2 > T'). At the
exact line center (A, = 0), K, takes the value

<1, (A1)

(A2)

, (A3)

which is always positive, but may be very small. A line-
center value for j, is also useful, and at resonance can be
approximated by

jw N — aOIsatfinc l:l Ub -1
A=0,A,=0

. (A4
872 1+Ub+21} (A)
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