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Completely I. integrable method for strong-coupling multichannel photoionization:
Photoelectron emission of He between the N=3 and 4 thresholds
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We present a completely L integrable method to evaluate continuum states in multichannel photoion-
ization. The Feshbach theory is used to separate the resonant and nonresonant components of the wave
function. The nonresonant continuum is built from discretized uncoupled channels, using a formal
scattering theory. In practice, the coupling between channels is introduced in a purely algebraic way, by
simply solving a system of linear equations. The advantage of the present approach is that it can be used
irrespective of the interaction strength between the uncoupled states. We have applied the method to
study photoionization of helium between the TV=3 and 4 thresholds. The results are in good agreement
with the existing experimental data.

PACS number(s): 32.80.Fb, 32.80.Dz, 31.50.+w

I. INTRODUCTION

Representation of scattering states by L integrable
functions is a topic of continuous interest in atomic phys-
ics. Discretization of continuum wave functions avoids
numerical solution of (coupled) differential equations, and
permits the use of algebraic techniques, which do not re-
quire too much computer time. Therefore, use of larger
basis sets is feasible, thus yielding a better description of
electron correlations.

Discretized wave functions do not satisfy the proper
5-function normalization of continuum states. Although
this is not a problem when one performs a summation
over the entire continuum spectrum, for a specific energy,
the continuum state must be renormalized. Therefore, a
discretization technique must not only provide the wave
functions, but also the correct renormalization factors.

Many difFerent L methods have been proposed in the
literature for the case of a single open channel. On the
other hand, when more than one channel is open, the use
of L methods is scarce. The reason is that, besides the
renormalization problem, one has to satisfy boundary
conditions that couple all channels asymptotically.
Direct diagonalization of the Hamiltonian with L inte-
grable functions yields couplings that depend on the basis
set, so that such a procedure cannot be used in mul-
tichannel problems. The solutions proposed in the litera-
ture (see, for instance, Refs. [1—14]) make use of the for-
mal scattering theory to ensure the correct boundary con-
ditions. Many of these approaches have been applied to
model systems. Very recently, the works of Refs. [8—17]
have been successful in applying multichannel discretiza-
tion to real systems, such as electron-hydrogen scattering
[8,9] and helium photoionization [11,13—17].

In previous works [12,14], we have developed an L
method that has been applied to study photoionization of
helium below N =3 from both the ground [13—15] and
the first ' S' excited states [16,17]. In Ref. [14], hereaf-
ter called paper I, we treated resonant and nonresonant
components separately by using the Feshbach theory.

For the nonresonant part, we used L representations of
either the E-matrix equations or the corresponding
Green's operator, in a basis of discretized uncoupled con-
tinuum states. Both methods ensure the proper 5-
function normalization as well as the correct asymptotic
behavior of the continuum wave functions. Calculations
of the K matrix and the Green's function were done in a
perturbative way: in the first case, by solving iteratively
the K-matrix equations, and in the second, by using a
Born expansion in terms of another Green's operator as-
sociated to the uncoupled continua. In the K-matrix cal-
culations, convergence is achieved when interchannel in-
teractions are smaller than energy differences between
discretized states, while in the Green's operator expan-
sion, the convergence condition is the usual one for Born
series, which is stronger than the previous one. These in-
herent limitations of perturbative expansions prevent the
use of the method proposed in paper I when interchannel
coupling is very strong. This is the case for the helium
atom above the N=3 threshold, the H negative ion,
and many others.

In this paper, we present an alternative way to calcu-
late continuum wave functions using L bases, which
does not present the former restrictions and, therefore,
can be used for any system, irrespective of the strength of
interchannel coupling. This method is fully algebraic: it
involves the solution of systems of linear equations in the
complex plane, which can be done with standard tech-
niques.

We have applied the method to the calculation of pho-
toionization cross sections of He between the N =3 and 4
thresholds. In this energy region, there are nine open
channels 1sep, 2sep, 2pes, 2ped, 3sep, 3pes, 3ped, 3dep,
and 3def, of which the last five ones are strongly cou-
pled. The 4lnl' resonances also lie in this energy range.
The only calculation of photoionization cross sections of
helium above the N =3 threshold that we are aware of
has been reported by Hayes and Scott [18] using the R-
matrix method. On the other hand, there is a number of
theoretical works that have provided energy positions
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and total autoionization widths for the 4lnl' resonances
[19—24]. From the experimental side, WoodrufF and
Samson [25] have measured the total cross sections for
leaving the He+ ion in an excited state (0 &=2+ o Q —3) as
a function of the photon energy, and Heimann et al. [26]
have been able to separate the N =3 contribution at four
different energies. More recently, Domke et al. [27] have
obtained the spectrum for the total photoionization cross
section with high-energy resolution, and Zubek et al.
[28] have measured the X =2 difFerential cross section at
90'.

The paper is organized as follows. The theoretical
method is explained in Sec. II. To be self-contained, we
will repeat here some basic equations of paper I that are
needed to understand the main features of this approach.
In particular, we will pay special attention to the con-
struction of the Green's operator, needed to build the
continuum wave function. In Sec. III, we present the cal-
culated cross sections for the photoionization of He be-
tween the N=3 and 4 thresholds. Presentation of the
nine partial cross sections and the resonance parameters
is beyond the scope of the present paper and would
lengthen it unnecessarily. Instead, we will show the re-
sults that are relevant for comparison with the existing
experimental and theoretical data, in order to gauge the
validity of our method. Complete information on partial
cross sections and resonance parameters will be presented
in a forthcoming paper. In Sec. III, we also discuss our
results. Finally, we end the paper with some conclusions
in Sec. IV.

Atomic units are used throughout the paper unless
otherwise stated.

II. THEORY

Our method to calculate the continuum wave function
is based on the Feshbach theory [29]. The advantage of
this theory is that the resonant and nonresonant contri-
butions to the wave functions are handled separately and,
therefore, one can use specific methods to calculate each
part. As shown in paper I, for each channel p, the exact
eigenfunction f„Eof the Hamiltonian % can be written

& y, (QaP )Pq'„,)-
E —6, —b.,(E)—i [I,(E)l2]

+ [1+Gg'(E)QJVP]

&y. lQ~PIPV„'; &

E —e, —a, (E)—i [r,(E)/2]

XG" (E)P&Q ~y, &

projected Schrodinger equation in the Q subspace:

(Q&Q —6„)$„=0, (4)

Pf„E is a nonresonant wave function which is the solu-
tion of the following Schrodinger equation in P subspace:

PAP+ )( EPg„z—~„)&„~ WP

n As) n

=(&' E)Pf—„~=0, (6)

G~" (E) is the corresponding Green operator in P sub-
space:

Gp' (E)=lim, =Gp"(E—)+in5(E —&'),1

q-o E — ' ig—
(7)

I,(E) is an energy-dependent "width"

r, (E)=y r'„(E)=2m y I &P&'„EIP~Q I&, & I',

and h, (E) an energy-dependent "shift"

6,(E)=Re& Q, I Q&PGP' (E)P&Q Ip, & . (9)

The way of writing Eq. (1) is not unique, depending on
the particular P, state selected to build the Green's
operators G& (E) and Gz" (E). However, all possible
choices provide identical representations of f„E, so that,
in each particular case, one can single out the P, state
that is more convenient to accelerate convergence in the
expansions of the Green's operators. Also, Eq. (1) can be
used both in resonant and nonresonant regions.

Then, in order to obtain the continuum state written in
Eq. (1) we need to evaluate two kinds of wave functions,
P„and Pg„F, and their corresponding Green's operators,
G"(E) and G~" (E). The P„wave functions [hence
G& '(E) ] can be obtained with standard configuration-
interaction techniques in the framework of the conven-
tional Feshbach approach [30] or the pseudopotential-
Feshbach method [31]. In this paper we will focus on the
calculation of Pg„z and Gz" (E), which are the non-L
integrable parts of the exact eigenfunction g„E in Eq. (1).

Let us define a complete set of orthogonal uncoupled
continuum wave functions g„E, which are solutions of
the single-channel Schrodinger .equations:

G&"(E) is the Green's operator in Q subspace in which
the s state has been excluded:

G'*'(E) = a„)&a„

where P and Q are orthogonal projection operators satis-
fying with

(P„&P„E)y„E=0— (10)

(2)

P+Q =1, (3)

((}, is a resonant wave function which is the solution of a

Pp, XpE XpE (11)

. and let y„„be the corresponding L representations,
which are related to the former representations through a
renormalization factor p:
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0 1/2 —0
XpE =Pq (E„)Xp„. (12) A. EC-matrix approach

From these g „„functions, one has two ways to build the
correct Pg„E state, which we describe below.

Using the closure relation with the g„„wave func-
tions, one can write the K-matrix scattering equations for
a given energy E =E„:

&x„'. Ilc'lx„'. &=&x„'. vlx„'. &+y
II II

(E„„WE„)

&x„'. I vlx„'-.-& &x„'.-Ilt'Ix„'. &

E —E„- (13)

where

V= g P &P„,+P&QGg"(E)ggfP .
I

(p&p')

(14)

I

Nevertheless, this is not the simplest way, since the
Green's operator can be obtained in a single calculation
by using a di6'erent point of view.

After solution of the IC-matrix equations (13), the Pp„E
wave functions are given by

Pg„E =g (I—im K )„'p'~ (E„)

B. Green's operator method

The Pp„E wave function can also be obtained from the
Green's operator Gp" (E) associated to the &' [Eq. (6)]
Hamiltonian and the uncoupled states y„E.

PppE X„E+Gp (E)VXI,E (20)

(15) From the formal scattering theory we can write

where the K matrix elements are of the form:

&=p' '(E„)p„' '(E„)&x„„IK x„„& .

(16)

The wave function of Eq. (15) is correctly 5 normalized
and satis6es the asymptotic conditions that are relevant
for photoionization problems. In paper I and in Refs.
[13,15—17], Eq. (13) was solved iteratively. In this way,
convergence can only be achieved if V matrix elements
are smaller than energy separations. However, Eq. (13)
can be solved in a completely di6'erent way by realizing
that, for a given channel p at an energy E„, it is
equivalent to the system of linear equations:

(17)

where

Gp' (E)=GO (E)+Go (E)VGp' (E), (21)

where Go (E) is the Green's operator associated to the
uncoupled Hamiltonian:

1

q-o E —g P„%P„iri)— (22)

Go (E.)=X X
p' n'

n' n

Ix„'. &&x'„. I

(E —E, )

where

+i~gp (E.)lx„'. &&x„'„I

=& g:-„(E„)lx„'„&&x„'„I,
p, n

(23)

In the basis of discretized zeroth-order states the latter
operator takes the form

+„.=&x„'. I vlx„'. & . (19)
i mp„(E„) for E„.=E„
I /(E„—E„) for E„,AE„. (24)

We can write a similar system of linear equations for each
channel p. Therefore, simple matrix inversions is all one
has to do in order to obtain the L matrix, and this is so
irrespective of the strength of the interaction between the
zeroth-order uncoupled continua.

In principle, we could also use this method to obtain
the corresponding Green's operator Gp" (E) by solving
the E-matrix equations for each energy value E=E„.
This allows us to write the corresponding spectral resolu-
tion of Gp" (E) in the basis of all the Pg„E functions.

In paper I, we expanded the Gp ~ (E) operator in a Born
series in terms of Go (E), whose discretized representa-
tion [Eq. (23)] is very simple. To avoid the intrinsic limi-
tations for the convergence of a Born series, in this work
we calculate Gp" (E) by means of Eq. (21), which can be
discretized in the following way. Using Eq. (23) and the
closure relation in Eq. (21), and projecting from the left
and from the right with the y „„functions, we obtain
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TABLE I. STO basis set used to calculate the eigenfunctions
of Qgf Q. Each STO is defined as y(r )= r " 'exp( a—r ) Y, (r).

l=2 l=4

(25)

p", n"

where

(26)

which presents many similarities with Eq. (13). The main
difference is that the latter equation involves complex
numbers, whereas the K-matrix equations only include
real quantities. For a given channel p, Eq. (25) can also
be written in the condensed form

1 0.60
2 0.60
1 025
2 025
3 025
4 025
5 0.20
6 0.20
7 0.15
8 0.15

2 0.60 3
3 0.60 3
2 025 4
3 025 5
4 025 6
5 0.20 7
6 0.20 8
7 0.15
8 0.15

0.60
0.25
0.25
0.20
0.20
0.15
0.15

4 025
5 0.20
6 0.20
7 0.15
8 0.15

5 0.20
6 0.20
7 0.15
8 0.15

6 0.16
7 0.15

(27)

(28)2)„„=5„„5„„:-„(E„).

Equation (26) represents a system of linear equations in
the complex plane for each channel p. The coefficient
matrix C multiplying the unknowns is the same for all p,
so that each system of equations differs exclusively in
right-hand side column vector D. Therefore, only one
matrix inversion is required to solve Eq. (26), which
means that computer time is independent of the number
of channels included in the calculations. The resulting
matrix representation of G~" (E) permits us to evaluate
all matrix elements involving Gp" (E) in Eq. (1), as well
as the PP E wave function, whatever the strength of in-
terchannel coupling. We have tested this procedure for
the cases considered in paper I: the cross sections provid-
ed by solving the systems of Eq. (26) are identical to those
of I up to the eight significant figure.

mized and, as we will see below, leads to an accurate rep-
resentation of the 4lnl' double excited states.

The nonresonant uncoupled-continuum wave functions
g „„have been evaluated in the static exchange approxi-
mation, following the standard codes of Macias and co-
workers [33]. Briefiy, for each channel p, the uncoupled
Hamiltonian P„gfP is diagonalized in a basis of
configurations built from STO's, whose exponents follow
an even-tempered sequence; the ensuing discretized
eigenfunctions are then renormalized following the re-
cipes of Ref. [33]. The convergence is tested by checking
the invariance of the results when the number of STO's is
increased.

Finally, the expansion of G&"(E) in Eq. (5) includes the
first 46 eigenfunctions of Qgf Q, which represent the 4lnl'
and 5lnl' doubly excited states, and discretized 4lel' con-
tinuum functions that our basis is able to reproduce up to
the N =5 threshold.

III. PHOTOIONIZATION OF He
BETWEEN N =3 AND 4

For a two-electron system such as He, the projection
operator P can be written [32]

P =P1 +P2 P1P2 (29)

A. Wave functions

The ground-state wave function of helium is the same
used in paper I and in Refs. [15—17]. The resonant wave
functions P„have been obtained in the framework of the
pseudopotential Feshbach method [31]. The correspond-
ing Hamiltonian has been diagonalized in the basis of 216
configurations built from the Slater-type orbitals (STO's)
given in Table I. This basis has been approximately opti-

As we are interested in photoionization above the N =3
threshold, the one-electron operator P; will be of the
form

3 N —1 l

(30)
N=1 1=0 m = —I

which includes all hydrogenic Pzi~ states of He+ with
N +3.

B. Cross sections

The cross sections have been evaluated for photon en-
ergies between 73.00 and 75.15 eV. An energy grid with
variable step size has been used in order to exhibit the
whole resonant structure. We have calculated the partial
cross sections for the nine open channels 1sep, 2sep, 2pes,
2ped, 3sEp, 3pes, 3ped, 3dep, and 3dff To gauge th.e
accuracy of the present approach we have compared it
with the available experimental results [25—27].

We show in Fig. 1 the 1V = 1 cross section, and in Fig. 2
the N =2 and 3 ones, in both the length and velocity rep-
resentations. Gauge invariance is good for N =2 and 3.
For the N = 1 cross section, the velocity results are —5%
lower than the length results; however, the corresponding
curves have an almost identical shape. This may be ex-
plained by the fact that the 1sep continuum has a strong
oscillatory behavior, so that the STO basis used to
represent the nonresonant wave function is less complete
than for other channels. There are seven series of au-
toionizing resonances converging to the 2V =4 threshold.
Following Herrick and Sinanoglu [20], we will label them
with the K and T quantum numbers: (K, T). Only one
strong series of resonances is observed: the peaks at
73.71, 74.61, and 74.98 eV, which correspond to the first
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FIG. 1. Partial o.&, photoionization cross section oi helium
above the N =3 threshold. , length gauge; ———,ve oc-
ity gauge.

FIG. 3. o.&=2+o&=3 photoionization cross section of helium
above the N =3 threshold. , length gauge; ———,ve oc-
ity gauge;, exp; ~ xperimental values of Woodruff'and Samson [25].

three 4lnl' doubly excited states of the (2, 1) series. The
small features seen at 74.15 and 74.85 eV in Fig. 2 are the
first two (0, 1) resonances, and the small hump at 74.94.91
corresponds, probably, to the first resonance of the
(
—2, 1) series.

The results shown in Fig. 2 are close to those of Hayes
and Scott [18]; however, there are two significant
discrepancies: (t) our resonance positions a

~ ~

re shifted to
smaller photon energies and (ii) needlelike peaks attribut-
ed by these authors to the (

—2, 1) series of resonances are
not seen in the spectra of Fig. 2. In this respect, it must
be pointed out that we do obtain such resonances in the
dia onalization of Q&Q, but they are not effectively pop-
ulated by single-photon absorption. In Fig. 2 we have
also plotted the experimental results of Heimann et al.
[26] for the N =3 cross section. The agreement between
experiment and theory is very good. Woodruff'and Sam-

son [25] have measured the oz 2+o +—3 cross section ln

the same energy range. In Fig. 3 we compare the experi-
mental data with the results obtained by adding the two
curves of Fig. 2. The overall agreement is good.

In Fig. 4 we have plotted the total photoionization
cross section. As for the dominant 1sep cross section, the
length and the velocity results differ by —5%. Very re-
cently, Domke et al. [27] have measured, with high-
energy resolution, the total photoionization yield in the
energy region between 73.2 and 75.5 eV. In this experi-
ment, the cross sections were obtained in arbitrary units.
Therefore, in order to compare them, we have subtracted
from the length results of Fig. 4 the slow decreasing
background, and normalized the experimental cross sec-
tions o ours at t urs at the first minimum and at the lowest ener-

. The resulting comparison is displayed in Fig. 5. e
use of our velocity data leads to an identica g p .1 ra h. Both

P. 1 2

D. IO P
N

I I I I I I I I
I

I I I I I
I

I I

p..95 I I I I I I I I

0.08

~ 0.06

~ 0.04

0
~ 0.02

0.90

0
~ M

~ 0.85

K

K
K
0 0.80

I I I I I I I I I t I I I t I I I I I t I I I I I I I I

.5 74 0 74573.0 75.0
Photon energy (eV)

FIG. 2. Partial o.&=2 and o&=3 photoionization cross sec-
tions of helium above the N =3 threshold. , length gauge;

velocity gauge; , experimental values of Heirnann
et al. [26].

0.75
73.0

I I I I I I I t I II I I

73.5 74.0 74.5
Photon energy (eV)

FIG. 4. Total photoionization cross section of e ium above
the N=3 threshold. , length gauge; ———,velocity
gauge.
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~l I 1 I I I I I
I

! I I I I I I I I
I

I j I I I I I I I
I

I I I I I I I I I
I

I

0

K

I I I I I I I I I I t I I I I I I | I I I I I I I I I I I I I II

73.00 73.50 74.00 74.50 75.00
Photon energy (eV)

FIG. 5. Total photoionization cross section of helium above
the N=3 threshold. , length gauge; ———,velocity
gauge. The background cross section has been subtracted from
the results of Fig. 4; the experimental cross sections ~ of Domke
et al. [27] have been normalized to the theoretical values at the
first minimum and at the lowest energy.

energy positions and shapes of the resonance peaks are in
very good agreement. In particular, it can be observed
that, in this kind of representation, the first (0,1) reso-
nance at 74.15 eV is more clearly exhibited than in Fig. 4
and, in fact, its existence may also be inferred from the
experimental data. The excellent agreement found for
the energy positions seems to indicate that our descrip-
tion of the doubly excited states with the STO basis of
Table I is accurate.

IV. CONCLUSIONS

In this paper we have presented a fully I. approach to
evaluate continuum wave functions when several strongly
interacting channels are open. As in paper I, the method
is based on the Feshbach formalism, so that the resonant
and nonresonant contributions to the wave function are
treated separately. Therefore, speci6c basis sets can be
used to represent each part, thus allowing for a better
description of electron correlation.

For the nonresonant part, the continuum wave func-
tion can be evaluated either by solving the scattering K-
matrix equations or by evaluating the corresponding
Green's operator. The K-matrix equations are solved in a

representation of discretized uncoupled states, so that for
each channel and a given energy, they are equivalent to a
system of linear equations.

Alternatively, one can build a representation of the
Green's operator in the basis of discretized uncoupled
continuum states by using the relation between this
Green's operator and a zeroth-order one associated to the
uncoupled continua. In this way, for each channel, we
are led to a system of linear equations that can be easily
solved in the corn. plex plane. In this work, we have used
the latter procedure since the coeKcient matrix multiply-
ing the unknowns is the same for all channels, which con-
siderably reduces computer time. The ensuing Green's
operator permits us not only to obtain the nonresonant
wave function, but also to build the continuum eigenstate
of & through Eq. (1).

Unlike paper I, where perturbative expansions were
used to solve the scattering equations, the present method
can be used with any kind of discretized uncoupled
states, provided that they are orthogonal, but irrespective
of the interaction strength between them. In particular,
in this paper, the discretized uncoupled states have been
calculated with a basis of STO's following the standard
codes of Macias and co-workers [33].

We have applied the method to study photoionization
of helium between the %=3 and 4 thresholds, where
there are nine open channels. A sample of our results has
been presented in order to compare with the few existing
experimental measurements [25—28]. Complete informa-
tion on partial cross sections and resonance parameters
will be presented in a forthcoming paper. The calculated
cross sections are in good agreement with the experi-
ments, and do not differ essentially from previous calcula-
tions [18].

The accuracy that can be reached with the present ap-
proach depends directly on the density of zeroth-order
discretized states. In this respect, one can increase this
accuracy at will by simply increasing the density of con-
tinuum states. Therefore, the critical point is to perform
accurate discretizations of uncoupled continuum states,
for which many different approaches proposed in the
literature for a single continuum can be used.
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