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Quantum statistics of a lossless beam splitter: SU(2) symmetry in phase space
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A lossless beam splitter (a dielectric interface, a passive interferometer, or a linear coupler) changes
the quantum state of two incident modes by an SU(2) transformation. Apart from phase shifting, the ar-
gument of the quadrature wave function of the system undergoes a rotation. Quasiprobabilities are
changed by the inverse mode transformation. The use of balanced beam splitting allows the simultane-
ous measurement of conjugate quadrature components via homodyning the emerging beams with two
strong coherent reference fields that dift'er in their phases by m/2. The measured probability distribution
is given by a generalized Q function. It depends on the state of the field entering the second beam-
splitter port. For a vacuum, the Q function will be obtained. The use of unbalanced beam splitting al-
lows the measurement of a squeezed Q function without using squeezed states. Dissipation in Gaussian
reservoirs corresponds exactly to a heuristic beam-splitter model. As a mathematical tool, the Fokker-
Planck equation of damping in phase-sensitive reservoirs and the corresponding quantum master equa-
tion were solved. The dissipative decay of a Schrodinger-cat state was studied as an example. The sensi-
tivity of quantum coherence with respect to damping can be interpreted geometrically.

PACS number(s): 42.50.Dv, 03.65.8z, 42.50.Lc, 42.79.Fm

I. INTRODUCTION

A simple beam splitter is a nice device to demonstrate
the quantum nature of light. In a number of subtle ex-
periments [1,2] the wave-particle dualism was proved
convincingly by counting photons of split [1] or optically
mixed [2] light beams. A measurement of the phase-
space distribution via homodyning the emerging beams
with two strong coherent fields provides another example
of simple yet fundamental quantum optical experiments.
Especially attractive is the measurement of one quadra-
ture on one beam and the canonically conjugate quadra-
ture on the other [3]. In this way "position" and
"momentum" are measured simultaneously, at the cost,
however, of introducing additional (vacuum) noise via the
second ("unused") port of the beam splitter. The recent
experiment by Noh, Fougeres, and Mandel [4] can be
seen in this light. It was intended as an operational ap-
proach to the quantum phase of light and stimulated
significantly the discussion about phase and phase-
dependent properties [5]. Two recent Rapid Communi-
cations [6,7] showed that the simultaneously measured
phase-space distribution is actually the Q function of the
original light mode. One of the main goals of this paper
is the analysis of a generalized Noh-Fougeres-Mandel
scheme in which a second field being in an arbitrary state
enters the second port of the beam splitter and the split-
ting ratio is no longer restricted to 50%:50%. It turns
out that the measured phase-space distribution is a gen-
eralized Q function [8,9]. Surprisingly, the unbalanced
scheme allows a measurement of a squeezed Q function
without using squeezed states.

Another subject of this paper is the phase-space
analysis of nonclassical quantum states which are
influenced by an external environment. It is well known

that squeezed states [10] or Schrodinger-cat states [11]
exhibit the lion's share of their typical quantum proper-
ties in phase space. The simplest model for the interac-
tion of a light mode with an external environment is a
beam splitter [12]. It models the attenuation of the field
and the entering of external Auctuations via the second
port of the beam splitter in accordance with the
dissipation-fluctuation theorem. This paper shows that a
heuristic beam-splitter model describes exactly the dissi-
pation in Gaussian reservoirs. To demonstrate this the
Fokker-Planck equation for damping in phase-sensitive
reservoirs and the corresponding master equation are
solved. To the author's knowledge only partial solutions
of this problem were published [13,14] to date. An exam-
ple will be the decay of quantum coherence of a
Schrodinger-cat state due to thermal [15] or phase-
sensitive reservoirs [16,17]. A surprisingly simple geome-
trical explanation of the extreme sensitivity of quantum
coherence will be given.

The tailored formalism for the action of a lossless beam
splitter in the phase space of the incident light modes is
provided by transformation laws for wave functions and
quasiprobability distributions. Although the quantum
statistical theory of a lossless beam splitter has been al-
ready studied by a number of authors [18—24], a
comprehensive phase-space description is still missing.
The most general formalism was published by Campos,
Saleh, and Teich [24]. In their paper the beam splitter is
modeled by a SU(2) transformation of the bosonic opera-
tors of the incident light modes [19]. The same "black
box" describes a passive interferometer [25], a linear
coupler [26—28], or a dielectric interface [29]. Using the
Jordan-Schwinger representation of an angular momen-
tum system [30,31] they derived a general transformation
law for the state vector and the density matrix of the in-
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cident light modes. In this paper the basic model and the
notations will be quoted from the work of Campos, Saleh,
and Teich [24]. After a brief summary of their formalism
in Sec. II the transformation law for wave functions will
be derived in Sec. III. In Sec. IV generalized Noh-
Fougeres-Mandel schemes, i.e., simultaneous measure-
ments of canonically conjugate variables are studied. In
Sec. V the transformation law for quasiprobabilities will
be derived. ReAection of light being in a Schrodinger-cat
state ofF a semitransparent mirror will be studied as an
example. In Sec. VI the equivalence of dissipation caused
by Gaussian reservoirs and the corresponding beam-
splitter model will be proved.

i(% /2)

0
0

e
—1(+/2)

cos(6/2) sin(6/2)
X —sin(6/2) cos(6/2)

e &(+/2)

X
e

—
I. (N/2)

or explicitly written

cos(6/2)e'~+~' sin(6/2)e'~
—sin(6/2)e ~+~' cos(6/2)e'

(4)

II. THE MADEL

The abstract model of a lossless beam splitter [22], a
dielectric interface [29], an interferometer [25], or a
linear coupler [26—28] is a linear four-port device (Fig. 1).
Two radiation modes enter the instrument, interfere with
each other, and leave it. Denoting the boson-annihilation
operators of the input modes by a, and a2 and the
output-mode operators by b& and b2 the input/output re-
lation of the beam splitter is simply

b2, 82

Bii Bi2B=
B2i B22

In order to conserve the bosonic commutation rules of
the mode operators the transformation matrix B has to be
unitary [24] and apart from an avoidable phase factor we
find that

The beam splitter acts in three steps: At first it shifts the
phases of the input modes, then it mixes the modes via a
rotation, and at last it shifts the phases again. The phase
shifts could be eliminated by a proper phase redefinition
of the incoming/outcoming modes. The rotation would
remain. Mixing of modes is in fact the essential opera-
tion of a beam splitter. Note that the transmittance of
the beam splitter is given by r =cos (6/2) and the
refiectance by p=sin (6/2). The identity cos (6/2)
+sin (6/2) = 1 ensures energy conservation.

Equations (1) and (4) give the transformation law for
mode operators, while the quantum state of the system
remains unchanged. The situation is similar to quantum
theory in the Heisenberg picture. In the Schrodinger pic-
ture the quantum state evolves while the mode operators
remain fixed. In quantum theory the evolution operator
of the system relates Heisenberg and Schrodinger picture.
Thus, if the transformation law of the modes can be writ-
ten as the action of an evolution operator B,

8ESU(2) . (2) bi
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=B B,
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Q2

i A.
bi

b2
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the transformation law of quantum states in the
Schrodinger picture is given by

expresses the input-mode operators in terms of the
output-mode operators. SU(2) matrices have a simple
structure or for a statistical mixture

p,„,—B p;„B (8)

b.,
T

An explicit expression for B was obtained by Yurke,
McCall, and Klauder [25] and Campos, Saleh, and Teich
[24] using the Jordan-Schwinger representation of an an-
gular momentum system in terms of bosonic operators
[30,31]:

a2

LI = , (d]a2+Q2&$), L2 ——.(a]—a2—&2d, ),
2l

L, =—'(a, &, —a & ) .3 2 (9)

FIG. 1. Schematic diagram of a beam splitter. 8& and &2

denote the input modes and b
&

and b2 the output modes.
Here L i, I-2, and I 3 obey the same commutation rules as
angular momentum components. With the definition (9)
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B can be written as [24] =e I~~=eir~ ~ e Ir» (17)
—IeL —I BE —I.+EB=e 'e 'e (10) In the Schrodinger picture a wave function would be

transformed as follows:

III. BEAM SPLITTER AND WAVE FUNCTIONS lt'= &x le (18)

a = (x+ip ).
2

The quadrature components x and p play the roles of
position and momentum operators since

[x,p ]=i5„. (12)

A number of interesting states in quantum optics have
simple wave functions but complicated photon-number
distributions. Squeezed states are a good example [10].
In this case it is advantageous to use wave-function tech-
niques. On the other hand (as it will be shown in this sec-
tion), a beam splitter transforms wave functions in a rath-
er simple and intuitive way. Let us introduce a quadra-
ture decomposition of the mode operators

2 4
(20)

A phase-shift transformation is equivalent to the harmon-
ic evolution of a wave function. Phase is time. Using the
Green's function of a harmonic oscillator the evolution of
a wave packet can be described as

g'(x)= f dx'G(x, x', y)g(x') . (19)

The Green's function 6 was calculated in Appendix A
with the result

I'

1 x cosy —2xx'+x' cosy
G X,x exp i

&2~ siny 2 slny

Wave functions are defined as the scalar products of the
position and momentum eigenstates and the quantum
state lail &:

q(x„x,)=&x„x,lp&, v(p„p,)=&p],p, l0& .

The state transformation l]tl,„,&=8 lp;„& (7) and (10)
leads to a transformation of the wave function

It has the following properties: First,

1 l
limG(x, x', y)= lim exp (x —x')
] ~0 ] ~0 V 2~y/i 2y

=5(x —x'),
as it should be for a Green's function. Second,

(21)

i'PL3 i BE& i@E3lil'(x], X2)=&X],X2le 'e 'e (14)
7T l6 x x', —= e'
2 v'2~ (22)

The elements of a wave function transformation are rota-
tion and phase shifting.

A. Rotation

The basic operation of a beam splitter is the mixing of
modes. The wave function will be transformed according
to

BL2q'(x „x,) = &X„X,le

=&x„x,exp —(a]a, —a,a, )
e

ol

'7T . + dX
X, =l e ' "Q(x')=i]p(p =x) .-- ~2' (23)

C. General transformation

A phase shift of vr/2 means (apart from a factor of i) a
Fourier transformation. It gives the momentum wave
function. For example, phase squeezing is turned into
amplitude squeezing [32]. Third, the Green's function is
periodic with a periodicity of 2~.

=&X„xzlexp (ix,P2
—ix2P, ) lij&— A general transformation of the input wave function is

a combination of the basic operations rotation and phase
shifting:

6=exp —x,
2 BX2

P(x„xz). (15) +oo, +coP'(x„xz)=f dx', f dx2G(x„x',—]ll/2)

This equation describes a rotation by 0/2 in the x„x2
plane

P'(x „x2) =P(cos(e/2)x ]
—sin( e/2)x z, sin(e/2)x,

+cos(e/2)x, ) .

B. Phase shifting

In the Heisenberg picture phase shifting is a transfor-
mation like

X G(x2, x 2, ]ll/2)]p(x', , x 2 ),
(24)

]p(x „X2) =y(cos(e/2)x ]
—sin( e/2)x z, sin( e/2)x ]

+cos(e/2)x, ),
+oo, +ooy(x„x2)= dx', dxzG(x„x'],—0&/2)

X G(x ~, x 2, N/2)$(x ', , x ~ ) .

(26)
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Note that a momentum wave function will be
transformed in the same way. The essence of a beam-
splitter operation is the rotation of the wave function.
The squared cosine of the rotation angle is given by the
transmittance, while the reflectance gives the squared
sine. Phase shiftings are expressed by convolutions of the
wave functions with the Green's function of a harmonic
oscillator.

IV. SIMULTANEOUS MEASUREMENT
OF CON JUGATE VARIABLES

In the preceding section wave functions of quadratures
were introduced. A quadrature can be measured via
homodyning [33] or balanced homodyning [34,35]. A
measurement of a quadrature is similar to a measurement
of position or momentum since the components x and p
are canonically conjugate variables. According to quan-
tum theory a simultaneous measurement of position and
momentum is impossible. One has to divide a statistical
ensemble of states and measure x on one half and p on
the other. But if it were possible to make two copies of a
state and measure x and p on each copy separately no ob-
jection from quantum theory had to be feared. A beam
splitter is a device to make copies of an incident light
beam. However, the additional noise emerging from the
"unused" port of the beam splitter is the price to be paid
for it. Two schemes will be studied: a balanced measure-
ment by splitting with a 50%:50%%uo beam splitter and a
more general unbalanced measurement.

f dgy*(g)e "q)(/+&2x, )

2f de*(k»( —
i
—~ )q(k) (3 I)

where the position representation of the displacement
operator has been used (see Appendix B). Finally, the
probability of finding x ] and p2 is given by

(32)

where

Ix)+ip2,'x& =D(x)+&pq)IX & . (33)

An expression of this kind was discussed by Aharonov,
Albert, and Au [36] and O' Connell and Rajagopal [37].
They proposed a new interpretation of the scalar product
in Hilbert space by relating it to a measurement of the
observables x&

—xz and p, +y2 of a two-particle system.
Having a look at the beam-splitter matrix B in Eq. (27)
we see that our scheme is a physical realization of this
procedure (apart from a factor of V2). In the words of
Aharonow, Albert, and Au the probability g'(x„pz)l is
equivalent to the scalar product of a displaced
"quantum-ruler" state and the "object" state. O' Connell
and Rajagopal showed that I

P'(x „p2) I
can be expressed

in terms of Wigner functions

A. Balanced measurement

Here the incident light mode is divided by a perfect
50%.50%%uo beam splitter to be characterized by the matrix

—I/&Z
I /&2 I /&2 (27)

The state of the light beam will be denoted by l&p& and
the state of the light (or darkness) at the unused port of
the beam splitter by ly" &. The input wave function is
written as

g(x, ,x, ) = (x„x,ly & ly* & =y(x ) )y*(x2) . (28)

2

lq'(x„u,)l'= f '" ' e""'q'(x„x2) (29)

where

g'(x„x2)=q)
x( +xp

X
—x, +xz

v'2 (30)

Setting g'= ( —x
&
+x2 )/&2 one obtains

Now the emerging two light beams are homodyned with
two strong coherent fields having a phase difference of
~/2 in order to measure x, on one beam and Pz on the.
other. Quantum theory predicts that the probability of
finding a particular pair of values x i and p2 is

B. Unbalanced measurement

An example of a generalized Husimi function is a
squeezed Q function

Q, =—
I (q&ID(x, +ip )SIO& I' . (35)

It can be obtained when the second input of the beam
splitter is in a squeezed vacuum state. Then the quantum
noise of the second beam-splitter input is phase depen-
dent and below the vacuum level for one quadrature and
above vacuum noise for the conjugate one. But is it real-
ly necessary to recruit squeezed vacuum? Let the object
light fall onto a more general beam splitter:

cosa slnaB=
sina cosa (36)

=2f dq f dpi' (q,p)

X Wx (q —&2x„p—&2p2 ),
(34)

where 8 denotes the Wigner function corresponding to
y(x) and JYr the Wigenr function corresponding to y(x).
It fits well into the concept of constructing generalized
Husimi quasidistributions via smoothing the Wigner
function [8,9]. Thus a scheme of simultaneous measure-
ment of conjugate variables by splitting the "object"
beam and homodyning the "copies" is an operational ap-
proach to generalized Husimi quasidistributions.
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Then the probability of finding x
&

and p2 is given by
2

lg'(x»pz)l = I e ' 'g'(x„xz)
2'lr

(37)

g'(x i,x2) =q (x i cosa+x, sina)y*( —x, sina+x, cosa) .

(38)

Here Substituting g= —x, sina+x2cosa one obtains

1 + oo

2 J dg'y*(g)exp i-
277cos a cosa

2
g slna+x i

cosa
2

1 + oo X)I dgy*(g)S(ln(tana))exp i —. y g+ (39)~ sin(2a) sina cosa

where the position representation of the squeezing operator S was used (see Appendix C). The representation of the dis-
placement operator (see Appendix B) enables us to write

lg'(x„pz)l = . f dgy*(g)S(ln(tana))8 — — +i
m sin 2a 2 cosa sma

and since

[S(ln(tana))] =S(—ln(tana))=S(ln(cota))

we arrive at

(41)

'(x„p,)l'= . &q l8 ' +i .
'

m. sin(2a ) v'2 cosa sina
S(ln(cota)) y & (42)

or using the notation of Sec. IV A C. Experiment

I13,g;x & =&(13»(&)lx &

(43)

1 ~] . 5'2+tv'2 cosa sina

/=in(cota) .

We see that when the unused port of the beam splitter is
entered by the vacuum field {is in fact unused) a squeezed
Q function will be measured. What does it mean'? The
noise from the second beam-splitter port is not equally
distributed. It depends on the transmittance. When the
transmittance is greater than 50% the measured quadra-
ture on the transmitted beam contains less added vacuum
Auctuations than using a balanced scheme whereby, of
course, the rejected beam is influenced by respectively
more fluctuations. For a transmittance lower than 50%
we are in the reverse situation. Thus, in the unbalanced
scheme for simultaneous measurements of conjugate vari-
ables Auctuations entering the second port of the beam
splitter are suppressed on one quadrature and enhanced
on the other. Note that this concept can be generalized
to a complex squeezing parameter g by introducing an
overall phase shift B—+exp( i y )8. —

An experiment of the design in question has been car-
ried out recently by Noh, Fougeres, and Mandel [4]. It
was intended as an operational approach to the quantum
phase by photon counting. The phases of two coherent
fields were compared in an interferometer depicted in
Fig. 2. In case one coherent field is suKciently strong to
serve as a reference for balanced homodyning [35], phase
from the Q function will be measured [6,7,38], whereby
phase means the angle between position and momentum.
The phase distribution is obtained by averaging over the
"radius" in phase space. Having in mind the results ob-
tained in Secs. IV A and IV B modifications of this exper-
iment can be suggested.

First, it would be interesting to measure the Q function
of squeezed states. Second, a squeezed Q function can be
measured using the unbalanced scheme. Third, the Q
function of displaced Kerr states produced in a nonlinear
Mach-Zehnder interferometer [39] can be measured.

Especially attractive would be the measurement of the
Q function or the squeezed Q function for a single photon
produced in spontaneous parametric down-conversion
[40].

D. Remarks

To the author's knowledge the balanced scheme of
measurement was first analyzed by Lai and Haus [3].
They pointed out that the Q function or a squeezed Q
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Vill 11111 V. BEAM SPLITTER AND QUASIPROBABILITIES

Input 2

BS,

A/4 shifter

The wave-function formalism of Sec. III works well if
the system is in a pure state having a simple wave func-
tion. In many cases statistical mixtures are effectively de-
scribed by quasiprobabilities. So let us introduce an
operator [49]

d2
A(a;s ):— exp p(a —a* ) p*—(a a)—+ p*p-

'al 2

BS3 BSl

Ill pelf

Quasiprobabilities can be extracted from the density
operator p in the form

P(a;s )—:—Tr Ip6(a;s) }
1

(47)

VRCll U Ill

FIG. 2. Experimental scheme by Noh, Fougeres, and Mandel
intended as an operational approach to the quantum phase of
light. The essence of the experiment is a simultaneous, however
noisy, measurement of the two quadrature components of the
field entering the interferometer at input 1. The Geld is split by
the beam splitter BS„onebeam is shifted in phase by ~/2 and
homodyned with two strong coherent reference beams. They are
produced by splitting a laser beam entering at input 2 using the
beam splitter BS2.

function can be measured for vacuum or squeezed vacu-
um at the second input of the beam splitter. This paper
shows that a squeezed Q function can be measured
without using squeezed states. The experiment of Noh,
Fougeres, and Mandel [4] in the limit of a strong local os-
cillator was first successfully analyzed by Freyberger and
Schleich [6]. They showed that for a coherent input,
phase from the Q function is measured. Later Leonhardt
and Paul [7] and Freyberger, Vogel, and Schleich [38]
generalized this result with respect to an arbitrary state
at the first beam-splitter port. In this paper arbitrary
states at both the first and the second port of the beam
splitter are taken into account.

Note that the detection of the Q function is the com-
mon feature of several different schemes of simultaneous
measurements of conjugate variables. Phase measure-
ments [41] via amplification [42,43] or heterodyning [44]
as well as schemes based on the interaction of "meter sys-
tems" with the quantum object [45,46] are measurements
of (generalized) Husimi quasidistributions.

It was pointed out by Wodkiewicz [47] and Arthurs
and Goodman [48] that the price to be paid for measur-
ing position and momentum simultaneously is an increas-
ing of the uncertainty product

and vice versa they allow a reconstruction of p:

p= f d aP(a;s)b, (a; —s) . (48)

Here P(a;s) gives, in particular, (i) for s =1 the P func-
tion of Glauber [50] and Sudarshan [51], (ii) for s =0
(apart from a factor of 2) the Wigner function [52]

~(q,p) = —f dx e "~'(q —x lplq+x ),

According to the density operator transformation (8) the
output quasiprobability is given by

1P'(a„a2,'s) = Tr, 2IB pBb, ,(a„s)hz(az,'s ) }

1= —
2 Tr&z[pBA, (a„s)bz(a2,s)B } . (50)

Then according to (6)

8 b, , (a „s)62(az,s)B

d p, d p2f exp Pi(b i
—ai*)—P~)(bi —ai)

+p2(b 2
—a2 )

—
p~ (b2 —a2)

+ —(pi p, +p2p2)2
(51)

Introducing

where a(q +ip)!&2, and (iii) for s = —1 the Q function
[53] Q(a) = (apea ). Now the beam-splitter transforma-
tion of quasiprobabilities will be derived. Let the input
quasiprobability be denoted by

1P(ai, aq, s)=
2 Triq[phi(ai, s)62(a~;s)}

(», )(hp2) & 1

instead of Heisenberg's relation

(44)
CX)

=B
2

p',

p2

p,=B (52)

(»i)(&pi) & —,
'

Eq. (51) can be written as
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BA,(a„s)b2(a2;s)B

dP, dP'
exp i a) Ai i 0) —Ai

0.2

+p2(a 2
—a2* ) —p2*(a 2

—a2)

+
2

(P1*P1+P2*P2) -Og

and finally

Bb,1(a(,s)b2(a2,'s)B =61(a(,s)52(a2, s) . (54)

Thus quasiprobabilites are transformed by the inverse
beam-splitter transformation

P'(a„a2;s)=P(a'1, a,';s),
A&

A2

A)

A2
FIG. 3. Wigner function of a Schrodinger-cat state

~ f) =( I /&2)( ~P) + —P) ) with P= 5/&2. The interference
structure indicates quantum superposition.

Example: Schrodinger-cat state

A prominent candidate with simple but interesting
quasiprobabilities is a Schrodinger-cat state [11]. The
"cat" is a superposition of two (macroscopic distinct)
coherent states

Possibilities to generate a cat, its nonclassical properties,
and its fragile behavior have attracted much interest
[11,15—17,54—56]. Let us image a Schrodinger-cat state
in front of a semitransparent mirror (an outcoupling mir-
ror of a cavity with a cat inside) characterized by a rota-
tion angle a. The Wigner function of a cat is (see Fig. 3)

1
1I 1 0 +e 1 0

—p —(q —x )
—(q +x )

X2'(1+ e )

2

+e '[2cos(2p, xo)]], (57)

where ReP=xo/&2 and ImP=O. The function consists

of two terms localized at xp and —xp and one interfer-
ence term. Without the latter the light amplitude of a cat
state would be either xp or —xp, but the oscillating term
indicates quantum superposition, i.e., the amplitude is
both xp and —xp in contradiction to macroscopic experi-
ence. Let the field beyond the mirror be in a thermal (or
in a vacuum) state. The Wigner function of a thermal
state is

q~+p2
~(2n+1) 2n+1

In order to obtain the rejected state we rotate the total
Wigner function by an angle of A and calculate the re-
duced one

+ oo + 00

~1(q1 &Pl ) d92 dP2 ~1(91Pl ) ~2('V2 &P2 )

The result is

~'1(e( P()=

X . exp

2 cos

exp
2~(1+e ')25qfi~

(q, —x(1cosa)

26

q,
+exp —

226

p&

26

+exp

2x pP i cosA

26

( ((( 1 +x ocosa )

26

exp
xo(1+2n )

sin A
26

(60)

where

26 =25 =cos a+(2n+1)sin a . (61)

A single nonperfect reAection "kills" a macroscopic cat

(when xo is large) due to the quantum noise of the vacu-
um or the thermal reservoir beyond the mirror (at the
unused input port of the beam splitter) since the superpo-
sition term in the Wigner function (60) decays at a rate of
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xo(1+2n ) for small a. The Schrodinger cat has to make
a decision: It is localized either at xo or at —xo. Mecoz-
zi and Tombesi [56] suggested to introduce squeezed vac-
uum at the second input port of the beam splitter having
the Wigner function

2

Wz (qz, pz ) =—exp —25 q z—1 2 2 S'2

dP y B(aP) B(a*P) B P
2 a

+2D +M'
a~*a BEE

with the s-dependent diffusion constant

D=X+—' —s .2

(66)

(67)
Then the loss of quantum coherence will be reduced since
in this case we get again the Wigner function (60) but
now with

1+2n =25

The general solution of the Fokker-Planck equation (66)
is given by

p(a, t;s)= f d pp, (e 'yy 'a —+1—e p;s)

1 . 225 =cos 0;+ sin n,2
(63) XPO(+1 —e y'a+e ' "/3;s)

(see Appendix D), where

(68)

26 =cos o. +26 sin a .

Now the destruction rate for small e is reduced to 26 xo.
Po(p;s) = 1

VI. BEAM SPLITTER AND DISSIPATION

M*P 2DP*P—+M /3*
X exp (69)

A beam splitter provides a heuristic model of dissipa-
tion. When light is damped it can be imagined as being
splitted in a transmitted and a removed part. On the
other hand, an attenuated light mode needs an additional
Auctuation mode in order to conserve the commutation
rules. So intuition would suggest a model like [12]

denotes the stationary solution of the Fokker-Planck
equation (66). Already here we see that dissipation mixes
the initial and the final quasidistribution. Let us return
to the density operator. Using Eq. (47) and
Tr~ j b, (p; —s) }

= 1 [49] we write

p=Tr~ f d a'f d p'p, (a';s)po(p', s)

a(t)
b(t)

(ylz)t Q 1
—yt g(0)

—Ql —e y' e 'y ' b(0) (64)

where

X b, ~ (a; —s )hz(/3; —s) ', (70)

where 8(t) is the attenuated light mode, b is a fluctuation
mode, and y is a damping constant. One may argue that
dissipation is an interaction with a reservoir of many de-
grees of freedom and not with one fluctuation mode only.
However, it will be shown that the simple intuitive model
is exact for dissipation in Gaussian reservoirs. An exam-
ple of damping in a Gaussian reservoir is the evolution of
a mode inside a lossy cavity [57]. Here the outcoupling
mirror of the resonator couples the light inside the cavity
to a reservoir of vacuum, thermal, or squeezed light out-
side.

Let us start from the master equation for dissipation in
Gaussian reservoirs [58]:

a' e 'y"" —&1—e y' a
p' Q 1

—yt —(ylz)t p

Substituting a' and p' for a and p we obtain

p=Tr~ f d a f d pp, (a';s)po(p', s)

Xb,'„(a;—s)b, ~(P; —s) ',

where

(71)

(72)

=~N(C pa —paa )+~(N+1)(apa —a ap)
dt 2 2

b, ~ (a; —s)b~(p; —s)

+~M(pa +a p
—2a pa )+H. c.

2
(65) = f d a f d Pexp a(&' —a'*)—a*(a —a')

Here X denotes the mean photon number of the reservoir
and the complex parameter M indicates phase sensitivity.
It is thermal if M =0 and ideally squeezed if
~M~ =N(N + 1), while for the general case we have
~M~ ~N(N+1). The master equation (65) can be
translated into a Fokker-Planck equation for quasiproba-
bilities P(a;s) [59] and

+P(S't —/3" ) —8*(b' —P')

——(a*a+p*p)
2

(73)



48 QUANTUM STATISTICS OF A LOSSLESS BEAM SPLITTER: 3273

b e
—

(,y /2))t (74)

has been introduced. In Sec. II beam-splitter transforma-
tions were expressed by means of the Jordan-Schwinger
representation of angular momenta. Transformation for-
mula (6) gives us

b, '~ (a; —s)b~(p; —s)

IeL~ —ieE,=e 'b, „(a',—s)b~(/3; —s)e

with

0.2

-0.

cos(e/2) =exp[ —(y/2)t] .

Thus the density operator p can be expressed as

IeE~p= Trodi Ie ' d a' P(a', s)b, ~(a', —s)

X J d P'Po(P', s)b~(/3'; s)e—

(76)

(77)

FIG. 4. Plot of the oscillating term in the Wigner function of
the Schrodinger-cat state of input 1 together with the Wigner
function of the Gaussian state of input 2 in a common two-
dimensional momentum space at q&

=q2 =0.

Here fd a'P, (a';s)A„(a',s) gives the initial density
operator P, [see Eq. (48)] and f d p'Po(p', s)b~(p', s) the
final one p~—a Gaussian density operator. Using the re-
lations between Gaussian quasidistributions and Gauss-
ian density operators [60] we finally arive at

eI"., —ei,
p=Trti[e p poe

cos(e/2) =exp[ —(y/2)t],
po=JVexp[ —

—,'(m*b +2nb b+mb )],
(78)

2(X+ —,
'

)n=
v'(x+ —,

' )' —IMI'

X arccoth[2+(X+ —,
'

)
—IMI ],

geometrically: Let us consider the oscillating term in the
Wigner function of the cat at q, =0 (where its maximum
is situated) together with the Wigner function of the
Gaussian state at q2=0 in a common two-dimensional
momentum space (see Fig. 4). We see a rapid oscillating
function in p& direction. Dissipation acts like a beam
splitter. It rotates this function (see Fig. 5) and projects it
onto the p, axis. Now the oscillations will cancel each
other. The efBciency of this cancellation is determined by
the broadening in p2 direction. Thermal reservoirs have
a broad distribution, squeezed vacuum a narrow one.
Thus thermal dissipation leads to a rapid decay of the
quantum superposition but squeezing may save the life of
the cat.

2Mm=
Q(x+,' )' —IMI'

X arccoth [2+(X+ —,
'

) —
I
M

I ] .

(JV denotes a normalization constant. ) Equation (78)
gives the general solution of the master equation (65) for
dissipation in Gaussian reservoirs. It describes the mix-
ing of an initial density operator p, with the final Gauss-
ian state po. In the Heisenberg picture we get the intui-
tive model (64). Dissipation is interference with a fluc-
tuation mode. One has to translate only cos(e/2)
=exp[ —(y/2)t].

Returning to the Schrodinger-cat example we see that
our beam-splitter model reproduces in a simple way the
known results about the dissipative decay of quantum
coherence in vacuum [11], thermal [15], or phase-
sensitive [17] reservoirs. Moreover, the sensitivity of
macroscopic quantum superposition can be interpreted

0.2

-0

FIG. 5. Dissipation "rotates" the input Wigner function de-
picted in Fig. 4 and projects it onto the p, axis. The oscillations
of the quantum interference structure cancel each other.
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VII. C(ONCI. UDING REMARKS

For theoretical simplicity the description of interfer-
ence in a beam splitter, an interferometer or a linear
coupler should be adapted to the measured observables.
When photons are counted directly then a Pock basis for-
malism works well [24]. When quadrature components
are measured then the natural theoretical tool is a wave-
function formalism. Apart from phase shiftings the beam
splitter rotates the total wave function of the incident
light modes. The Green's function for phase shifting was
derived. Quasiprobabilities such as the P function, the
Wigner function, or the Q function undergo a unitary
transformation of their arguments in the process of beam
splitting.

A measurement of a quadrature component on one
beam and the canonically conjugated variable on the oth-
er beam emerging from a balanced 50%..SO%%uo beam spli-
tter is a measurement of a generalized Husimi function (a
smoothed Wigner function). When one input port of the
beam splitter is unused (vacuum is entering) the detected
phase-space probability distribution is given by the Q
function. Using an unbalanced beam splitter a squeezed
Q function is measured without using squeezed states.
An experiment in this spirit is the operational approach
to the quantum phase by Noh, Fougeres, and Mandel [4].
Experimental improvements are suggested.

A beam splitter provides a heuristic model for damp-
ing. Dissipation corresponds to a finite reAectivity of the
beam splitter and Auctuation to the contact with Auctua-
tions of the second input state. It was shown that this re-
lationship is exact for damping in Gaussian reservoirs.
As the mathematical tool to prove it the Fokker-Planck
equation for damping in phase-sensitive reservoirs and
the corresponding quantum master equation were solved.
The decay of a Schrodinger-cat state in Gaussian reser-
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APPENDIX A:
PHASE SHIFTING QF WAVE FUNCTIONS

Let a phase shift (time evolution)
U(y) =-exp( —i ya a ) act on a wave function

U(y)g(x)=(x ~exp( iy& d—) Itr)

0!

operator

where a coherent state basis was introduced. The wave
function of a coherent state

~
a ) is

&x~a)=Ir I"exp
(x xQ) PQxQ

2 ' 2
+lP x

where Ix=(XQ+ipQ)/&2. So the wave function of a
coherent state ~ae ~) can be expressed as

voirs was studied as an example. A geometrical interpre-
tation of the extreme sensitivity of macroscopic quantum
coherence with respect to damping was found.

¹te added in proof. The author recently learned from
P. L. Knight that the eight-port homodyne detector
sketched in Fig. 2 has already been extensively analyzed
by N. G. Walker, J. Mod. Opt. 34, 15 (1987).

(x ~~e '~) =Ir I~~exp —
—,'[x —(XQcosy+pQsiny)]'

l+i (
—xQsiny+pQcosy )x ——(xQcosy+pQsiny )( —xQsiny+pQcosy )

(x ~cze ) =17 exP [ —[x 2e (xQ+ IPQ )x +(xQcosy+PQsllly ) + i(x cosy +p siny )( —x siny+p cosy )]]

i (y/2+7T/4) iff+ dx'exp . [x' —e '~[x+i(xQ+ipQ)siny]]2
277 silly —~ 2 silly

dx'exp+, . cosyx —2xx '+ cosyx '

&2Ir siny — 2 siny

(x ' —xQ ) PQxQ
0+ip x' —i

after some algebra. Defining a function 6
T

1 . Cospx 2xx +cospx
G x,x, y exp l

&2Ir siny 2 S1np

+l—+l—. 77

2 4
(A 1)

we get (x ae '~) = f dx'G(x, x', y)(x'~a) and final-

ly

U(y)It(x) = f dx'G(x, x', y)f(x') . (A2)

G means the Green's function for phase shifting (time
evolution).
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APPENDIX 8:
DISPLACEMENT OF WAVE FUNCTIONS

Let a displacement operator [10] D ( a )
=exp(aa —a*a ) act on a wave function, where
a=(q+ip)/+2 and a =(x+iP )/+2:

D(a)tij(x) =exp(ipx i—qP )g(x)

=exp — exp(ipx )exp( iqp—)g(x)
2

Ipq a=exp — +ipx exp —
q P(x ),ax

S(s)g(x) =e' ij'lie'x),
+ oo

where the normalization P*P dx = 1 is conserved.

APPENDIX D: GENERAL SOLUTION
OF THE FOKKER-PLANCK EQUATION

In this appendix the general solution of the Fokker-
Planck equation for dissipation in phase-sensitive reser-
voirs is given

"oP ~P y B(aP) B(a*P) + d P
c}t 2 Ba pa* ga2

where the Baker-HausdorfF' formula was used. The final
result is ap +M~ ap

)jc
(D 1)

q +lp lpqD — g(x) =exp — +ipx ij'jlx —q) .

APPENDIX C:
SQUEEZING OF WAVE FUNCTIONS

Let a (real) squeezing operator [10] S(s)
=exp[(s/2)(a —a )] act on a wave function, where
a =(x+iP )/&2:

S(s)f(x)=exp —(ixp iPx )
—f(x)

2

s a a=exp —x + x P(x) .
2 ax ax

Since the scaling transformation

g'(x;s) =e' g(e'x)

has the generator

a1i(x;s) 1 a a

s =o 2 ()x ()x

squeezing mean scaling:

XPo(+I —e r'a+e ' "P) . (D3)

By means of the trans formation a0 =e ' "o.
—+ I —e r'P we obtain

P= f d aoG(a, a„,t)P, (ao),

where

1G(a, ao, t)=,Po(a), a= ~ e
—~r/'2)t

0

&I —e
(D4)

First we prove that G solves the Fokker-Planck equation
(Dl). Let the di8'erential operator L act on G:

It can be easily proved that the stationary solution
(XPo =0) reads

1 M a —2Da*a+Mo. *
P0= exptrV'D' —~M ~' 2(D' —M~')

(D2)

Note that P0 is normalized to unity. We will prove that
the general solution of (D 1) is given by

P= fd'PP. (e-~r""a V'I e—-"P)—

1 & ( )
y/2

rt 1 —e

a a. 1+ca +M +D +c c. -P0
aa aeaa*

P /2 1+ 0'.

1 —e r' v'I —e &' aa
1 Ma'+D a

1 —e r' acr an aa
+C.C. Pp

Using the stationarity of P0

LG = y/2 o. a
1 —e r' V'I —e &' ()a 1 e

a—1 —a
aa

+C. C. -P0

and inserting the definition (D4) of a we find
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y/2
1 —e r' 1 —e r' v'I —e

o —ae0
1 —e r'

a +c.C. Pp
Box

1 —e r' 2(1 —e r') dt t)a "rlt

Since 6 solves the Fokker-Planck equation (Dl) p is a solution, too. It remains to check that it is the general solution.
For t =0 we get

P(a, t =0)=f d PP, ( a)P o(P)=P, ( a),

since Pp is normalized. P, means an arbitrary initial quasiprobability and so P is in fact the general solution of the
Fokker-Planck equation (D 1). 6 gives the Green's function.
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