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Four-wave mixing in homogeneously broadened, two-level atoms, driven by time-delayed, correlated
phase-diffusing optical fields is investigated. The spectrum of the driving field has an arbitrary band-
width, i.e., it can have a Lorentzian or a Gaussian profile or an intermediate profile (Voigt). A time de-
lay between the strong pump and weak probe field provides a partial correlation between the fields, and
this time delay makes the composite field seen by the atoms non-Markovian. It is shown that the calcu-
lation of the four-wave-mixing signal reduces to the solution of six coupled Langevin equations with
multiplicative noise; Monte Carlo techniques are utilized to study the response of the atoms to non-
Markovian fields. A technique for numerically simulating phase-diffusing fields with colored frequency
Auctuations is shown. The four-wave-mixing profiles are found to be significantly different from those
for which the driving field is chaotic. The profiles show oscillatory behavior as evidence of the Rabi fre-
quency, a feature not seen in previous works. For some parameter values, a revival of the signal is seen
for an increasing time delay, analogous to the revivals seen in chaotic field signals [Phys. Rev. A 44, 6009
(1991)].

PACS number(s): 42.50.Md, 42.65.Vh

I. INTRODUCTION

Recently, there has been considerable interest in the
study of atoms interacting with fluctuating fields [1—5].
In particular, it has been recognized that atomic observ-
ables that depend on higher-than-second-order electric-
field correlations are very sensitive to the nature of the
pump Auctuations. Zoller and co-workers have studied
the problem of Auctuations in fIuorescence intensity from
two-level atoms (an observable related to fourth-order
field correlations) driven by phase-difFusing fields and
phase-jump fields and shown the results to be sensitive to
the field statistics [6]. Later, these workers extended
their work to study fluctuations in fluorescence intensity
when two-level atoms are driven by fields with correlated
amplitude and phase fluctuations (as could arise in a
diode laser) and showed the results to be sensitive to these
correlations [7]. The predictions of [6] were experimen-
tally verified by Anderson et al. [8]. Elliott and co-
workers have carried out experiments on two-photon ab-
sorption in sodium vapor where the signal is again pro-
portional to the fourth-order field correlations [9]. These
experiments were carried out for phase-difFusing fields,
real Gaussian fields and chaotic fields and the results
were different for each case, indicating a behavior of the
observable that was sensitive to field statistics. Recently,
we have reported on Monte Carlo calculations to corn-
pare the behavior of four-wave mixing in two-level atoms
driven by chaotic and phase-diffusing fields [10]. Cam-
paro and Lambropoulos have also developed Monte Car-
lo methods to study atoms interacting with fields having
correlated amplitude and phase fluctuations [11].

Of late, there has also been significant interest in atom-
ic response to time-delayed correlated fields [12—15]. In
these studies, an initial fiuctuating field is split into two

or more parts, such that all fields have correlated Auctua-
tions, and the beams are sent into an atomic medium. By
time delaying one of these fields (by passing through an
optical fiber, for example) with respect to the other(s), it
is possible to have partial correlation between the fields
and hence study atomic response to such time-delayed
fields. In such studies, the atoms see the fluctuations (of
amplitude or phase or both) on the first field and some
time later see the same fluctuations on the second beam.
By studying the signal as a function of the time delay, one
can address the question, how well does the atom
remember the fluctuations on the first beam?

In the context of atomic interactions with non-
Markovian fields, four-wave mixing (FWM) is the com-
monly studied observable. One reason of course is that
FWM, by its very nature, requires multiple beams, and
hence offers the possibility of time delays between various
beams. A strong motivation for focusing on four-wave
mixing is that time-delayed four-wave mixing has been
proposed as a practical technique for measuring fast de-
phasing phenomena in atomic media. Traditional
methods for measuring these phenomena rely on ul-
trashort pulse lasers, which are expensive and restricted
to a small-wavelength region of the spectrum. It was
proposed by Morita and Yajima [16] that using time-
delayed, correlated, incoherent fields can serve as an al-
ternative scheme for measuring these fast phenomena.
These authors established that the shortest dephasing
times that can be measured with incoherent light are lim-
ited by the correlation time of the fluctuating field. Since
it is much simpler to produce incoherent light with short
correlation times than ultrashort pulses, this technique is
indeed a powerful one. Morita and Yajima's work dealt
with weak, chaotic, broadband fields, i.e., 6-function
correlated fluctuations. Other related works in this con-
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text include that of Agarwal [17] on weak, chaotic fields
with finite bandwidths. Tchenio et al. [18] have used di-
agrammatic methods to calculate the signals due to
time-delayed pulses. These authors also considered the
case of inhomogeneous broadening of the atomic medium
and assumed the correlation time of the pulses to be very
short, thus allowing the use of the decorrelation approxi-
mation. They also reported experimental results on the
response of two-level atoms to time-delayed pulses [19].
We have recently presented results for time-delayed
four-wave mixing in chaotic fields of arbitrary band-
widths and pump intensities [20].

All previously mentioned works with non-Markovian
fields have been in the context of chaotic fields. While
four-wave mixing has been the commonly studied atomic
observable, Csheri, Marte, and Zoller [21] have recently
studied the problem of absorption by two-level atoms of a
weak, time-delayed, phase-diffusing probe field in the
presence of a strong, correlated pump field. The predic-
tions of this work were verified by Anderson et al. [22].
In Ref. [21], an elegant propagation operator technique
was developed to study atomic interactions with non-
Markovian fields. This paper dealt with the pure phase-
diffusing model, i.e., the frequency fluctuations were 5-
function-correlated and the driving field spectrum was a
Lorentzian. It is our understanding that extending these
techniques to a phase-diffusing field with non-5-function-
correlated frequency fluctuations may not be straightfor-
ward, if not infeasible. This serves as an impetus for us to
develop numerical techniques which can address phase-
diffusing fields with colored frequency fluctuations. This
paper reports results of four-wave mixing in two-level
atoms where the non-Markovian fields obey a phase-
diffusion model. As stated earlier, with the exception of
the work in [22], all previous experiments on laser-atom
interactions with non-Markovian fields have been with
chaotic fields. One motivation for this paper is the experi-
ments currently under way by Elliott and Smith [23] to
study FWM in time-delayed, phase-diffusing optical
fields. These experiments utilize a technique developed
by Elliott and Smith to superimpose phase or frequency
fluctuations on the output of a highly stabilized dye laser,
using acousto-optic and electro-optic methods [24].

Some recent papers by Finkelstein and Berman have
dealt with two-level atoms interacting with non-
Markovian fields, where the pump field is strong [25]. In
these works the authors consider the depletion of the
ground state, but require that the bandwidth of the field
be larger than the Rabi frequency of the pump. Howev-
er, just as in [20], the Monte Carlo techniques allow us to
relax this requirement and consider situations where the
bandwidth of the field is smaller than the Rabi frequency
of the pump and yet include depletion of the ground state
by the strong pump (pump induced saturation effects are
thus accounted for). The relaxation of this assumption is
possible with the techniques of Gheri, Marte, and Zoller
also [21].

In the following section we present the theoretical
background for our work. We show that the calculation
of the four-wave mixing signal reduces to the numerical
solution of six coupled Langevin equations, with rnultipli-

cative noise. In the section after that we briefly discuss
the properties of a phase-diffusing optical field and
present a technique for numerically simulating such a
field for arbitrary fluctuation parameters. In the last sec-
tion we present our results on FWM in time-delayed
fields for a wide range of parameter values.

II. FOUR-WAVE MIXING IN TWO-LEVEL ATOMS IN
PHASE-DIFFUSING, NON-MARKOVIAN FIELDS

We represent the electric field interacting with the
two-level atoms by

E(t) =exp( ice,—t+ik, r)ee(t)
+exp( i co, t +—i k, r)ge. e(t —r) . (2.1)

=M%+I,
dt

where

(2.2)

+iA1

2
2ix "(t)—

2ix (t) (2.3)

ix (t)—ix*(t)

The total field is thus the sum of two separate fields, the
strong pump (subscript 1) and the weak, time-delayed
probe (subscript s). co, is the driving field frequency and
is the same for both fields. k, and k, are the wave vectors
for the two fields and e is the unit polarization vector.
The time delay between the pump and the probe is ac-
counted for by ~ and can be varied as desired. The factor
g accounts for the weak probe and in general g « 1.

The field described above, with a pump field in the
direction ki and a probe field in the direction k„ interacts
with an ensemble of homogeneously broadened, two-level
atoms. Both fields are derived from the same source and
are time delayed with respect to each other. Further,
since both fields are derived from the same source, they
are at the same frequency. The degenerate FWM signal
is generated in the direction 2k, —k, . We choose to mod-
el the electric field as a phase-diffusing field, where the

amplitude of the field is a constant but the phase or fre-
quency is a stochastic quantity. In several spectroscopic
experiments, one uses a single-mode dye laser. These
lasers, when operated far above threshold, as they typi-
cally are, mimic a phase-diffusing field quite accurately.

The dynamical behavior of two-level atoms interacting
with a field described by (2.1) is governed by the optical
Bloch equations. Let 4&, %'2, and 43 denote the com-
ponents of the atomic dipole moments and population in-
version, respectively. In this notation, we denote the den-
sity matrix operator by p, the off-diagonal elements of the
density matrix, p, 2 and p2&, are given by 4, and %2, and
'I'3 equals —,'(p» —pzz), i.e., one-half the difference in the

population of the excited state and the ground state. On
transforming to a frame rotating with the frequency of
the driving field, co&, the Bloch equations can be written
as
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Here 6 is the detuning parameter between the atomic fre-
quency and the driving field frequency, i.e., 6=~0—co„

d Ex (t) = [e(t)+e xp[i (k, —k i).r]ge(t —r) I,

using Monte Carlo methods, calculate S for a range of
values of field parameters.

To explicitly incorporate the phase-di6'using optical
fields, we define the quantity x (t) as

(pi=exp( —icoit+iki r)%(,
x (t) =0 exp[i/(t)], (2.12)

Ii =Iz =0,
(2.4)

where 0 is the Rabi frequency of the pump (taken to be
real) and P(t) is the time-dependent stochastic phase.
Thus the stochastic frequency is given by

p(t) = dd(t)
dt

(2.13)

(2.5)

where 4' ' and 4'" are given by

d%' '
=m(0)e" +I

dt
(2.6)

and we define u = Tz/T, . In these equations Ti and Tz
are the usual longitudinal and transverse relaxation times
of the atomic system. In our work, all time units have
been normalized to Tz. Following the prescription in

[20], we calculate the FWM signal (forward geometry) to
all orders in the strong pump field and to first order in the
weak probe field. We thus obtain

@(0)+@(& ) + qg(z) +. . .

& p(t)p(t') ) =bP exp( —P~t t'~ ), — (2.14)

where b is the strength of the noise (or spectral density)
and P is the bandwidth of the noise. The product bP is
the variance of the noise process. Since p(t) is taken to
be a Gaussian process, specifying its first two moments
completely specifies the process. For values of P))b,
(2.14) reduced to a 5-function-correlated process

((u(t)p(t') ) =2b5(t —t') . (2.15)

where p(t) represents the ffuctuations in the driving field

freqUency about the frequency ~&. It is assumed to be a
Gaussian, Markov process with zero mean and a second-
order correlation function by

(&)
~(0)@(& ) +~(1)@(O)

dt
(2.7)

d.ex(t)= ge(t —r) exp[i(k, —k, ).r] .

M' ' is obtained from (2.3) by setting g =0, M"' from
(2.4) with I/Tz=b, = 1/T, =0, and

In this case, the field power spectrum has a Lorentzian
profile with a full width at half maximum (FWHM) given
by 2b. In the other extreme, when P«b, the field spec-
trum is a G-aussian with a FWHM related to the product
bP For inter. mediate values of b and P, the field spectrum
has a Voigt profile. Thus by varying the relative values of
b and /3, it is possible to study the eff'ects of field line
shapes on atomic response.

Equation (2.7) is applicable for time evolution of the sys-
tem when t is greater than or equal to ~, since the probe
starts acting at time r. We write the solution of (2.7) as

ip"'=exp[i(k, —k, ).r]A +exp[i(k, —k, ) r]F (2.9)

and the column matrix is given by the solution of

2'(oj(t)
dF (0) . d 6'

dt
=M F +ig e*(t r)—(2.10)

Equations (2.6) and (2.10) are the coupled Langevin equa-
tions with multiplicative noise that need to be solved.
The FWM signal in homogeneously broadened media is
proportional to S, given by

III. NUMERICAL SIMULATIQN
QF PHASE-DIFFUSING FIELDS

In this section we discuss brieAy some of the properties
of a phase-diffusing field and the numerical simulation of
these fields. Elliott and Smith have discussed the proper-
ties of such fields in detail, and reported on methods for
producing these fields (with precisely controlled and
defined statistics) in the laboratory [24]. We denote the
stochastic phase by P(t) and the stochastic frequency,
which is the time derivative of P(t), by p(t). As stated in
the previous section, p(t) is assumed to be a Gaussian-
Markov process and its properties completely defined by
(2.14). In the event of the frequency fiuctuations being
5-function correlated, the correlation function of p(t) is
given by (2.15).

In order to numerically simulate the frequency Auctua-
tions, we take

S= lim (F,*(t)F,(t)) . (2.11)
(3.1)

In (2.11), the angular brackets denote stochastic averag-
ing over the fluctuations of the field [to see the connec-
tion between (2.11) and calculation of four-wave mixing
signals via the third-order nonlinear susceptibility, see
[16,26]]. We numerically integrate (2.6) and (2.10) and,

where F&(t) is a fiuctuating quantity with the desired
correlation function. On integrating this equation, we get

P(t+bt)=P(t)+ I dt'F&(t')
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which can then be rewritten as

P(t +b t ) =P(t)+X, (t),
where

(3.3)

P(t+At)=P(t)+e, (t) . (3.12)

mean and a variance of b/3 .The time-dependent, fiuc-
tuating phase is then obtained from

X,(t) = J dt'F&(t') (3.4)

(Ft, (t)F&(t') ) =2b6(t t'—), (3.5)

then X, (t) has variance of 2bb, t, where b, t is the numeri-
cal integration step size. If the form of the correlation
function is given by

(F&(t)F&(t') ) =bP exp( /3~t —t'~ )—, (3.6)

then the variance of the random process is given by the
product b/3. Here P is the bandwidth of the fiuctuations.

To generate the fluctuations with 5-function-
correlations, we use the Box-Mueller algorithm and gen-
erate Gaussian distributed random numbers, g (sub-
script denotes white noise), with zero mean and a vari-
ance of 2bht,

g =[ 4bbt ln(g—, )]'~ cos(2mq2), (3.7)

where q, and g2 are computer generated, uniformly dis-
tributed random numbers between 0 and 1. The phase is
then given by

p(t +b t) =p(t)+g (3.8)

If P is larger than 2m, we subtract 2' from it and if P is
smaller than zero, we add 2m' to it, to restrict P to the
physically meaningful 0—2~ range. The associated field
spectrum has a Lorentzian line shape with a FWHM of
2b.

As stated earlier, the problem of atoms interacting
with non-Markovian, phase-diffusing fields with colored
frequency fluctuations is a very complicated one and
perhaps can be solved only by numerical methods. In or-
der to simulate such a phase-diff'using field (colored
noise), we resort to a very accurate algorithm developed
by Fox, et al. [27]. We state the outline of the method
here and refer the reader to Refs. [27,28] for further de-
tails. The expression for the colored noise, e, (t) (sub-
script denotes colored noise), is given by

e, (t +bt)=E, (t) exp( /3ht)+h, — (3.9)

where h is the source term producing the colored noise.
h obeys Gaussian statistics, has a zero mean and a second
moment given by

(h (t, b, t) ) =b/3[1 —exp( —2/3b, t)] .

h is obtained from the Box-Mueller algorithm,

(3.10)

h =
I
—2bP[1 exp( 2/—3b t) ] In(g& ) I

'~ cos(2vrr/2) —.

(3.11)

The colored noise thus obtained from (3.9) has a zero

represents Gaussian random numbers with zero mean
and the desired variance. If the correlation function of
F&(t) is given by

As before, it is necessary to ensure that P lies in the 0 27r-
range. We have shown in [28] that for values of P))b,
the associated field spectrum is a Lorentzian with a
FWHM of 2b, while for /3«b, the field spectrum is a
Gaussian with a FWHM related to bP. For values of P
between these two extremes the field spectrum has a
Gaussian peak and Lorentzian tails, i.e., the tails decay
slower than for a Gaussian. We have also shown in [28]
that the field spectra obtained from our simulations give
excellent agreement with fitted Lorentzian and Gaussian
profiles (with appropriate FWHM) as well as for the in-
termediate profiles.

We use the fiuctuations simulated here, in (2.6) and
(2.10), and solve the set of coupled Langevin equations
numerically. An Euler method was used for the numeri-
cal integration, with a time step of 10 T2. In our pre-
liminary runs, results obtained from the Euler integration
method were compared with those obtained from a
fourth-order Runge-Kutta method (RK). We tested the
consistency of our numerical results for each of these two
methods by progressively reducing the step size by half,
until further reduction in step size did not effect the re-
sults. The final step size chosen was 10 times smaller
than the step size where this condition was satisfied. It is
normally expected that the RK method, while slower
than the Euler method, allows one to use a larger integra-
tion step size to offset the loss of speed. Our calculations
indicated that the RK method would work with a step
size 5 times larger than the one we used for the Euler
method. However, the results from the two methods
were identical (within 1%) with the Euler method being
substantially faster. We found that the accuracy of the
results obtained with the Euler method, for the problem
under study, was dependent on the step size and the num-
ber of trajectories over which the averaging was per-
formed, and hence appropriate choices for these parame-
ters were made. The set of equations (2.6) were first nu-
merically integrated up to a time t where 0 ~ t ~ ~, with
the initial conditions %,(t =0)=%2(t =0)=0 and
%3(t =0)=—0.5. The values of the electric field x(t)
were stored. After a time r, (2.10) and (2.6) were simul-
taneously solved, with the stored values of x (t) used in
(2.10). This accounted for the delay between the pump
and the probe. The initial conditions on (2.10) were
F&(0)=F2(0)=F3(0)=0. The time delay r was variable
in our work and the FWM signal studied as a function of
r. For a given ~, the values of F2 were allowed to reach a
steady state and from these steady-state values the FWM
signal was extracted as in (2.11). The signal in our work
represents an averaging over at least 5000 trajectories,
each with a different set of random numbers. This en-
sured that our results were not effected by small statistics.
To test this, we performed five different averages over as
many as 10000 trajectories, each with a completely
different set of random numbers. This was done for the
representative cases of P=1 and b =10, /3=100 and
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b =1, and P=10 and b =10 for an 0 of 6.0. In every
case the results were within 3% of the results obtained
with 5000 averages. The computed FWM signal was
then plotted as a function of z.

In order to compute the FWM signal for negative time
delays, i.e., where the strong pump follows the weak
probe in time, we modified (2.6) and (2.10) as follows: we
replaced x (t) by x (r —r) for all r ~ t + Oc in (2.6) and re-
placed x*(t —r) by x*(t) for all 0~t ~ oo in (2.10). The
resulting equations were then solved exactly as for posi-
tive delays.

0 ~ 8—

~~ 0.6—
Ch

0.4—

IV. RESULTS 0.2
0.5

I

1.5 2 2 ' 5
In this section we report on the results for four-wave

mixing profiles as a function of the time delay between a
strong pump and a weak probe, when homogeneously
broadened, two-level atoms interact with partially corre-
lated fields. As stated earlier, the composite field seen by
the atoms, due to the time delay between the pump and
the probe fields, is a non-Markovian field. Our Monte
Carlo methods are particularly useful and powerful for
studying the effects of phase-diffusing fields with colored
frequency fluctuations, where no analytical methods are
available currently. All time units in our work are nor-
malized to the transverse relaxation time of the atomic
system, T2. Two independent parameters, b and P
characterize the fluctuations properties of the field, and
the FWM signal in this work is proportional to the
strength of the weak probe, i.e., g . Further, we have
normalized all our signals to unity at zero delay (this was
necessary to depict signals for several field parameter
values on the same figure; as shown in [10], the signals
can vary over several orders of magnitude with change in
0 for a given b and P).

In Fig. 1(a) we show results when b =1 and P=100.
Since P))b, the field power spectrum is a Lorentzian
with a FWHM of 2b (=2 in this case). The three curves
shown are for varying Rabi frequencies, 0, of the pump
field of 1.0, &10, and 6.0. These values of the Rabi fre-
quencies correspond to strong pumping of the two-level
atomic system and the larger values of Q lead to a strong
depletion of the ground state. Further, since the band-
width of the driving field is 2, values of 0 of &10 and 6.0
are cases where the Rabi frequency is larger than the field
bandwidth. We find that there is a decay of the FWM sig-
nal with increasing delay between the pump and the
probe (in these results, the pump leads the probe in time).
For large delays, the signal settles to a steady-state value
which is equal to the signal for two completely uncorre-
lated fields. We also note that for the strong-field situa-
tions, i.e., 0 of &10 and 6.0, there are regular oscillations
in the FWM profile as the delay gets to larger values.
These oscillations are at exactly the same frequency as
the Rabi frequency, 0 (see, e.g., the profile for 0=6.0;
since Q/2~ is almost 1, there should be 1 oscillation per
atomic lifetime, T&, or 2 oscillations per T2, when
T2 /T i

=2; see the arrows in the figure).
The origin of these oscillations can be understood in

terms of a simple intuitive explanation underlying optical
coherent transients and keeping in mind that the pump

g (units of T2)

1.5

e 0.9-
(3

0.6-

0.3—

I

0.5 1.5
g (units of T~)

2.5

(c)

0.8—

~ 0.6—

U
g) 0 ~ 4—

0.2—

I

0 ' 5 1.5 2

g (units of T~)

I

2 ' 5

FIG. 1. (a) FWM signal as a function of time delay between
pump and probe (in units of Tz) for b = 1 and p= 100 (Lorentzi-
an field spectrum). The curves are for Rabi frequencies, 0 of 1.0
(I), &10 (II), and 6.0 (III). The arrows bracket two oscillations
in a delay time of T2, as discussed in text. (b) FWM signal as a
function of time delay between pump and probe (in units of T2)
for b =10 and P= 1 (Gaussian field spectrum). The curves are
for Rabi frequencies, 0 of 0.2 (I), &10 (II), and 6.0 (III). (c)
FWM signal as a function of time delay between pump and
probe (in units of T2) for b = 10 and P= 10 (field spectrum inter-
mediate to Gaussian and Lorentzian). The curves are for Rabi
frequencies, Q of 0.2 (I), 1.0 (II), &10 (III), and 6.0 (IV).
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field is always on, i.e., we assume a continuous wave (cw)

pump field. The fluctuations in the phase or frequency of
the driving field induce transients in the coherence and
the population difference between the two states of a
two-level atom. These transients evolve at the Rabi fre-
quency, Q. For a monochromatic field, in the absence of
any phase or frequency Auctuations, these transients
would damp out on time scales related to the atomic re-
laxation times T„T2, and hence there would be no oscil-
lations in the steady state. For fluctuating fields where 0
is less than either the atomic decay rate or the field band-
width (i.e., weak-field regime), there are no oscillations in
the coherence or the population difference associated
with the two-level atoms. For strong-field situations,
these oscillations are present and the field fluctuations
continuously reinitiate the transients, thus sustaining the
oscillations. This is where the assumption of a cw driving
field is important, since a cw field provides a continuous
train of Quctuations to trigger the transients. In other
words, the atom is not undergoing free precession be-
tween correlated fluctuations of the pump and probe, but
is being continuously driven by the Auctuating pump.
The role of the fluctuations is thus to maintain the oscil-
lations without their damping out and it is precisely these
oscillations that show up in the FWM signal where the
signal arises by scattering off the oscillating, transient
grating (due to the oscillations in the coherence).

Previous works on FWM in time-delayed fields have
not seen these oscillations, since they were restricted to
chaotic fields [18—20,25]. In chaotic fields, the amplitude
and hence the Rabi frequency itself is a stochastically
fluctuating quantity. Hence, the oscillations on the
FWM profiles as a function of the time delay get washed
out by averaging over the fluctuating Q. In case of the
phase-diffusing fields, the value of Q is a constant and
shows up as oscillations on the FWM profiles. Such os-
cillations were also reported in [21]. For weak fields, say
0=0.2, there is a decay of the FWM signal as a function
of the delay, r (results not shown). No oscillations are
seen on the profiles for weak fields since the Rabi fre-
quency is smaller than the bandwidth of the driving field.
We also note that the signal as a function of the delay de-
creases faster with increasing Rabi frequency. This is
similar to the result for chaotic fields [20]. The back-
ground signals, i.e., the signals for large delays show a
much different behavior for the two models; for chaotic
fields, the signal at large delays for a given pump band-
width, increases with increasing Rabi frequency, while no
such regular behavior is seen for FWM signals in phase
diffusing fields [10].

It is usually difficult to make a direct comparison of re-
sults obtained for phase-diffusing fields with those from
chaotic fields. For phase-diffusing fields, the field line
shapes can be Lorentzians or Gaussians, depending on
the relative values of b and P. Further, the Rabi frequen-
cy is independent of the field parameters b and P. For
chaotic fields, with a field correlation function as in [20],
the field line shape is always a Lorentzian with a FWHM
that depends only on the value of the bandwidth of the
fluctuations. The Rabi frequency for chaotic fields is
given by the square root of the product of the noise

strength and the noise bandwidth. In spite of these in-
herent incompatibilities, it is interesting to compare the
results here with those from [20], which contains results
on FWM in two-level atoms for time-delayed fields,
where the fields are modeled as chaotic. We see that for
phase-diffusing fields, when the bandwidth of the driving
field is 2 and the Rabi frequency is &10, the signal decays
with increasing time delay between the pump and the
probe. The signal for uncorrelated fields, i.e., for large z,
is smaller than the signal for fully correlated fields, i.e., at
~=0. However, for chaotic fields, with a bandwidth of 2
and Q of &10, the signal for uncorrelated fields is larger
than the signal for fully correlated fields (see Fig. 4 in
[20]). In both cases, the fiuctuations parameters are
chosen such that the field line shapes are Lorentzians,
and yet a dramatic difference in the FWM profiles is ob-
served. This, of course, stems from the fact that FWM is
a g' ' process, and the observable is thus related to the
sixth-order electric-field functions. As pointed out by
Zoller and co-workers [6,7], observables dependent on
higher-order field correlations are very sensitive to the
details of the driving field statistics, and hence we expect
FWM to give different results for phase-diffusing field
versus chaotic fields.

We next look at the other extreme of the field Auctua-
tion parameters in Fig. 1(b), i.e., when b =10 and P= l.
Here P((b and hence the field spectrum is a Gaussian,
with a FWHM related to the product bP. The linewidth
in this case is equal to 3.7 approximately. The three
curves are for Q=0. 2 (weak fields), Q=&10, and
0=6.0. For weak fields, as expected we find a decay of
the signal which finally settles for large delays to a value
equal to that due to uncorrelated fields. However, for the
strong-field situations, we find much different results. We
note first of all that there are almost no oscillations on
the profiles for Q=&10. Here, the Rabi frequency is
smaller (almost comparable) than the bandwidth of the
driving field and hence the bandwidth washes out any os-
cillations. For 0=6.0, we see a litt1e more stronger evi-
dence of the Rabi oscillations on the FWM profiles.
Another feature is that the signal for large delays (un-
correlated fields) is larger than the FWM signal at zero
delay between the pump and the probe for Q of &10 and
6.0. Such revival of the FWM signal was also noticed for
some parameter values of chaotic fields, where the driv-
ing field was strong. In particular, it was reported in [20]
that the revival occurs for a field bandwidth of unity (i.e.,
equal to atomic width). However, similar revivals of the
signal were also reported for other parameters values in
[18—20,25]. Further, such revival of the signals was seen
in the absorption spectrum as a function of time delay,
reported in [21]. In that work, the absorption spectrum
shows a revival even for 5-function-correlated frequency
fluctuations. We conclude from these results that this re-
vival of the signal is a very robust phenomena, seen for
different observables of the atomic system.

While the results presented in Fig. 1(a) can be obtained
using the techniques presented in [21], the Monte Carlo
method is very useful for obtaining results presented in
Figs. 1(b) and 1(c). The latter figure reports on FWM
profiles when b =10 and /3=10. Since b and P are com-
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parable, the field line shape is intermediate between a
Lorentzian and a Gaussian, and has a bandwidth of 11.8
approximately [24]. We report results for 0=0.2, 1.0,
&10, and 6.0. Since the bandwidth of the driving field is
larger than the pump Rabi frequencies, there is very little
evidence of oscillations on these profiles, even for strong
fields. Whatever little oscillations there are, damp out
rapidly. In these results, the bandwidth is at most a fac-
tor of 2 or 3 larger than Q. If the bandwidth were even
larger, there would be absolutely no trace of any oscilla-
tions. We also notice that the FWM signals go to the
value of the signal for uncorrelated fields quite rapidly for
these fiuctuations parameters (after about a lifetime). We
see from these results that the numerical techniques pro-
vide a way for studying atomic response in non-
Markovian fields, with no restrictions on the relative
values of the field and atom parameters.

The results presented in this paper assume radiative de-
cay of the excited state of the atom and hence take
u = T, /T& =2. It is, however, fairly straightforward to
incorporate other values of u. We have done simulations
for both Lorentzian and Gaussian field spectra for values
of u between 0 and 2. We find results very similar to
those of [16,20] for different u values and hence do not re-
port them here.

While it is possible to analytically solve several classes
of problems in laser-atom interactions, it is so only under
the assumptions of either of weak fields or large band-
widths (either of frequency or amplitude fiuctuations).
When the Rabi frequency becomes very large, the Rabi
Aopping time can sometimes become shorter than the
field correlation time and bring in some different features.
It is precisely this class of problems, with large 0 and
colored frequency Auctuations, that are not amenable to
analytical solutions. In the rest of this paper we will look
at some of these cases. In Fig. 2 are FWM profiles as a
function of the pump-probe delay for 0=6 and three
different fiuctuations parameters. Quite clearly, when the
bandwidth of the field is comparable to 0, we see little or
no oscillations on the profiles, consistent with our expec-
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tations. If the bandwidth is larger than 0, the oscilla-
tions get washed out. For the field bandwidth less than 0,
we do see prominent oscillations on the FWM profiles.

We have so far presented results only for positive de-
lays, i.e., when the pump leads the probe in time. As
shown in Sec. II, it is fairly easy to calculate the signals
for negative delays as well, i.e., when the pump lags the
probe in time. The results for both positive and negative
delays are shown in Fig. 3(a) for b =10, P= 1, and
0=0.2 (weak fields) and 0=&10 (strong fields). The
qualitative behavior for negative delays is very similar to
that of positive delays. The asymmetry in the uncorrelat-
ed signals for positive and negative delays is similar to
those reported in [16,20] and can be partially attributed
to the unequal strengths of the pump and probe fields.
For weak fields there is a monotonic decay of the FWM
signal while for strong fields we see a revival of the signal
for large delays. The bandwidth here (3.7 approximately)
is comparable to an 0 of &10 and hence we see little
trace of oscillations on the signal even for strong fields.
Finally in Fig. 3(b) we show results for a b =10, p=10,
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FIG. 2. FWM signal as a function of time delay between
pump and probe (in units of T2) for 0=6.0. The curves are for
field parameters of b =1, P=100 (I); b =10, P=10 (II); and
b = 10, P= 1 (III).

FIG. 3. (a) FWM signal as a function of positive and negative
time delay between pump and probe (in units of T&) for b = 10,
P= 1 (Gaussian field spectrum), and II=0.2 (I) and, II=V10
(II). (b) FWM signal in strong fields as a function of positive
and negative time delay between pump and probe (in units of
Tz) for b = 10, P= 10, and II=V10 (I) and II =6 0 (II).
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and 0 of v'10 and 6.0. Here the bandwidth of the driv-
ing field is approximately 11.8 and hence larger than the
Rabi frequencies. Hence, we expect no oscillations on our
FWM signals. For Q of 6.0, we see that for negative de-
lays, the signal first increases and then decreases. This is
qualitatively similar to the behavior seen in the absorp-
tion spectrum of [21],and can be explained in terms of an
argument similar to the one in [22]. This figure deals
with a situation where 0 is larger than I /T, but smaller
than the field bandwidth. Due to the former condition,
there is a depletion of the ground state during the time
T, . However, due to the latter condition, the depletion is
accumulated over several correlation times of the field.
There is thus a diffusion of the Bloch vector during the
time delay instead of a free precession, which leads to a
degradation of the transient grating and hence reduction
of the signal for large time delays.

In conclusion, we have studied the dependence of
four-wave mixing signals in forward geometry, on the
time delay between a strong pump and a weak, correlated
probe. The pump and probe fields are assumed to obey
the phase-diffusion model and we have enumerated a nu-
merical technique for simulating such fields with arbi-
trary noise parameters. For strong pump fields, and when
the Rabi frequency of the field exceeds the field band-
width, we see oscillations on our FWM profiles. These os-
cillations are at the same frequency as the Rabi frequen-
cy. Such oscillations are not seen for amplitude Auctuat-
ing fields due to the averaging over such fluctuations. We
also notice a sensitive dependence of the FWM profiles
on the statistics of the driving field. The results for the
phase-diffusing fields are significantly different from those
obtained for a chaotic field [20], even when the two fields
have the same bandwidth and line shapes. This is due to
the fact that the field bandwidth depends only on the
second-order field correlations and hence can be identical
for the phase-diffusing and chaotic fields. However, the
higher-order correlation functions are different for the

two models and if the observable depends on these
higher-order correlations, the results can be quite
different. Our FWM results in time-delayed fields thus
complement those of previous workers who have demon-
strated that observables that depend on higher than
second-order field correlations are a sensitive indicator of
the field statistics [6,7].

Finally, it should be mentioned that the model present-
ed here might require a few modifications before a direct
comparison with experiments can be made. We neglect
Doppler broadening of the atomic medium completely in
our analysis. It is, however, possible (and probable) that
there might be some residual Doppler broadening, even
for experiments in atomic beams. It is possible to modify
our equations to incorporate such Doppler broadening.
A more serious omission might be the finite length of the
medium. Our work here assumes an infinitely thin medi-
um. However, even in experiments in thin atomic beams,
it is possible that one may have to account for the finite
thickness of the atomic medium. However, we expect the
techniques and results presented here to be a first step to-
wards studying atomic interactions in non-Markovian,
phase-diffusing optical fields of arbitrary field strengths,
bandwidths, and band shapes.
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