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We present a calculation of one-dimensional sub-Doppler cooling of neutral atoms, in which the atom-
ic center-of-mass motion is quantized. The cooling field consists of a pair of counterpropagating, linear-
ly polarized laser beams, with their polarizaton vectors at an angle 6 with respect to each other. The
steady-state atomic density matrix is analyzed as a function of 6. It is shown that, depending on the
internal atomic level scheme, the equilibrium population of the quantized ground state of atomic center-
of-mass motion can either increase or decrease significantly when 6 is reduced from /2. These effects
are interpreted based on the spatial localization of atoms in the light-induced potential wells.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Recently, there has been considerable progress in un-
derstanding the physical mechanisms which contribute to
sub-Doppler laser cooling of neutral atoms. In the one-
dimensional (1D) case, some novel experiments have re-
vealed that, in the usual Sisyphus cooling scheme, where
the cooling field consists of a pair of linearly polarized
laser beams with their polarization vectors orthogonal
(linllin), quantization of the center-of-mass motion of the
atoms is necessary to correctly describe the atomic
motion in the optical potentials produced by the radia-
tion fields. Evidence for quantized states of atomic
motion is provided by the motional sidebands seen in the
pump-probe absorption or fluorescence spectra of atoms
[1,2]. A similar situation is also found in the magnetical-
ly induced laser-cooling configuration, where the polar-
ization gradient of the laser field is replaced by the addi-
tion of a transverse magnetic field [3]. Under these cir-
cumstances, the usual approaches for calculating the
equilibrium atomic density matrix based on the calcula-
tions of frictional forces on free atoms and steady-state
atomic momentum diffusion coefficients are no longer
considered to be appropriate [4]. One needs to quantize
the atomic center-of-mass motion in order to take into
account the spatial localization effects.

Several approaches have been developed so far to in-
clude the quantized motion of atoms in the Sisyphus
cooling scheme. One can discretize the atomic center-
of-mass momentum, for example, and obtain a set of gen-
eralized optical Bloch equations (GOBE) for the atomic
density-matrix elements [5]. By integrating these equa-
tions numerically, one can solve for the transient or equi-
librium atomic distribution functions in momentum or
position spaces. A different approach is based on the
Monte Carlo simulation of the atomic wave-function evo-
lutions in the cooling fields [6,7]. Theoretical results
based on these approaches show that, for laser intensities
somewhat above those required for achieving optimal
sub-Doppler cooling, the equilibrium atomic distribution
functions are modulated in space. The peaks of the spa-
tial population distribution coincide with the minima of
the light-induced potentials, indicating that the cooled
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atoms are partially localized inside the periodic potential
wells.

In this paper, we investigate the case of 1D Sisyphus
cooling with a pair of counterpropagating, linearly polar-
ized laser fields, whose polarization vectors are at an an-
gle 6 with respect to each other (linZlin). An earlier cal-
culation for this cooling-field configuration interacting
with atoms having ground-state angular momentum
J, =+ was based on a Fokker-Planck equation [8], in
which the atomic population modulation in space was
neglected. A somewhat surprising result of that semiclas-
sical calculation was that, at a given light intensity, the
minimum value of the average atomic kinetic energy
(p?) /2m was not necessarily achieved for 6=m/2. Al-
though the absolute minimum value of {(p?)/2m, ob-
tained for some optimal field intensity, occurs for
6=1/2, at laser intensities slightly higher than those for
achieving this, the value of ¢ pz) /2m actually decreases
with the decrease of 6 (see Fig. 8 of Ref. [8]). For
different atomic excited-state angular momenta (J, =+ or
1), the results are quite similar, and differ only by some
scaling factor. In light of the recent experimental obser-
vations of the quantized motion of atoms in the linllin
configuration, one can raise the questions of whether or
not this particular feature of the mean atomic kinetic en-
ergy for 6<m/2 holds when the atomic localization
effects are taken into account, and if not, how the locali-
zation effects affect the equilibrium atomic density ma-
trix. We intend to address these questions in this paper.

The approach adopted in the present calculation is
similar to that developed by Castin and Dalibard [9] for
the investigation of Sisyphus cooling in the linllin field
configuration. It is based on the expansion of the atomic
density matrix in the energy eigenstate basis of atoms
moving in the periodic light-shift potentials. This ap-
proach has the advantage in that it offers some physical
insight into this system, and the atomic density-matrix
elements in the energy basis have close relations with
some experimentally observable quantities [1,2].

This paper is organized as follows: In Sec. II, we
derive the eigenstate energies and wave functions of the
atoms moving in the light-induced potentials. Then in
Sec. III, the atomic density matrix is expanded in the
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eigenstate basis. Using a secular approximation to be
defined below, we solve the density-matrix equations to
obtain the equilibrium atomic population distribution of
the various energy eigenstates and the mean atomic
kinetic energy as a function of 6. In Sec. IV, an interpre-
tation of the results is given. We conclude by offering
some discussion on the possibilities of experimentally ob-
serving the features of the atomic distribution functions
predicted by this theory.

II. EIGENSTATES OF ATOMS MOVING
IN THE LIGHT-INDUCED POTENTIALS

The polarization vectors of the two incident fields,
which are propagating along the z axis, are at angles
+6/2 with respect to the x axis. In terms of the spheri-
cal components €. defined by

- 1
€= +—ﬁ(xity) R

where X and § are unit vectors in the x and y directions,
the total field is written as

E= ——‘}—EEocos kz—% ]e_i“”eJr
1 0 —iwt
+‘/—§Eocos kz+3 e '“e_+c.c. (1)

The atoms are assumed to have ground-state angular

momentum J, =3 and excited-state angular momentum

J, =4 or 3. The resonance frequency is w,.
We now define a weak-field limit as

¥ <<|Al,T, ()
where I' is the excited-state decay rate,
_ eregE0
Vet

Azw—"ﬂ)o ’

(3)

and er,, is a reduced matrix element of the atomic dipole
moment operator. In the weak-field limit, the atomic
excited-state quantities can be adiabatically eliminated,
and the resulting effective atomic density-matrix equation
can be written as [9]

. [Ho,p] R
P= i%h + [p]relax ’ )

where the Hamiltonian H, is given by

2

H0=§—m+U+(z)|+ WHI+U_@[=X=]. ©
In Eq. (5), |=) denote the two ground-state sublevels
|g,i%) and U, (z) are the space-dependent energy shifts
of these two sublevels induced by the cooling field. For
J, =1, these light-shift potentials are given by

U (z)=U,cos? , (6)

)
kz+Z
)
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while for J, =3,

U.(z)=U, |cos® kz?—g— +1 cos? kz+g ,
(7
where the quantity U, is defined as
A 2
U,= hz |X|2 ) (8)
v +A

The distance between the potential minima (or maxima)
of U, (z) and U_(z) is equal to §/k in the case of J, =3,
and equal to tan " ![tan(6)/2]/k in the case of J, =3,

The term [p].1.x in Eq. (4) denotes the contribution of
the relaxation processes to the density-matrix evolution.

It can be written as

. Yo
[p]relax= ——i—[ Ap+pA]

ik »
+7Yo dp’ 3 N, (p')B,)e /%
Xpe?*/"B,, )
where y,=T|x|2/(y?+A?), and, for J, =1,
|=)¢(~—I

0
A=cos’ |kz—~
Ccos z 2

~+cos? kz+g [+)(+],

B, —=1/Zcos kz:ug |F)(FI, (10

B,= 1 cos kz+g [+ (]

V3

+ L_cos

)
Ve houd ladm

while for J, =3,

A = |cos? kz+£2)~ + Lcos? =) (—I

0
kz 2]

kz——g + L cos [+)(+],

2
cos 1

+

0
+_
kz 2]

[EYCE|+LFICFIT, (11)

kz + )

B, =cos

v

Vv
BO=——3£ cos

0
kz+zl|+>(—l

+cos

kz—%]l—)(%—ll.

The functions N,,(p’) for m ==+,0 in Eq. (9) are the
spontaneous photon momentum distribution functions
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associated with the o and 7 transitions. They are given
by [10]

The Hamiltonian H, describes the motion of an atom
in the level-dependent periodic potentials U, (z), whose
periodicity is A/2. According to Bloch’s theorem, the
eigenfunctions of atoms moving in these potentials can be
expanded in terms of plane-wave states as [11]

N

v,g, )= 3 CE(glg2n), (13)

n=—N

where v=0,1,...,2N is the band index, g E[ —k,k) is
the Bloch index, = denotes the two internal sublevels
|g,£1), and |g,2n) represents a plane-wave state of
momentum 2n#k +7%q. The eigenenergies E (g) and
eigenvectors C,(,f—:,’(q) can be solved from the Schrédinger
equation with the Hamiltonian H,. For example, in the
case of J,=21, the energy spectrum and eigenfunctions

can be obtained by solving the following linear equations:

2 2 U
——ﬁ(z';’:n“) +—=2 |—E (@ |

U,
T 4 [e ToCiH) (@)= E+‘9Cn—1v(q)]:0,

n=—N,...,N. (14)
The value of N, chosen such that C'3) (g)=~0, depends
on the value of U,/E; where E; = ’h’2k2/2m is the recoil
energy. For the laser intensity range considered in this
paper, N =30, which corresponds to a plane-wave expan-
sion of the atomic wave functions up to a momentum of
order of 607k, is usually sufficient.

Since the light-induced potentials, which are functions
of cos’(kz+6/2), can be approximated by simple har-
monic potentials near the minima of the potential wells,
one expects that the deeply bound eigenstates should
resemble those of linear harmonic oscillators. This is
indeed the case. Figure 1 shows the atomic energy spec-
trum E, (q), v=0,...,9, in the first Brillouin zone for
the case of J,=1. The potential height is given by
Uy/E;=100. For this value of U,/E,, there are six
bands corresponding to bound states (E,<U,,
v=0,...,5). As one can see, the lowest bound-state en-
ergies are nearly equally spaced, and are approximately
given by E, =(v+1)#iQ,., where the oscillation fre-
quency ., is given by

Q. =#V 2Uk2/m =2V U, /E,E,, . (15)

The widths of these bands are extremely narrow (the
lowest band has a width less than 107*E, ), indicating
that the tunneling effects for the atoms in the lowest
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FIG. 1. Energy spectrum of atoms in the first Brillouin zone
(lgl<k) when J,=1. The potential height is given by
Uy,/E,.=100. The energies of the first 10 bands (v=0,...,9)
are shown. Note that the energy gaps at ¢ =0 or +k between
the highest bands shown are too small to be visible.

bands are negligible. As one goes to higher-order bands,
the energy curves start to resemble those of free particles
(E=p?/2m), and the gaps between adjacent bands at
g =0 or *+k become extremely small.

III. CALCULATION OF THE EQUILIBRIUM
ATOMIC DENSITY MATRIX

After obtaining the eigenstate wave functions of the
atoms interacting with the cooling field, one can expand
the atomic density matrix in this new eigenstate basis. In
general, the density-matrix elements can be written as

pv,q,e;v',q’,s':<V’q’6|P|V”q’,6’> s (16)

where €,6’==x. One then obtains the equations for
Pv,q,6v,q,e from Liouville’s equation. In order to have a
finite number of density-matrix equations, one can im-
pose a periodic boundary condition for the atomic wave
functions in a box of some finite length /(A /2), where [ is
an integer. This leads to a discretization of the Bloch in-
dex g, with a discretization interval given by 2k /I. For
the purpose of the present calculation, we choose four in-
dex numbers,
k k
9=~k —=5,0,=,

corresponding to a normalization length 2A, which
proved to be sufficient. Note that in order to be compati-
ble with this choice of the Bloch index ¢, one should
discretize the spontaneous photon momentum p’ in Eq.
(9) on the same interval as g.

We now invoke a secular approximation [9] in an effort
to simplify the calculation. This approximation assumes
that the energy separations between different bands are
much greater than the effective widths of various bands
due to optical pumping and tunneling effects. If one ap-
proximates the potentials U (z) at the minima by a har-
monic potential, then this secular approximation can be
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written as
Yo<< ‘Q’ocs ’ (17)

provided that the populations in the highly excited ener-
gy bands are negligible. Inequality (17) is satisfied when
|A|>>T. As a result of the secular approximation, one
can neglect the off-diagonal elements between different
bands, since they are oscillating at rates much faster than
the system relaxation rate y, Furthermore, from Egs.
(9)-(11), one notices that there is no coupling between
the off-diagonal elements p, ..., . ¢ (§7q’, €7€') and
the diagonal elements p, .., , . As a result, under the
secular approximation, the only nonvanishing density-
|

yv,q,szyo(v’q’d A|V,q,€> ,

ik s
V(V’,q’,E’—w,q,e)=7/of7ﬁkdp' S N, (p){Vv,q',€le??/"B, |v,q,€)|*,
m

and 4 and B,, are given in Egs. (10) and (11). Introduc-
ing a closure relation 1=3, , . [v,q,€){v,q,€l, it is easy
to verify, from Egs. (10), (11), and (20), that the relation
Vige=2v,q,¢V(V:4,€—v',q',€'), is satisfied, which is
required by population conservation:

> Toge=1. 1)

v,q, €

Equation (19) can be integrated to obtain the solutions
for 7, ,. However, if one is interested only in the
steady-state results, as we are here, a much more efficient
way is to set the time derivatives in Eq. (19) to zero and
solve the linear equations under the normalization condi-
tion Eq. (21). In following this procedure, one first calcu-
lates various coefficients Vv,qe and yv(v,q',€ —v,q,€)
from Eq. (20). Some properties of these coefficients are
worth noting. First, it is evident from Egs. (10), (11), and

0.50 ——r—

matrix elements are the populations of various eigen-
states,

Ty g6 =Pv,q,6v,q,€ » (18)

and one obtains the evolution equations of these elements
due to relaxation processes as

Ty,qe™ ~ VvgeTvge
+ 3 yv,q € g, Ty e s (19)
v,q',€
where
(20)

|
(20) that the detailed balance condition
yW,q',e—>v,q,€)=v(v,q,e—>v',q’,€) (22)

is satisfied. This implies that transitions within an inter-
nal sublevel tend to equalize the populations among
different bands. They represent a heating mechanism
that eventually limits the equilibrium temperature of
atoms. On the other hand, one also finds through calcu-
lation that

yW,q',t—v,q, F)>v(v,q, F ->v',q’, L) (23)

for v'>v. Consequently, transitions between different
internal ground-state sublevels tend to accumulate the
atomic population in the lowest energy bands, which
represent a cooling mechanism (Sisyphus cooling).

After one has obtained the transition probabilities, the
equilibrium populations of various bands can be calculat-
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FIG. 3. Atomic momentum distribution when Je=%.

Uy/E,=500 and 6=m/2 (solid line), w/4 (dashed line), and
1 /6 (dot-dashed line).

ed. In the following, we first present the results obtained
for the case of J,=1. Then, as a comparison, we briefly
describe the corresponding results for J, = 2.

Figure 2 shows the variation of the populations in the
lowest six bands,

=3, ,++m,, ) v=0,...,5, (24)
q
as a function of the dimensionless parameter U,/E; with
different values of 6 for J,=21. As one can see from Fig.
2, when 6 decreases from /2, the population of the
motional ground state II,;, as well as the ratios between
populations in the ground state and the lowest excited en-
ergy bands, i.e., IIy/II,, v=1, increases for laser intensi-
ties greater than those required for achieving maximum
values for Il,. For example, I, increases by more than

300
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<p®>/2m ( units of E,)

1000

1500
Uo/Ex

2000

FIG. 4. Average kinetic energy of atoms as a function of
Uy/E; when J,= % 6=m/2 (solid line), 7 /4 (dashed line), and
/6 (dot-dashed line).
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lation when J,=1
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30% when 6 is reduced from /2 to 7 /6 in the laser in-
tensity range approximately given by U,/E, = 500.

Such a variation of the atomic populations among
different bands with 6 is also evident from the atomic-
momentum distribution function. Again for J, =1, Fig.
3 shows the momentum distribution curves for a poten-
tial height Uy /E; =500 and 6=7/2, /4, and 7/6. One
finds that as 6 decreases, the width of the central peak be-
comes narrower, corresponding to an increase of the
motional ground-state population relative to those of the
lowest excited bands. On the other hand, the amplitude
of the wing in the momentum distribution becomes larger
as 6 decreases, owing to a slight increase in the popula-
tions of some highly excited bands. The average atomic
kinetic energy can be calculated as well. Figure 4 shows
the variations of {(p2)/2m as a function of U,/E, for
0=m/2, w/4, and 7 /6 for the case of J,=1. As in the
semiclassical results of Ref. [8], the absolute minimum
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FIG. 5. Steady-state spatial distribution of the atomic popu-
5+ The solid line corresponds to the internal

state |g, 1 ), while the dashed line corresponds to |g,—1). The
potential height is given by U,/E; =500.
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FIG. 6. Atomic populations in the lowest six motional bands
as functions of |Uy|/E, when J,=32. The solid line corre-
sponds to 8= /2, and the dashed line to 6= /4.

value for the mean kinetic energy of atoms is achieved
when 6=1/2. In higher laser intensity range, however,
(p?) /2m increases more slowly with U,/E, for smaller
angle 6, which is in qualitative agreement with the semi-
classical results [8].

Finally, for J,=1, we plot in Fig. 5 the steady-state
spatial distribution of the atomic population in the
|g,=1) ground states for three values of 6 (7/2, 7/4,
and 7/6). As expected, the atomic density is strongly
modulated in space for all cases. As 6 is reduced, the dis-
tance between adjacent peaks decreases as 6/k, and each
population peak becomes noticeably sharper as well, ow-
ing to an increase in the motional ground-state popula-
tion. When 6 <<1, there exists large local gradients in
the magnetization density, owing to a change of the
atomic population from the |g,+1/2) state to the
|g, ¥ 1/2) state over a distance of 6/k.
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FIG. 7. Average kinetic energy of atoms as a function of

|Uo|/E, when J,=32. The solid line corresponds to 6=1/2,

and the dashed line to 6= /4.

JUN GUO AND PAUL R. BERMAN 48

At this point, we should point out that, although the
value of 6 can be chosen to be much smaller than 7 /2, it
should remain finite in order to maintain sub-Doppler
cooling. When 6 goes to zero, the equilibrium value of
(p?)/2m starts to become comparable to #I". In this
case, one needs to consider the effects of Doppler cooling
or heating as well, which is not included in this theory.

So far, we have described only the case of J,=1. In
contrast to the semiclassical calculation of Ref. [8], the
results are qualitatively different for a J,=1—J, =3
transition when effects of atomic localization are includ-
ed. We plot, in Fig. 6, the populations in the lowest six
bands, II,, v=0,...,5, as functions of |U,|/E, for the
case of J,=2. As 6 is reduced from 7 /2 to 7 /4, the pop-
ulations in these lowest bands are significantly reduced.
The average atomic kinetic energy as a function of
|Uy|/E, for J,=3 is shown in Fig. 7. As one can see,
the value of {p?)/2m increases faster with |U,|/E, in
the case of 6=m/4 than 6= /2. Unlike in Fig. 4, the
crossings between curves associated with different 6’s do
not occur in the case of J, = 3.

IV. DISCUSSION

In this section, we attempt to give some physical in-
sight into the results of the preceding section based on
the spatial localization of atoms in the light-shift poten-
tial wells. In particular, the important difference between
a J,=5—J,= transition and a J,=3—J, =3 transi-
tion is addressed.

To understand the results presented above, it is helpful
to first briefly review the physical mechanism in the semi-
classical picture that leads to an increased cooling force
for atoms with small velocities with reduced 6. As dis-
cussed in Ref. [8], there are spatial regions that corre-
spond to the “quasinodes” of the field when 0 << 1, where
the overall field intensity is very small. As a result, there
is a large lengthening of the effective optical pumping
time of the atomic internal states in these regions. When
atoms with small velocities move across these quasinodes
of the field, they can move further up the light-shift po-
tential of one internal substate than they can in the case
of linllin, and lose more kinetic energy before they are
optically pumped into the potential associated with the
other internal substate. Therefore, on the average, atoms
with slow velocities experience stronger forces when
6 << 1 than in the case of linllin configuration.

The semiclassical argument above assumes that atoms
are uniformly distributed in space. When the quantized
atomic center-of-mass motion is included in the calcula-
tion, the atoms are found to be localized near the minima
of the light-shift potential wells. To produce sub-
Doppler cooling, the field detuning A is positive when
J,=1, and negative when J,=2. The light-shift poten-
tials for both J,=4 and % are shown in Fig. 8 for a small
angle 6. In the case of J,=1, the minima of the light-
shift potential correspond to the nodes of the circular
components of the field. Therefore, when 6 <<1, atoms
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z/A

Jy=1/2— J.=3/2

FIG. 8. Light-shift potential curves associated with each

internal atomic sublevel for both Jg=%—>Je=% and
Jo=1-—J,=2 transitions. The solid line corresponds to

U . (z), while the dashed line corresponds to U _(z). The locali-
zations of the lowest motional bands near the potential minima
are represented by the horizontal solid ( \g,% ) and dashed

(lg,— % )) lines.

in the lowest motional bands, which correspond to atoms
with slow velocities in the semiclassical picture, are local-
ized near the quasinodes of the overall field. As a result,
atoms in these lowest bands experience a stronger cooling
than in the case of linllin, which leads to an increase in
the population of the motional ground state as 6 de-
creases from 7 /2, as is evident from Fig. 2.

On the other hand, the situation is different for J,=3.
Since A is negative, the minima of the light-shift potential
now correspond to the antinodes of the circular com-
ponents of the field. As a result, the strong cooling mech-
anism originating from atoms moving across the quasi-
nodes of the field is lost when the atomic spatial localiza-
tion is taken into account. Moreover, atoms localized
near the antinodes of the field experience a stronger
diffusion due to the increased number of absorption-
spontaneous emission processes. This explains qualita-
tively why, on one hand, one recovers the qualitative
features of the semiclassical results in the case of J, = as
regard to the average atomic kinetic energy, on the other
hand, cooling is significantly reduced in the case of J, =3
as 6 decreases from 7 /2 [12].

It may be possible to experimentally observe some of
the features predicted by this theory for the case of
J, =%, with an F—F hyperfine transition. For example,
in the experiment of Ref. [2], where the fluorescence
spectrum of atoms confined in 1D molasses is collected,
the ratio between the areas of the two Raman sidebands
is believed to be proportional to the ratio between the
populations in the motional ground and excited bands.
Therefore an increase in the population of the motional
ground state when 6 is reduced should be observable
through this type of technique.

The change in the spatial atomic distribution as 6 is
varied [see Fig. 5] may be monitored as well by a probe
absorption experiment similar to the one described in

Ref. [1], where a sharp dispersive line shape in the probe
absorption spectrum, centered at zero pump-probe detun-
ing, is attributed to the interference between the probe
field, and the backscattered pump field from the atomic
population grating. The pump field components back-
scattered at different spatial locations can add up con-
structively due to an exact compensation between the
propagation phase of the field and the extra phase intro-
duced from the scattering processes [1]. In the case of
0 << /2, however, such an exact compensation of phase
disappears, and one therefore expects a significant de-
crease in the magnitude of the central Rayleigh structure
as 0 is reduced, while the Raman sidebands remain un-
changed or even increased in magnitude.

Finally, we would like to comment on a possible gen-
eralization of this lin/lin scheme to a transient regime.
As shown in Fig. 5, the atoms in steady state are local-
ized around the spatial regions of either o™ or o~ field
polarizations, and the distance between these regions can
be modulated through a variation of the angle 6 between
the cooling field polarization vectors. In a transient situ-
ation, one can oscillate the angle 8 around some average
value. For example, one can fix the polarization of one
field along the x axis, while oscillate that of the counter-
propagating field around y axis at some frequency 8. This
leads to a situation similar to the crystal lattice oscilla-
tion in solids, with an oscillation frequency 8. If the am-
plitude of the oscillation angle 6, is sufficiently small, the
effects introduced by this oscillation of the polarization
vector can be treated as a perturbation. In fact, one can
show explicitly that, to lowest order in 6, such a pertur-
bation is equivalent to fixing the polarization of this cool-
ing field at the y direction, while adding a pair of copro-
pagating “‘probe” fields of frequencies w+3, respectively,
with their polarizations perpendicular to the y axis. If
the polarization oscillation frequency 8 is equal to that of
the atomic motion in the potential wells, i.e., Q, one
should expect to see resonant transitions of atoms be-
tween lower and higher bands through stimulated Raman
processes [1]. The effects related to these transitions may
be observable through spectroscopy of these cooled
atoms.

In summary, we have presented a calculation for the
steady-state atomic density matrix in a 1D laser-cooling
scheme, where the field consists of a pair of linearly po-
larized fields, with their polarizations at an angle 6 to
each other. The quantized atomic motion in the light-
induced potentials is included in our calculation. The
atomic population distribution associated with each
ground-state internal sublevel is modulated in space. The
distance between the population distribution peaks that
correspond to the |g,1) and [g,—1) sublevels can be
controlled through variation of the angle 8. As 6 is re-
duced from 7 /2, the atomic population in the motional
ground state increases in the case of a J,=5—J, =1
transition, while it decreases in the case of a
J,=+5—J, =3 transition, in certain laser intensity range.
For J,=1, the average kinetic energy of atoms increases
more slowly with the laser intensity for smaller angle 6,
which is in qualitative agreement with the prediction of a



3232 JUN GUO AND PAUL R. BERMAN 48

semiclassical calculation. This is not the case, however,
for J,=3, where (p?) /2m increases faster with laser in-
tensity for smaller 6. Such a difference is directly related
to the spatial localization effects of atoms in the light-
shift potential wells.
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