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Micromaser with Kerr nonlinearity
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A micromaser containing a Kerr medium in its cavity has been investigated. We have presented an
exact solution to the model Hamiltonian, which, apart from the usual Jaynes-Cummings terms, contains
a Kerr term (a a ). We have shown that the Kerr cavity nonlinearity significantly modifies the photon
statistics of the micromaser field. Particularly, it is interesting to note that with the introduction of ap-
propriate nonlinearity a micromaser can be made to approach towards a number state with a low num-

ber of photons.

PACS number(s): 42.50.Lc, 42.50.Wm

I. INTRODUCTION

Experimental studies [1—3] with micromasers that use
highly excited Rydberg atoms in high-Q superconducting
microcavities have demonstrated various nonclassical
features of electromagnetic fields, such as collapse and re-
vivals, modification of spontaneous emission, sub-
Poissonian statistics, etc. In fact, resonator quantum
electrodynamics has become a good testing ground for
fundamental models of quantum optics. Quantum theory
of a micromaser device, proposed by two groups [4,5] in-
dependently, predicted several novel features, such as
sub-Poissonian photon statistics for the cavity field above
threshold and the abrupt transition of field states, which
are usually averaged out in ordinary lasers and masers
due to large macroscopic fluctuations of the number of
interacting atoms with the field. Since then a number of
theoretical investigations [6—14] have been carried out in
connection with atomic-beam noise suppression [6],
number-state generation [7,8], relation between micro-
scopic and macroscopic maser theory [9], two-photon mi-
cromaser theory [10], trapping states in micromaser [11],
phase transition in micromaser field state [12], micro-
maser spectrum [13],cavity field noise reduction by regu-
lating pumping statistics [14],etc.

In this paper, we have studied theoretically a micro-
scopic maser where the high-Q resonator cavity through
which a monoenergetic beam of excited two-level atoms
is passed contains a Kerr nonlinear medium [15—17].
The model pertaining to such a situation is a simple
modified Jaynes-Cummings model [Eq. (2.1)] which addi-
tionally contains a Kerr term. We show that the model is
exactly solvable and can be adopted within the frame-
work of micromaser theory. Furthermore, due to the in-
troduction of an intracavity nonlinear element, photon
statistics gets significantly modified in a number of ways.
First, sub-Poissonian character of the field is more
enhanced due to the presence of an intracavity Kerr
medium. Second, the photon distribution gets sharper
with the increase of nonlinearity and the peak shifts to-
wards the lower photon numbers. This implies that by

introducing a Kerr nonlinear element the micromaser
can be made to approach towards a number state with a
relatively low number of photons. This is opposite to the
situation considered by Krause, Scully, and Walther [8],
who showed that by increasing the number of injected
atoms in the cavity one can approximately realize a num-
ber state with a relatively high number of photons.

Before closing this section, two pertinent points are to
be noted. First, the model considered here is a variant of
a coupled-oscillator model considered by Agarwal and
Puri [18] in a difFerent context, where instead of the two-
level atoms a harmonic-oscillator field mode was con-
sidered. While in Ref. [18] the coupled oscillator model
was solved approximately, we have shown that the
present model is exactly solvable. Second, recently, it has
been noted [19] that amplitude noise reduction in lasers
can be achieved by introducing intracavity nonlinear ele-
ments, such as a two-photon absorber. Also intracavity
second-harmonic generation is known to produce
squeezed light with reduced amplitude fiuctuations [20].
These suggest that an intracavity Kerr nonlinear element
may also be efFective in sharpening a photon-number dis-
tribution in micromaser and subsequently facilitating the
realization of photon number state.

The rest of the paper is organized as follows. In Sec. II
we introduce the modified Jaynes-Cummings model and
its solutions. In Sec. III the standard quantum theory of
the micromaser has been adopted to this model. The
modifications of the photon statistics due to intracavity
Kerr nonlinearity are discussed in Sec. IV. The paper is
concluded in Sec. V.

II. THE MODEL AND THE DYNAMICS
OF THE SYSTEM

The total Hamiltonian of the system is given by

H =ficooa ta + ( —,
' )irtcoo, +Atla a +fig ( a o +a o + ),

(2.1)

where a (a ) represents the field annihilation (creation)
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operator, coo and cu are the field and atomic transition fre-
quencies, respectively, g is the atom-field coupling con-
stant, and q indicates the nonlinear parameter [18] of the
Kerr medium.

We can separate the total Hamiltonian into two parts
H, and H» as

H=Hi+H»

H, =A'co Oa a + ( —,
' )ficoocr, ,

H»=( —,')R&o, +A'qat a +Rg(ato. +ao+),
(2.2)

(2.3)

where 5=m —~o is the detuning of the system. It can be
easily verified that

[H„H„]=0. (2.4)

Since Hi is diagonal in the number-state representation
and commutes with H», it is always possible to find a
representation where both Hi and H» are diagonal. This

I

A, „=Aqn +A[g (n+ 1) + [(—,
' )b, —qn ] ]'

implies that the eigenstates of H» must be a linear com-
bination of eigenstates of H, .

Let Ia & (Ib &) represent the upper (lower) level atomic
state and

I an & and
I
b n + 1 & the basis kets for the atom-

field system with the atom in the upper and lower levels,
respectively. For obtaining a diagonal energy representa-
tion for H» we consider the following eigenkets and ei-
genvalue equations:

lg„i&=(cos8„)lb n+1&+(sin8„)lan &,

lttj„2& = —(sin8„)lb n+1&+(cos8„)lan &,

H„lq„, & =x'„ lq„, & .

(2.5a)

(2.5b)

(2.6a)

(2.6b)

Here 8„ is a parameter at our disposal to make If„,& and
lg„z& the eigenkets of H„. A,„,A, '„are the eigenvalues of
H„. Following the standard procedure [21] we get

A, '„=Aqn —A[g (n+1) +[( ,')b, q—n]—]'

g(n+1)'
qn +[g (n+1)+[(—,')b, qn] ——( —', )b, —q(n n)]'~—

I

(2.7b)

(2.8)

The eigenstates of Eq. (2.5) define a transformation ma-
trix

comes into play to modify the well-known features of mi-
cromaser photon statistics.

cos0„—sinO„

sint9„cosO„ (2.9)
III. MICROMASER WITH KERR CAVITY

NONLINEARITY

ly(~) &
= & [C..(~) lan &+Cb. + i(r) lb n+1& ] . (2.10)

n=O

In an interaction picture the amplitude coeKcients are
given by

C,„(~) exp( i k„rifi) — 0
z

—1

Cb „+,(~) 0 T.
exp( i A, '„r/A )

(2.1 1)

Assuming the atoms initially in the upper level, i.e.,
C,„(0)= 1 and Cb „+i(0) =0, we have

IC,„(~)l =1—sin 28„sin [(A,„—A, '„)~/2iri],

ICb„+,(r)l =sin 28„sin [(A,„—iL„')r/2'] .

(2.12)

(2.13)

that transforms the bare-atom probability to "dressed"-
atom probability.

The Schrodinger state vector lg(r) &, where r is the in-
teraction time, can be expanded in terms of bare states as

p. f(&; )= la &(a Is y &„(t;)In &(nl, (3.1)

where t, is the time at which the ith atom enters the cavi-
ty. The atom interacts with the field for a time ~. During
interaction the Hamiltonian [Eq. (2.3)] couples Ian & and

I
b n + 1 & Tracing over the atomic states we obtain the

field-reduced density operator at the time t; +w,

We consider that the atoms in the upper level without
initial coherence are injected into the cavity containing a
Kerr medium. We assume, as in the standard micro-
maser theory, that the rate of injection of atoms is low
enough so that almost one atom at a time is inside the
cavity and the interaction time ~ is much smaller than the
cavity relaxation time y '. %'e also assume that the field
is initially diagonal in the number-state representation.
Therefore the initial atom-field density operator is given
by

For convenience, we introduce A„such that

I c,„(v.)l'= A„(~), I c.„(~)l'=1—~„+,(~) . (2.14)
+ IC...,(r) I'In+»(n+ ll] .

(3.2)
By adopting quantum theory of micromaser into this

model system, in the two subsequent sections III and IV,
we investigate how the cavity-field Kerr nonlinearity

Identifying the diagonal elements of the above equation
we obtain
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P„(t;+r)=[1—A„+,(r)]P„(t,)+A„(r)P„,(t, ), (3.3)

where

nA„(r)=
q(n —1)—(-,' )6

+n

X sin

g

q(n —1)—(-,' )5 1/2

+n gv

(3.4)

To introduce the decay of the cavity field we further
assume that the field is coupled to a continuum of
thermal modes. Then in the interval between t, +r and
t;+ &

(i.e., the time at which the next atom is injected) the
decay of the field is governed by the standard master
equation of the form [22]

p Lp= ———( —,')y(n+1)[atap(t) ap(t)a—]

—
( —,

' )yn [p(t )aa t —a p(r)a ]+adj, (3.5)

where y is the rate of decay of the field and n is the aver-
age number of thermal photons. Here the damping
operator L is the usual Liouvillian operator. At the time
t;+, when the (i+1)th atom enters the cavity, the field
density matrix is given by

pf(t;+i)=e xp( Lrp) pf( r+r), (3.6)

where tp = t;+, —t; —r —=t;+ &,

—t;.
%"e assume that the atoms enter into the cavity accord-

ing to a Poisson process with mean spacing 1/R between
the successive entering events. Then after appropriate
averaging the "steady-state" [4] solution of Eq. (3.6) with

pf ( t +i ) =pf ( t,')yields the . photon distribution of the
form

n

P„=Pc [n/(1+n )]"g [1+(N/n )(Ak/k)],
k=1

(3.7)

IV. THE PH(OTQN STATISTICS

In Fig. 1 we show the plots of photon distribution for
difFerent values of dimensionless nonlinear parameter
(q/g) with dimensionless interaction time g&=0.4. A
single peak structure appears for q/g=0 [Fig. 1(a)]. As

where N ( =R /y) is the average number of atoms that is
injected into the cavity during the lifetime of the field.
Here Po is the normalization constant. The derivation of
Eq. (3.7) follows the similar procedure as in Ref. [4).
Since the expression (3.7) and the values of averages and
variances do not form summable analytical series one
resorts to numerical analysis. Instead of dealing with the
absolute magnitudes of nonlinear parameter q and the in-
teraction time ~, it is helpful to work with dimensionless
parameters, such as q/g, gr, etc. This is particularly im-
portant to avoid the problem of numerical overAow. In
the next section we study numerically the features of
steady-state photon statistics under exact resonance con-
ditions, i.e., 6=0.

FIG. 1. Normalized photon distribution function [p(n)] is
plotted against the integer photon number (n) for different
values of the dimensionless nonlinear parameter (a) q/g =0, (b}
q/g=0. 1, (c) q/g=0. 5, and (d) q/g= 1, with fixed n =0.1,
%=150, and g~=0.4.

(n )/N= g nP„/N (4.1)

and is plotted in Figs. 4—6 as a function of pump parame-
ter, e ( =0.5&Ngr) for difFerent values of nonlinear pa-
rameter q, with %= 150 and n =0. 1. The field starts
growing from almost zero intensity in all cases and as
usual after crossing the threshold one can observe the oc-

)

0.0
i' '0

FICx. 2. Normalized photon distribution function [P(n)] vs
the integer photon number (n) for q/g=0 (dashed lines) and
q/g =0.5 (solid line) with n =0.1, 2V=150, and g~=2. 0.

q/g increases from 0.1 to 1 the distribution becomes
sharper and sharper and shifts towards the lower number
of photons. This implies that the field state approaches
towards a pure number state with a low number of pho-
tons. It is interesting to recall at this point that Krause,
Scully, and Walther [8] observed that by increasing aver-
age number of injected atoms into the cavity the
micromaser-field state can be made to approach towards
a number state with a relatively high number of photons.
Shown in Figs. 2 and 3 is a photon-number distribution
for relatively higher values of interaction time gr ( =2.0,
3.0, respectively). The symmetrical nature of the mul-
tipeak photon distribution for q/g =0 turns asymmetri-
cal due to nonlinearity (q/g=0. 5) indicating that the
character of multistability of the photon distribution for
longer interaction times is modified.

The normalized average number of photons is given by
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FIG. 3. Same as in Fig. 2 but for q/g =0 (dashed lines) an

q/g =0.5 (solid line) with g&=3.0.
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FIG 7 Normalized variance {o.) in the photon number dis
tribution is plotted against the pump parameter (6 in units of
m ') for q/g=0 (dashed line) and q/g=0. I (solid line) with
n =0.1 and %=150.
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FIG. 4. Average photon number ((n )/Xj is plotted as a
function of pump parameter (6 in units of ~ ') for q/g=0
(dashed line) and q/g =0.1 (solid line) with n =0. 1 and %=150.
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(4.2)gr')i/(qn /g) +(n +l)=~j
where j is an integer during the interaction time ~. In the
limit q ~0, the normal trapping condition is recovered.

The normalized variance in the photon-number distri-
bution is given by

l 1/2(n') —(n)'
(4.3)

currence of an abrupt transition of the Geld states at regu-
lar intervals. As the nonlinearity is increased the station-
ary regime (over which (n ) /X is nearly independent of
0) is reached at a much lower value of H. Also the aver-
age number of photons in the cavity is decreased drasti-
cally. Beyond the scale of the graph there are additional
features which are reminiscent of Jaynes-Cummings re-
vivals [23].

It is also interesting to see how the trapping condition
[24] which results from coherent atom-field interaction is
modified by nonlinearity. On resonance the zeros of Eq.
(3.4) with n ~n+ l implies that there exist number states
in, ) such that

FIG. 5. Same as
q/g = 1 (solid line).

0 5 'I0
Pump parameter

in Fig. 4 but for q/g=0. 5 {dashed line) and

Figures 7—9 show the plots of o. as a function of 0 for
diferent values of dimensionless nonlinear parameter
q /g. Without field nonlinearity ( q /g =0) and above
threshold (0) 1) the field exhibits sub-Poissonian statis-
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FIG. 6. Same as in Fig. 4but for q/g=10.
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FIG. 8. Same as in Fig. 7 but for q/g =0 (dashed line) and

q/g =0.5 {solid line).
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FIG. 9. Same as in Fig. 7 but for q/g=0 (dashed line) and

q /g = 10 (solid line).

ties (o. ( I) with periodic sharp transitions to the super-
Poissonian region (o.) 1) for lower values of 0. For
q/g=0. 1 (Fig. 7, solid curve), though o(6)) retains the
nature of the periodic transition from the sub- to the
super-Poissonian region, the period of transition is less
than what it is for q /g =0 and finally o (0) remains
confined approximately along the line of Poissonian dis-
tribution (cr =1). When q/g =0.5 (Fig. 8, solid curve)
the period during which the field remains sub-Poissonian
is prolonged, though it is less sub-Poissonian than what it
is for q/g=0. At q/g =10 (Fig. 9, solid curve), for a
long range of pump parameter the field remains sub-
Poissonian. For q/g =10 the sub-Poissonian character

of the field is strongly enhanced and furthermore some
periodic dips appear in the o (8) curve indicating that the
field has a tendency to go into a still deeper sub-
Poissonian region.

V. CQNCI. USIONS

We have presented a theory of micromaser in which a
monoenergetic beam of excited two-level atoms is inject-
ed into a high-Q resonator filled with a Kerr medium.
We have shown that due to the introduction of nonlinear-
ity photon statistics of the cavity field gets profoundly
modified in a number of ways. Particularly interesting is
the narrowing of the photon distribution profile and its
shift towards the lower photon number, since the realiza-
tion of the number state with the low photon number is
an important issue from the point of view of generation
of nonclassical states. Another important aspect is the
generation of squeezed states, the possibility of which can
be explored by injecting the atoms in a coherent superpo-
sition of states. We hope to address this and other relat-
ed issues in a future paper.
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