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Quantum-noise limits to matter-wave interferometry
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We derive the quantum limits for an atomic interferometer from a second-quantized theory in which
the atoms obey either Bose-Einstein or Fermi-Dirac statistics. It is found that the limiting quantum
noise is due to the uncertainty associated with the particle sorting between the two branches of the inter-
ferometer, and that this noise can be reduced in a sufficiently dense atomic beam by using fermions as
opposed to bosons. As an example, the quantum-limited sensitivity of a generic matter-wave gyroscope
is calculated and compared with that of a laser gyroscope.
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Matter-wave interferometry dates from the inception
of quantum mechanics, i.e., the early electron-diffraction
experiments [1]. More recent neutron-interferometry ex-
periments have yielded insight into many fundamental as-
pects of quantum mechanics [2]. Presently, atom inter-
ferometry has been demonstrated and holds promise as a
new field of optics—matter-wave optics [3]. This field is
particularly interesting since the potential sensitivity of
matter-wave interferometers [4] far exceeds that of their
light-wave or “photon” antecedents [5].

However, as was emphasized at the recent Solvay
conference on quantum optics, there is at present no
paradigm available for calculating or estimating the
quantum-noise limits to matter-wave interferometers, and
therefore we have no basis for estimating the potential
sensitivity of devices based on matter-wave inter-
ferometry (e.g., gyroscopes) [6].

In order to motivate the analysis and derive the quan-
tum limits, we proceed as follows: First, we “set the
stage” by considering a simple gyroscope and deriving
the rotation-induced signal in matter-wave optics. Next,
we proceed to develop the theory for atomic interferome-
ters, cast in an operator formalism that is well suited to a
quantum-noise analysis, and then we obtain the
quantum-noise limits for matter-wave interferometry. Fi-
nally, we compare current laser gyroscope sensitivity to
that of a near-term, matter-wave device.

We begin by considering an idealized atom interferom-
eter used as a rotation detector or gyroscope, as shown in
Fig. 1. From this diagram it is easy to see that the atom-
ic path difference between the upper branch a and the
lower branch S is given by 6/ =2rQ¢, where Q is the an-
gular velocity of the interferometer, r is the radius of the
circle, v the particle velocity, and ¢t =r /v is the particle
transit time through the interferometer. This readily
translates into a Sagnac phase difference of 8¢,z
=k(la—lﬁ)=2ﬂ'r29./7\v=2AQ/7\U, where A=#/mv
is the atomic de Broglie wavelength [7] and A the area
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enclosed by the arms. The phase signal is then given by
"8l =2 Am Q) /#; independent of the interferometer
shape as long as A is the total area enclosed by the arms.
This expression holds for both atom and light interferom-
eters, if, in the photon case, we define an effective photon
mass m, implicitly by m7c2=ha). Now, since the
“mass” of a photon is governed by optical energies of a
few electron volts—and atomic masses are of order 10°
MeV —we see that matter-wave gyroscopes potentially
have a signal that is enhanced by many orders of magni-
tude, compared to light (laser) gyroscopes. Thus motivat-
ed, we next consider a detailed analysis of phase sensitivi-
ty in matter-wave interferometry.

In accordance with current experiments [3], let us con-
sider the model illustrated in Fig. 2. There, we see a
stream of NV atoms passing one-at-a-time through a beam

FIG. 1. A schematic illustration of an interferometer with
semicircular arms to be used as a rotation sensor or gyroscope.
If the loop rotates with an angular frequency  about an axis
through its center and normal to the loop plane, the path
difference between counter-propagating and copropagating
beams can be easily seen to be 8/=rQur /v, where v is the
atomic velocity. From this, the phase shift, 8¢,s, follows im-
mediately. We may then use this result to estimate the
minimum detectable rotation rate Q™", Eq. (11).
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FIG. 2. We illustrate a scheme whereby a stream of N atoms
are sent through a simple interferometer during a measurement
time ¢,,. The atoms are split at beam splitter 1, follow paths «
or f3, are reflected off the mirrors, and are then recombined at
beam splitter 2. The recombined atoms are detected at upper
detector a or lower detector b where interference fringes are
recorded.

splitter into a simple interferometer with upper and lower
branches labeled a and 3, respectively. Upon recombin-
ing the two beams, we inspect the resultant interference
pattern for phase shifts induced, say, by a gravitational
potential between the two branches or a net rotation of
the system. As in the optical dual [5], one might expect
that the overall sensitivity of the device will be limited by
the quantum limits imposed by particle-number fluctua-
tions, AN, or the phase noise, Ag, in the interferometer.
It is often stated that AN is to be associated with the
Poissonian fluctuations in_the arrival time of atoms in the
input beam, i.e., AN ~V'7 where 7 is the mean number
of particles [8]. However, in the ideal experiment en-
visioned here, the total number of particles N is assumed
to be known exactly obviating the need for Poisson statis-
tics. We shall show that the quantum limit to particle-
number noise arises not from fluctuations in the input-
beam intensity but rather from beam-splitter uncertain-
ties pertaining to the lack of knowledge of which path, a
or f3, the atom has taken through the interferometer.

To see this, let us continue developing our simple mod-
el depicted in Fig. 2. We assume that, upon reflection
from a beam-splitter surface, the particles undergo an
unimportant phase shift which we take to be 7/2. The
actual shift depends on specific properties of the beam
splitter, but this does not affect the overall result [9].
Upon passage through a beam splitter, however, the atom
undergoes a phase shift of ¢;, i=1,2, for the first and
second beam splitter, respectively. The cumulative effect
in the interferometer of these various processes on the
atomic wave function ¢ is depicted in Fig. 3 and leads to
a wave function 9, corresponding to the upper detector a
and ¢, for the lower detector b, namely,

b

i6, —ik(l,—1g)
po=Lellp—e T T

) ) (1
¢b=_12£_e10b[1+e—1k(1a IB)] )

where 8,=w/2+kl,+¢, and 6,=kl,+¢,+¢,, and
where, without loss of generality, we take @, =¢,=m.
Here, k is the atomic wave number and [/, and /; are the
path lengths through the upper and lower branches, re-
spectively. We imagine now that the beam is recombined
by the second beam splitter and then the detectors a and

3187

1 iBn/24kp)
Ve

i(e+nrke)
1 " %
Ehe D)

FIG. 3. Chasing phases through the interferometer accounts
for accumulated phase shifts in the upper or lower branches.
The phase shift upon reflection is arbitrary, but we choose it
here to be 7 /2 for simplicity. Upon transmission, a phase shift
of @, or @,, is assumed for beam splitter 1 or 2, respectively

b shown in Fig. 2 count the number of atoms as they ar-
rive in the recombined upper beam or lower beam, re-
spectively. If we label N atoms with the index
i=1,...,N, as those sent through the interferometer
during a measurement time ¢,,, then the appropriate state
vector |@); for the ith atom in the interferometer, after
recombination, is given by

if, .
|<P)i: 62 (1—e lq)aﬁ)lla,ob)i
ei9b i
+ > (1+e “ﬁ)loa,lb),- , (2)

where here @, z=k(l,—Ig). We see that this state is an
appropriate superposition of the number states |1,,0,)
and |0,,1,) corresponding to an atom incident on the
upper or lower detectors, a or b, respectively. The state
vector |® )y for the N-atom state is then constructed via
a direct product of the individual atomic states, namely

N
|¢>NE_I__}1|(P>,' . (3)

Let ’c\:r,,,- and ¢, ; where o0 =a,b, be the creation and an-
nihilation operators, respectively, for the number states
|n,,ny,);, where, corresponding to number operators

R, ;=¢C ;,-6(,’,-, the eigenvalues n, and n, are O or 1.

Then the number operator N - for the number of a or b
atoms is determined by

N
N,=3 #,; (0d=a,b), @)

i=1
and the operators ¢ obey the commutation relations

[2,,i25,580,12,,11=8

C0,i€0,jTC0q,j

i o (5)
where the plus or minus sign indicates Bose or Fermi
statistics, respectively. The statistical nature of the
atoms will be important in circumstances where the den-
sity of particles in the interferometer is so large that there
is more than one atom at a time within a single coherence
length. The expectation values (N, ) of these number
operators, Eq. (4), are given by

elf o) =3 |12

i=1

. 2
ip
' j(layob,lﬁa,i|la’0b )i )

(6a)
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This yields the expression for the mean number of atoms
in the a and b detectors as

(N,)y=Nsin’p5/2, (N,)y=Ncos’p,/2 . @)

J

(AN, 2= (DN D)y — [y (PN, |®)y]?

N N N
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These expectations constitute the signal—what then is
the minimum detectable noise?

To answer this question, we compute the quantum-
noise fluctuations using the formalism developed earlier.
Recalling the definitions for the number operator N, Eq.
(4), and the state vector |®)y, Eq. (3), and using the
commutation relations, Eq. (5), we may write

2

2

i=1

N . a IS EPS BN
=73m2¢a3i2 i<¢|c£,icz,ica,ica,i|(p>i (0=a,b), ®)

i=1

where, as before, the upper and lower terms in braces
correspond to o =a or b, respectively, and the plus or
minus sign refers to the statistics of the particles: a plus
sign for bosons and a minus sign for fermions. We note
that the last statistics-dependent term of Eq. (8) is the
sum of non-negative matrix elements and so itself is non-
negative or nonpositive, according to the plus sign or
minus sign, respectively. A quantitative analysis of the
contribution of this statistics-dependent term requires a
specific model of the coherences between atoms in a
dense beam. However, one can qualitatively statc that
for sufficiently high densities, the use of fermionic atoms
will tend to lower the quantum-noise limit—since the last
term will be negative. Bosons will have the opposite
effect. A detailed analysis of the statistics-dependent con-
tribution is beyond the scope of this paper, and will be
left to a later work. Hence, since in current experiments
the beam intensity is so low that there is only one atom at
a time within a single coherence length, the statistics-
dependent second term in the last line of Eq. (8) is zero
and we are left with the result

vV'N
2

We notice that this result depends on the fotal number of
atoms N=N,+N, and not the mean number (N ), nor
the number in the branches, N,. Now, the signal in ei-
ther branch N, is given by Eq. (7).

The quantum fluctuations in phase Ag,s in the mea-
sured phase difference ¢, may be determined by [10]

Ags = (AN,)
$aBl = T3(N, ) /3¢l
=1
VN’
a result that is independent of both ¢,z and the detector a
or b. This @ independence might appear surprising at

(AN, )= sing, (0=a,b) . 9

(10)

=
first, but it is a direct result of the fact that the quantum-
number-state noise { AN, ) is proportional to the slope of
the signal (N, ) for the upper and lower number states
considered here. (See, in particular, Ref. [10].) Again, we
stress that N is not the quantum expectation value (N )
but rather the total number of atoms detected in the mea-
surement time ¢,,. This is not then the expression one
would expect from the application of the uncertainty
principle, for in that case N would have to be replaced by
(N). We reemphasize that it has not been clear what
form of the uncertainty principle one should even use in
an atom interferometer [6]. For light, the so-called
number-phase uncertainty principle, ApAN X 1, yields
for a coherent state Ap=1/{N )!”>—where only the ex-
pectation {N) and not the total number N is known.
For atoms it is not obvious at all what the relationship
should be, and we have shown that the result is unexpect-
ed in that Eq. (10) depends on the total number N that is
precisely known for the atom interferometer, and where
(N) has no meaning. In contradistinction, in a laser in-
terferometer, it is impossible to know the total number of
photons and only the mean can be specified. Hence, the
matter-wave result, Eq. (10), is quantitatively, qualitative-
ly, and philosophically different from the optical result.

We conclude by applying this result to the gyroscope
problem. Let us note that the atom number N is given by
Jtm» where j is the atomic flux (in atoms per second) hit-
ting the detector. We have from Eq. (10) the minimum
detectable phase shift, A@.;,=1/1jt,, and equating
this to the signal derived earlier, @*€"=2 AmQ /%, we
find the minimum detectable rotation rate Q™" is given
by

!’l“‘i“5~i§—(jt,,1)‘1/2 (matter) . (1
m

This should be compared to the same result obtained
from using an optical interferometer in which the flux j is
given by the power P divided by the photon energy fiw
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TABLE I. Compared and contrasted are different properties of matter-wave and optical gyroscopes
in terms of their sensitivity to phase differences—or equivalently—rotation rates. We see that the high
mass of atoms initially contributes an increase of sensitivity of 10'°, but that the low atomic beam inten-
sity, compared to photon beams, removes some of this advantage, as does the reduced number of round
trips possible in an atom interferometer. Nevertheless, a typical factor of a 10* increase in rotation sen-
sitivity can still be expected using atoms rather than photons.

Matter

Matter-to-light

Laser sensitivity factor

Mass

factor ~10* MeV

Flux pvA~101%x10*x 1072

=102 particles

sec

Round
trips ~1

~1 eV ~10"

A
v 107Y ,
~107
=10'6 photons

sec

~10* ~107*

[5,7], in other words

—1/2
. % P .
QMin = —t light) , (12)
Am, | fio " (light)
where m, is the effective photon mass, defined by

m, =fiw/c 2, In Table I we compare and contrast prop-
erties of the matter-wave and laser light interferometers
in order to gauge their effectiveness in measuring Q™",
As mentioned before, we note that the typical photon
effective mass gives an increase in sensitivity of 10'°.
This mass factor, however, is offset by the low particle
flux available for atoms—this increases the laser gyro-
scope sensitivity over that of a matter-wave one by a fac-
tor of around 10%. In addition, the atoms make about one
“round trip” through an interferometer, whereas in a
ring laser gyroscope the photons make many (= 10*) cir-
cuits around the ring and yield an additional sensitivity
factor of 10* in favor of the laser system. This still leaves
the matter-wave device 10* times more sensitive.

In summary then, we conclude that the phase uncer-
tainty arising in an atomic interferometer arises from
atomic number fluctuations associated with the sorting of
the particles between the two arms of the interferometer.
Our result is different in that the minimum detectable
phase Ap~1/V' N depends upon the total number N of
atoms in the interferometer, and not the quantum expec-
tation number (N ) one would expect from a naive appli-
cation of the uncertainty principle. In addition, by using
a sufficiently dense atomic beam of fermions this limit
can be improved upon, while the use of bosons has the
opposite effect. Applying our results to an interferometer
used as a gyroscope, we find that a matter-wave gyro-
scope can be expected to be more sensitive to rotation by
some four orders of magnitude than present laser devices.

We should note that previous semiclassical arguments
yield a statistical relation between phase and number
noise of the form ApAn =1, “where An denotes the stan-
dard deviation of the total counting rate n registered at

the detector, which obeys Poissonian statistics
(An =1/{n )pyisson) as a basic feature of the source emis-
sion process” [8]. However, the ideal experiment as-
sumed here removes the essentially classical phase noise
associated with the Poisson process, and uncovers the un-
derlying quantum limit to phase detection, similar to that
discussed in Ref. [10] by Wineland et al., for N trapped
atoms. Quantum-number noise, (AN, ), as well as the
statistics-dependent fermion or boson contributions, are a
direct result of the second-quantization procedure of the
particle field ¥ that introduces particle creation and an-
nihilation operators for the upper and lower detectors of
the interferometer. An ordinary first-quantized ap-
proach, aside from being intractable and inelegant, sim-
ply cannot provide the quantum-number-phase noise in-
formation.

Note added in proof. It has come to our attention that,
for fermions, Yurke has obtained similar results as those
presented here using a slightly different approach invok-
ing spin-angular-momentum algebra techniques [11]. We
believe our approach is more general in that it handles
fermions and bosons with the same ease and on an equal
footing, an important point when dealing with atoms that
can just as likely be fermionic as bosonic. In addition,
Yurke points out that the N~ !/2 limit can be surpassed
by using correlated particles entering both input ports of
the interferometer. We did not explicitly consider such a
configuration here, but the noise-reducing properties of
using correlated atoms could easily be included in the
statistics-dependent, second-order, correlation function
term that appears in our Eq. (8) for the quantum noise.
We would like to thank P. Kumar for pointing out the
work of Yurke to us.
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